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Particle entanglement in continuum many-body systems via quantum Monte Carlo
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Entanglement of spatial bipartitions, used to explore lattice models in condensed matter physics, may be
insufficient to fully describe itinerant quantum many-body systems in the continuum. We introduce a procedure
to measure the Rényi entanglement entropies on a particle bipartition, with general applicability to continuum
Hamiltonians via path integral Monte Carlo methods. Via direct simulations of interacting bosons in one spatial
dimension, we confirm a logarithmic scaling of the single-particle entanglement entropy with the number of
particles in the system. The coefficient of this logarithmic scaling increases with interaction strength, saturating
to unity in the strongly interacting limit. Additionally, we show that the single-particle entanglement entropy is
bounded by the condensate fraction, suggesting a practical route towards its measurement in future experiments.
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Traditional two-point correlation functions, and their ability
to probe broken symmetries, underlie our modern edifice of
condensed matter theory. However, they are known to fail as
a foundation for a complete classification of all phases of
quantum matter, as demonstrated spectacularly in fractional
quantum Hall and other topological phases [1,2]. To remedy
this insufficiency, one can construct classifications based
on information theory, which is by definition a complete
description of all correlations, raising the question of which
information-based quantities are relevant for quantum phases
of matter [3]. Bipartite entanglement entropy is a leading
candidate, with its usefulness and versatility rapidly increasing
along with an understanding of its properties in a variety of
quantum phases [4]. For example, the ubiquitous “area law” in
the spatial entanglement entropy of the ground state [5,6] has
led to ways to classify and characterize quantum phases [7–9]
and phase transitions [10–12] in condensed matter systems,
along with elucidating the simulability of quantum models
on classical computers [13,14]. Previous work has primarily
been based upon modal bipartitions, where the entanglement
is between two spatial or momentum subregions. However,
in systems of itinerant particles [15], one can choose to
bipartition into subsets of particles (Fig. 1) [16–20]. This
particle entanglement can give insight into not only quantum
correlations due to interaction, but also exchange statistics and
indistinguishability [21–23].

The utility of particle entanglement as a probe of quantum
matter is illuminated by considering a spatially contiguous
system of bosons. The noninteracting ground state is a Bose-
Einstein condensate (BEC), which is a trivial product state in
first-quantized notation. However, the entanglement entropy
of a spatial subregion is nonzero, even in the absence of
interactions, generated purely by number fluctuations [24–28].
Conversely, in such a system, the particle entanglement is
generated solely from interactions, and vanishes for the nonin-
teracting BEC [29]. In a lattice system of itinerant bosons, in
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the presence of strong interactions, the ground state will realize
a Mott-insulator-like state which is an unentangled product
state in a spatial basis, but has logarithmically extensive
particle entanglement. Clearly the interplay between spatial
and particle entanglement has the potential to give insight into
the nature of quantum phases of itinerant particles, as well as
the quantification of experimentally accessible entanglement
[30–32].

A significant barrier exists to fulfilling the goal of using
particle entanglement as a resource in condensed matter
physics—its behavior is little known, outside of a few
examples of noninteracting or few-body systems [17,19–21].
In this Rapid Communication we present a method to calculate
particle entanglement in interacting many-body systems of
itinerant bosons in the continuum described by the general
Hamiltonian

H =
N∑

i=1

(
− �

2

2mi

∇2
i + Ui

)
+

∑
i<j

Vij , (1)

where mi is the mass of a particle located at continuum spatial
position r i , Ui is an external potential (such as a harmonic
trapping potential), and Vij is any two-body interaction, short
or long ranged. The method is based on a path integral ground
state Monte Carlo (PIGS) algorithm [33,34], which we show
gives access to the Rényi entanglement entropies through
a “replica” trick. The numerical algorithm is completely
scalable in particle number and dimension of the system,
unlike entanglement entropy estimators based on the direct
calculation of the reduced density matrix.

Below we demonstrate that the Rényi entanglement en-
tropies can be calculated accurately in PIGS simulations of
one-dimensional (1D) interacting bosons. We confirm the
logarithmic scaling of the particle entanglement in the number
of particles of the system, and demonstrate that the prefactor
scales with interaction strength, before saturating to unity in
the strongly interacting limit. Additionally, we show how
the Rényi entropy for a single particle is bounded by the
condensate fraction.
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FIG. 1. (Color online) A comparison of spatial and particle bi-
partitions in the continuum. Particle bipartitions are possible even
in the case of their indistinguishability through a fictitious labeling
scheme.

Particle entanglement and Rényi entropies—To define the
particle entanglement in a system with N particles, one first
chooses a bipartition by identifying an n particle subset.
Then the entanglement can be quantified through the Rényi
entropies,

Sα(n) = 1

1 − α
log

(
Trρα

n

)
, (2)

where ρn is the n-particle reduced density matrix on the
“A” bipartition of n particles, with degrees of freedom
associated with the N − n particles in “B” traced out [16–
20]. Using this definition we develop an algorithm for the
calculation of particle entanglement in systems of itinerant
bosons in the continuum, for integer Rényi entropies with
α � 2, based on the scalable simulation methodology of PIGS.
As a demonstration, we calculate the single-particle entropy
S2(n= 1) = − log Trρ2

1 for interacting bosons on a ring. Re-
markably, in itinerant boson systems, the condensate fraction
n0 provides bounds on S2(n = 1). Much previous work has
discussed the relationship between spatial entanglement and n0

[24–27,35–45], but here we focus on particle entanglement.
First, S2 is bounded from below by the single copy entan-
glement S∞, and above by 2S∞. Importantly, in itinerant
boson systems, this largest eigenvalue of ρ1 is simply n0 [46],
hence S∞ = − log n0. Next, we can place a tighter bound
on S2 by considering the two mode limit, where there are
only two single-particle modes accessible to the system. In
this case the restriction on Trρ means that the condensate
fraction uniquely determines S2, since the binary entropy
Sbin = − log[n2

0 + (1 − n0)2]. The final bounds for n0 > 1
2 are

S∞ � Sbin � S2 � 2S∞, (3)

with S∞ and Sbin switched for n0 � 1/2.
Computing entanglement entropy—PIGS is a powerful

and widely used method to study ground state properties of
strongly interacting many-body systems [33,34,47]. In the
case of interacting bosons, its polynomial scaling allows for
the study of large-scale systems in any dimension with short
or long ranged interactions. Since the recent demonstration
that Rényi entanglement entropy can be computed in Monte
Carlo simulations [7,48], a large volume of subsequent effort
has studied spatial entanglement entropy in lattice systems
with quantum Monte Carlo (QMC). To date however, the only
QMC method that allows for the computation of entanglement

entropy in a continuous-space system is a variational Monte
Carlo method for fermions [49]; no such methods have been
reported for the calculation of particle entanglement.

Following the approach of Ref. [48], we consider a
“replicated” Hilbert space of a continuous-space system of N

bosons in first quantized notation. We represent a basis state
as |R〉, where R = {r0, . . . ,rN−1} is a vector of all the particle
positions in first quantized notation. We label a second copy
of the Hilbert space {|R̃〉}, and form a doubled, tensor product
Hilbert space {|R; R̃〉}, these two replicas represent the same
physical system and are noninteracting, giving us access to S2.
For Sα , one simply makes α noninteracting replicas.

To compute a bipartite Rényi entropy, we must first define a
subsystem by a particular choice of bipartitioning: For particle
entanglement we choose a subset of n particles A, such that
R = {RA,RB}. Due to the bosonic symmetry, any physical
properties of this bipartition will not depend on the labels
chosen for the subset, merely the number of particles n in A.
We define a permutation operator �A

α that maps RA from one
replica to another, modulo α, and acts as the identity on all RB .
In the case of the second Rényi entropy [50], �A

2 then simply
interchanges the subset A and Ã between the two subsystems:

�A
2 |{RA,RB}; {R̃Ã,R̃B̃}〉 = |{R̃Ã,RB}; {RA,R̃B̃}〉.

The expectation value of this permutation operator of state
|�〉 in the doubled Hilbert space is related to the second Rényi
entropy of |�〉, S2 [48,51]:

〈�,�̃|�A
2 |�,�̃〉 = e−S2 . (4)

To compute the Rényi entropy of the ground state, we must
be able to sample this replicated Hilbert space and define an
estimator for the permutation operator.

PIGS methods give access to ground state properties
of a many-body system through statistically sampling the
imaginary time propagator e−βH . Given a trial wave function
|�T〉, in the large imaginary time limit β → ∞, e−βH |�T〉
converges to the ground state, as long as it is not orthogonal
to it. We note that unlike some other zero temperature QMC
methods, such as Green function and diffusion Monte Carlo,
there is no inherent bias in estimators from the choice of the
trial wave function, so long as β is chosen to be sufficiently
large [52].

To statistically sample observables, we consider a config-
uration space of imaginary time worldlines of the particles
living in d + 1 dimensions. In continuous space systems,
we discretize the imaginary time direction and approximate
the full propagator as a product of short-time propagators
ρτ = e−τH . The error in this approximation is controlled by
the size of τ , and can be made smaller than any statistical
uncertainties. We represent these discrete imaginary time
worldlines by connected “beads” which represent a particle
position at a given imaginary time as depicted in Fig. 2; links
between these beads represent the short-time propagator that
relates a particle’s position at neighboring imaginary times.
Bosonic exchange symmetry is enforced by ensuring that both
the trial wave function and any estimators are symmetric over
the fictitious particle labels.

To compute off-diagonal observables such as the �A
2

operator, we generate configurations that have n open and
N − n closed worldlines, where the breaks are at the central
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FIG. 2. (Color online) A configuration with N = 4 bosons at
zero temperature in one spatial dimension with a single broken
worldline (left). By creating α statistically equivalent replicas of the
N particle system (α = 2 here), each having n broken worldlines, the
n-particle Rényi entropy can be measured via a permutation estimator
(right).

imaginary time slice between β and β + τ (Fig. 2). The
broken worldlines of bipartition A allow for the insertion of an
off-diagonal operator with nonvanishing weight, while only
closed worldlines belonging to bipartition B are connected
by a propagator ρτ (Rβ

B ; Rβ+τ

B ) = 〈Rβ

B |ρτ |Rβ+τ

B 〉. Such an
ensemble may be Monte Carlo sampled by standard path
integral methods using a variety of updates to ensure detailed
balance [33]. The estimator for the �A

2 operator corresponds
to sampling the statistical weight linking the worldlines of the
A particles with Ã particles across the central time slice, as
illustrated in Fig. 2. In this ensemble the estimator for the
permutation operator is

〈
�A

2

〉 =
〈
ρA

τ

(
Rβ,R̃

β
; �A

2 (Rβ+τ ,R̃
β+τ

)
)〉

〈
ρA

τ (Rβ,R̃
β
; Rβ+τ ,R̃

β+τ
)
〉 , (5)

where we have defined the “reduced propagator” ρA
τ ≡

ρτ (Rβ ; Rβ+τ )/ρτ (Rβ

B ; Rβ+τ

B ). The numerator in Eq. (5) cor-
responds to the statistical weight of the “permuted” path and
the denominator is a normalization factor arising from weight
of the paths under the identity permutation. This form of
the estimator is independent of the choice of the short-time
propagator, which in general will involve diagonal weights at
each bead as well as off-diagonal weights for the links [53].

We note that the free-particle contribution to the short-time
propagator in Eq. (5) is a product of n Gaussian factors
for both A and Ã. Consequently both the numerator and
denominator in Eq. (5) will be exponentially small in the
size of the bipartition n; this is analogous to the exponential
decay of the “SWAP” operator for spatial entanglement due to
the “area law” in lattice systems [48]. To address this issue
for large n, we can perform a generalized ratio sampling
by building up the n-particle entanglement from a series of
calculations of the 1−,2−, . . . ,(n − 1)-particle entanglement
[48]. To compute spatial entanglement entropies, one may use
a related method, where the broken worldlines only occur in a
spatially defined region [54].

Interacting bosons on a ring—We present calculations
of the second Rényi single-particle entropy for the ground
states of a system of N interacting bosons in one spatial
dimension with periodic spatial boundary conditions. The
particles have a repulsive two-body interactions described
by V (r) = (2c/

√
2πσ 2) exp [−r2/2σ 2], which has integrated
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FIG. 3. (Color online) The single-particle entanglement entropy
vs interaction strength c, for N = 8 bosons in 1D. The second Rényi
entropy S2 computed via the permutation operator (SPERM

2 ) agrees
exactly with that calculated from an integration of the one-body
density matrix (SOBDM

2 ). The shaded region is the bound placed on S2

from the condensate fraction alone. The lower bounds Sbin and S∞
cross when n0 = 1/2.

strength 2c in the thermodynamic limit and we have fixed
the variance to be unity. As σ → 0 we recover the Lieb-
Liniger model of δ-function interacting bosons [55]. Our
simulations were performed at a constant density of 1/(5σ )
for N = 2–16, with �

2/(2mσ 2) 	 6.06 K (kB = 1), and with
an imaginary time path length β chosen to ensure convergence
within statistical errors using an O(τ 4) approximation to the
short-time propagator [56] with τ = 0.08 K−1 [57].

The evaluation of the single-particle S2 via the replica trick
in this system allows for an important benchmark, as S2 can
also be calculated through numerical integration of the one-
body density matrix ρ1, which is accessible in PIGS. However,
this latter procedure is not scalable as a function of spatial
dimension or particle bipartition n, in contrast to the replica-
trick calculation. Figure 3 illustrates the agreement of these
two methods for computing S2 in a N = 8 system, providing
a crucial validation of our algorithm given in the previous
section [58].

Next, the zero-momentum component of ρ1 is used to
calculate the condensate fraction n0 (which is nonzero in 1D
only due to a finite size simulation cell), giving us access to
S∞ needed for evaluation of the bounds in Eq. (3). In Fig. 3
we see that S2 is indeed bounded as expected. Namely, in the
weak interaction regime with a small condensate depletion
(n0 > 1/2), Sbin and 2S∞ provide tight bounds for S2. In
contrast, for n0 � 1/2, Sbin saturates at a maximum of log 2
and then decreases, whereas S∞ diverges logarithmically
as n0 → 0, providing a tighter lower bound for S2 in
this regime.

Finally, we examine the scaling of the single-particle
entanglement. At fixed interaction strength and density, there
are two scaling parameters, n and N . Whereas the area law
of spatial entanglement arises from scaling the entropy with
bipartition size, for particle entanglement the bipartition is
solely characterized by the number of particles in the subregion
n. A canonical form of this scaling was proposed by Zozulya,
Haque, and Schoutens [19] to be S(n,N ) = an log N + b, and
has been derived for various limiting cases [20].
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FIG. 4. (Color online) The coefficient of the log N term in the
finite-size scaling of S2(n = 1), a vs interaction strength c for N =
2–16. The saturation to unity occurs where the interactions become
effectively hard core; a < 1 indicates multiple occupancy of single-
particle modes. Inset: Data collapse of the finite-size scaling of S2(n =
1) with the solid line equal to log N . Different colors correspond to
the different interaction strengths plotted in the main figure.

The inset of Fig. 4 illustrates the data collapse of S2(n = 1)
to the log N scaling form for N = 2–16 and c = 2.5–60 K,
confirming it in a system with nontrivial interactions. The
main plot in Fig. 4 shows the scaling of the coefficient a, which
saturates to unity in the strongly interacting limit. This scaling
of a is qualitatively consistent with that of the single-particle
entanglement of a Luttinger liquid (by which this system
should be described in the thermodynamic limit), where a

is the inverse of the Luttinger parameter. Note the coefficient
of the scaling with the bipartition size is given by a log N .
Unlike spatial entanglement where the coefficient of the area
law generally arises due to short distance physics, the anal-
ogous coefficient for particle entanglement is logarithmically
extensive. A logarithmic scaling also appears in the spatial
entanglement of itinerant particles, where its origin is number
fluctuations in the spatial bipartition [24–26,28,41,42]. The
appearance of log N in the particle entanglement is distinct
from the spatial entanglement case and arises when there is no

multiple occupancy of single-particle modes (e.g., in hard-core
bosons or fermions). This is a consequence of the fact that the
single-particle entanglement measures the effective number of
accessible single-particle modes.

Discussion—We have presented a scalable simulation
method for computing particle entanglement entropies in
continuum systems of itinerant bosons, and implemented it
in ground state path integral Monte Carlo. This technique
is applicable to a wide range of models which can directly
address the physics of experimentally relevant quantum fluids
and gases. Through simulations of interacting bosons on
a ring, we have demonstrated how the condensate frac-
tion bounds the particle entanglement, allowing for the
possibility of quantifying entanglement experimentally. We
have also verified a logarithmic scaling of particle entan-
glement with particle number for a system with nontrivial
interactions.

Future studies should include a study of the bipartition
size scaling, providing access to the particle entanglement
analog of the area law. Algorithmic extensions of our method
may also be used to compute the spatial entanglement entropy
in continuum systems. The ability to address experimentally
relevant models opens up the possibility of quantifying
accessible entanglement in quantum information systems
[30–32,59], as well as superfluid helium-4, cold atomic
gases, and doped parahydrogen clusters [60]. In addition
to characterizing quantum phases of matter, knowledge of
particle entanglement may yield a deep understanding of
classical simulability of quantum systems of itinerant particles
[61], as has been the case for spatial entanglement in lattice
systems [13,14].
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[48] M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko,

Phys. Rev. Lett. 104, 157201 (2010).
[49] J. McMinis and N. M. Tubman, Phys. Rev. B 87, 081108

(2013).
[50] For S2, �A

2 is called the SWAP operator in the literature for
spatial entanglement. However, we do not use this notation here
to avoid confusion with a swap update used in a continuous
space worm algorithm.

[51] J. Cardy, Phys. Rev. Lett. 106, 150404 (2011).
[52] M. Boninsegni and S. Moroni, Phys. Rev. E 86, 056712 (2012).
[53] We have chosen to absorb the diagonal weights of the short-time

propagator in the estimator into the ensemble weights to improve
efficiency [54].

[54] C. M. Herdman, S. Inglis, P. N. Roy, R. G. Melko, and A. Del
Maestro (unpublished).

[55] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[56] S. Jang, S. Jang, and G. A. Voth, J. Chem. Phys. 115, 7832

(2001).
[57] The energy gap decreases with N and increases with c, so the

required β varied from 2 to 12 K−1 .
[58] Computing S2 from numerical integration of ρ1 also suffers from

a systematic error due to discrete integration; here this systematic
error has been reduced to be of the order of the statistical errors.

[59] J. Dunningham, A. Rau, and K. Burnett, Science 307, 872
(2005).

[60] H. Li, R. J. Le Roy, P.-N. Roy, and A. R. W. McKellar,
Phys. Rev. Lett. 105, 133401 (2010).

[61] F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 104, 190405 (2010).
[62] A. P. Balachandran, T. R. Govindarajan, A. R. de Queiroz, and

A. F. Reyes-Lega, Phys. Rev. Lett. 110, 080503 (2013).
[63] F. Benatti, R. Floreanini, and U. Marzolino, Phys. Rev. A 85,

042329 (2012).

140501-5

http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevB.76.125310
http://dx.doi.org/10.1103/PhysRevB.76.125310
http://dx.doi.org/10.1103/PhysRevB.76.125310
http://dx.doi.org/10.1103/PhysRevB.76.125310
http://dx.doi.org/10.1103/PhysRevA.66.052323
http://dx.doi.org/10.1103/PhysRevA.66.052323
http://dx.doi.org/10.1103/PhysRevA.66.052323
http://dx.doi.org/10.1103/PhysRevA.66.052323
http://dx.doi.org/10.2478/BF02476298
http://dx.doi.org/10.2478/BF02476298
http://dx.doi.org/10.2478/BF02476298
http://dx.doi.org/10.2478/BF02476298
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevLett.103.200502
http://dx.doi.org/10.1103/PhysRevLett.103.200502
http://dx.doi.org/10.1103/PhysRevLett.103.200502
http://dx.doi.org/10.1103/PhysRevLett.103.200502
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://dx.doi.org/10.1103/PhysRevLett.91.097902
http://arxiv.org/abs/arXiv:quant-ph/0309046
http://dx.doi.org/10.1103/PhysRevA.73.052323
http://dx.doi.org/10.1103/PhysRevA.73.052323
http://dx.doi.org/10.1103/PhysRevA.73.052323
http://dx.doi.org/10.1103/PhysRevA.73.052323
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1103/PhysRevA.67.013609
http://dx.doi.org/10.1103/PhysRevA.67.013609
http://dx.doi.org/10.1103/PhysRevA.67.013609
http://dx.doi.org/10.1103/PhysRevA.67.013609
http://dx.doi.org/10.1103/PhysRevA.76.053605
http://dx.doi.org/10.1103/PhysRevA.76.053605
http://dx.doi.org/10.1103/PhysRevA.76.053605
http://dx.doi.org/10.1103/PhysRevA.76.053605
http://arxiv.org/abs/arXiv:0712.0990
http://arxiv.org/abs/arXiv:quant-ph/0703129
http://dx.doi.org/10.1103/PhysRevA.80.022338
http://dx.doi.org/10.1103/PhysRevA.80.022338
http://dx.doi.org/10.1103/PhysRevA.80.022338
http://dx.doi.org/10.1103/PhysRevA.80.022338
http://arxiv.org/abs/arXiv:1207.0303
http://dx.doi.org/10.1103/PhysRevLett.107.020601
http://dx.doi.org/10.1103/PhysRevLett.107.020601
http://dx.doi.org/10.1103/PhysRevLett.107.020601
http://dx.doi.org/10.1103/PhysRevLett.107.020601
http://dx.doi.org/10.1103/PhysRevA.65.064302
http://dx.doi.org/10.1103/PhysRevA.65.064302
http://dx.doi.org/10.1103/PhysRevA.65.064302
http://dx.doi.org/10.1103/PhysRevA.65.064302
http://arxiv.org/abs/arXiv:0711.0942
http://dx.doi.org/10.1103/PhysRev.104.576
http://dx.doi.org/10.1103/PhysRev.104.576
http://dx.doi.org/10.1103/PhysRev.104.576
http://dx.doi.org/10.1103/PhysRev.104.576
http://dx.doi.org/10.1063/1.1872775
http://dx.doi.org/10.1063/1.1872775
http://dx.doi.org/10.1063/1.1872775
http://dx.doi.org/10.1063/1.1872775
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1103/PhysRevB.87.081108
http://dx.doi.org/10.1103/PhysRevB.87.081108
http://dx.doi.org/10.1103/PhysRevB.87.081108
http://dx.doi.org/10.1103/PhysRevB.87.081108
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevLett.106.150404
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1063/1.1410117
http://dx.doi.org/10.1063/1.1410117
http://dx.doi.org/10.1063/1.1410117
http://dx.doi.org/10.1063/1.1410117
http://dx.doi.org/10.1126/science.1109545
http://dx.doi.org/10.1126/science.1109545
http://dx.doi.org/10.1126/science.1109545
http://dx.doi.org/10.1126/science.1109545
http://dx.doi.org/10.1103/PhysRevLett.105.133401
http://dx.doi.org/10.1103/PhysRevLett.105.133401
http://dx.doi.org/10.1103/PhysRevLett.105.133401
http://dx.doi.org/10.1103/PhysRevLett.105.133401
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1103/PhysRevLett.110.080503
http://dx.doi.org/10.1103/PhysRevLett.110.080503
http://dx.doi.org/10.1103/PhysRevLett.110.080503
http://dx.doi.org/10.1103/PhysRevLett.110.080503
http://dx.doi.org/10.1103/PhysRevA.85.042329
http://dx.doi.org/10.1103/PhysRevA.85.042329
http://dx.doi.org/10.1103/PhysRevA.85.042329
http://dx.doi.org/10.1103/PhysRevA.85.042329



