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Ferromagnetic spin-orbital liquid of dipolar fermions in zigzag lattices
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Two-component dipolar fermions in zigzag optical lattices allow for the engineering of spin-orbital models.
We show that dipolar lattice fermions permit the exploration of a regime typically unavailable in solid-state
compounds that is characterized by a spin-liquid phase with a finite magnetization and spontaneously broken
SU(2) symmetry. This peculiar spin liquid may be understood as the Luttinger liquid of composite particles
consisting of bound states of spin waves and orbital domain walls moving in an unsaturated ferromagnetic
background. In addition, we show that the system exhibits a boundary phase transitions involving nonlocal
entanglement of edge spins.
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I. INTRODUCTION

Frustrated spin systems provide a wealth of novel phenom-
ena, both at the classical and quantum levels [1]. Frustration
becomes particularly important in low-dimensional systems,
where quantum and thermal fluctuations are strongly enhanced
and long-range order is suppressed. One of the most interesting
frustration-inducing mechanisms involves the interaction of
spins with orbital degrees of freedom [1–4], which may
result in spin-liquid states that lack long-range magnetic
order [5–9]. However, in solid-state systems, controlling the
strength of spin-orbital interactions is hardly possible, limiting
the exploration of spin-liquid phases.

Several recent works [10–13] have shown that ultracold
atomic gases in optical lattices can serve as quantum simulators
of spin-orbital models, providing the required freedom for
controlling the effective interactions by tweaking the optical
lattice or by using Feshbach resonances. Moreover, rapidly
developing experimental techniques make it possible to study
the physics of higher energy bands, and to exploit orbital
degeneracy [14].

In particular, it has been recently shown [13] that spin-
orbital models of the Kugel-Khomskii type [15], relevant in
transition metal oxides [2,3], can be realized in systems of
dipolar spin- 1

2 fermions loaded in doubly degenerate p bands
of optical zigzag lattices. For comparable on-site intraorbital
repulsion U and interorbital repulsion V , which is the typical
situation in solid-state scenarios [16], it was shown that
dipolar fermions have a rich ground-state phase diagram
containing states with ferromagnetic (FM), antiferromagnetic
(AF), dimerized, and quadrumerized spin order [13]. Spin-
liquid phases are, however, absent in this regime.

Interestingly, contrary to the usual case in solid-state
systems, a large ratio U/V may be attained for the case of
dipolar fermions in zigzag lattices by properly controlling the
ratio between dipolar and contact interactions. In this paper
we show that for U/V > 2 the ground-state diagram contains
a spin-orbital liquid phase with a finite magnetization. This
phase has a spontaneously broken SU(2) spin symmetry and
algebraically decaying longitudinal spin correlations, while
the orbital correlations decay exponentially. This behavior is
interesting, since in one dimension (1D) spontaneous breaking
of continuous symmetry is usually forbidden, with the only

known exception being ferromagnets and ferrimagnets, where
the magnetization of the ground state is locked at a certain
value fixed by the Lieb-Schulz-Mattis theorem [17]. The
mechanism driving the transition into this phase is given
by the softening of composite excitations formed by bound
states of spin waves and orbital domain walls. We support
our analytical arguments by numerical results obtained by
means of the density matrix renormalization group (DMRG)
technique [18,19]. In addition, for open boundary conditions
we observe peculiar boundary phase transitions that involve
the formation of edge spins that decouple from the bulk and
become nonlocally entangled.

II. SPIN-ORBITAL MODEL

We consider two-component (pseudo-spin-1/2) dipolar
fermions loaded in doubly degenerate p bands of a quasi-1D
zigzag lattice [see Fig. 1(a)]. The system is described by the
Hubbard-type Hamiltonian with twofold orbital degeneracy.
The energy scales that determine the system are the nearest-
neighbor (NN) hoppings t and ε between equal orbitals, the
on-site repulsion energies U (V ) between the same (different)
orbitals, the Hund coupling JH , and an in-plane deformation
of the optical lattice, distorting the XY rotational symmetry of
a single-site potential that mixes the orbitals within the same
site with an amplitude γ .

Dipolar spinor fermions may be realized using polar
molecules (see Ref. [13] for a detailed discussion) or em-
ploying atoms with large magnetic dipole moments, such as
chromium [20], dysprosium [21], or erbium [22]. For the
particular case of 53Cr, in a strong magnetic field, any two
of the four lowest energy states |F,mF 〉 = | 9

2 , − 9
2 〉, | 9

2 , − 7
2 〉,

| 9
2 , − 5

2 〉, and | 9
2 , − 3

2 〉, can be chosen to simulate the ↑ and
↓ pseudospin- 1

2 states. Those states have approximately the
same large magnetic moments, given by the electronic spin
projection ms = −3, differing only by their nuclear moment.
The total interparticle potential is of the form

V (r1 − r2) = μ0μ
2

4π |r1 − r2|3 + gδ(r1 − r2),

where g = 4πas�
2/m characterizes the contact interactions,

as is the s-wave scattering length, m is the atomic mass,
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FIG. 1. (Color online) (a) Spin-orbital model on a quasi-1D
zigzag lattice with weak interchain hoppings ε � t . The model (4)
corresponds to ε = 0. (b) Phase diagram of the model for λ = 0.
(c) A sketch of the kink-magnon bound state in the (F,AF) phase,
where J denotes the effective spin exchange on the corresponding
link. A magnon binds only to the orbital kink, but not to the antikink.
Open and solid circles in (b) and (c) show the occupied orbital states
σ z = ±1.

μ0 is the vacuum permittivity, and μ is the magnetic dipole
moment. The average on-site repulsion energies between the
same (different) orbitals U and V are given by [13]

U =
∫

d r1d r2 p2
x(r1)V (r1 − r2)p2

x(r2), (1)

V =
∫

d r1d r2 p2
x(r1)V (r1 − r2)p2

y(r2), (2)

where px,y(r) are the orbital wave functions centered at the
same site.

Two fermions occupying the same orbital may form a
symmetric or an antisymmetric state with respect to the orbital
index with corresponding energies U + JH and U − JH ,
where

JH =
∫

dr1dr2px(r1)py(r1)V (r1 − r2)px(r2)py(r2). (3)

When two fermions occupy different orbitals, they may
form a spin-singlet or a spin-triplet state with corresponding
energies V + JH and V − JH , which are split by Hund’s
exchange.

The interaction, resulting from the electronic degrees of
freedom, is pseudospin independent, providing the desired
SU(2) spin symmetry of the problem. Further details on the
experimental implementation of this system can be found in
Ref. [13].

We start by considering the purely 1D case, ε = 0. In
the Mott insulator regime (one fermion per site and strong
coupling U ± JH ,V ± JH � t,γ ), the system is described
by an effective spin-orbital Hamiltonian (for details of the
derivation we refer the reader to Ref. [13]):

H =
∑

l

(
2Sl · Sl+1 + α−1

2

) [
1 + (−1)lσ z

l

][
1 + (−1)lσ z

l+1

]

−	
∑

l

2Sl · Sl+1
(
1 − σ z

l σ z
l+1

) − λ
∑

l

σ x
l , (4)

where Sl are spin- 1
2 operators acting on the lattice site l,

and σ
z,x
l are the Pauli matrices describing the orbitals. The

parameters of the model, in the leading order in JH/U ,
are given by α ≈ U/V , 	 ≈ JHU/V 2, λ ≈ γU/t2, and the
Hamiltonian (4) has overall units of t2/2U .

It should be remarked that the dipole-dipole coupling is
crucial because for a purely contact interaction there is no
repulsion between fermions in the spin-triplet state, and hence
the Mott phase with one particle per site could not stabilize.
For 53Cr, the natural value of the ratio U/V ≈ α is in the
regime U/V > 2 considered in this work.

III. ANALYTICAL ESTIMATES

For the case λ = 0, i.e., when the orbitals are classical, the
phase diagram of the 1D model (4) can be easily established
and is shown in Fig. 1(b). The α > 2 region is dominated
by a phase with FM spin order and AF orbital order, which
we label (F,AF) |↑↑↑↑ · · · 〉S ⊗ |↑↓↑↓ · · · 〉σ , following the
notation of Ref. [13]. A smaller α favors the spontaneously
dimerized (D,F) state, with the spin sector described by a
product of singlets on even (odd) NN bonds and ferromagnetic
orbitals. On the line 	 = 0, λ = 0, α > 2 the spins are
fully decoupled, whereas adding infinitesimally small 	 (λ)
favors FM (AF) spin exchange. This competition between
λ and 	 leads to a first-order transition from the (F,AF)
phase to the (iH,AF) phase where the spin sector behaves
as an isotropic Heisenberg antiferromagnet, and the orbitals
retain AF order |↑↓↑↓ · · · 〉S ⊗ |↑↓↑↓ · · · 〉σ . For λ,	 → 0
this transition line can be easily estimated by computing
the leading order correction in λ to the energy Em(k) of
a magnon in the (F,AF) state. For small momenta k, one
obtains Em(k) → (2	 − λ2

8(α−2) )k
2, collapsing at λ = λF =

4
√

(α − 2)	 + O(	3/2). A further increase of λ at fixed small
	 eventually leads to an Ising transition in the orbital sector,
bringing the system into the (iH,P) phase with paramagnetic
orbitals |↑↓↑↓ · · · 〉S ⊗ |→ →→→ · · · 〉σ .

The (F,AF) ground state factorizes into a product of spin and
orbital wave functions, so there is a purely orbital Ising-type
transition from the (F,AF) phase to the (F,P) phase where or-
bitals are paramagnetic (disordered) and spins fully polarized,
|↑↑↑↑ · · · 〉S ⊗ |→→→→ · · · 〉σ ; the transition line thus can
be obtained exactly as λ = λIsing = α + 	/2.

However, there is another instability of the (F,AF) phase
which is of crucial interest here. This instability can be traced
down to the fact that in the (F,AF) phase magnons tend to bind
to kinks in the orbital order [see Fig. 1(c)]. If a kink-antikink
pair is excited on top of the (F,AF) state, on the link at the kink
position the effective exchange J changes from ferromagnetic
(J ≈ −4	 in zeroth order in λ) to antiferromagnetic (J ≈ 8),
acting as an impurity which can bind a magnon. There is
another impurity link with J ≈ 0 at the antikink position, but
it does not support bound states.

To the leading order in λ, the energy of the kink-antikink
pair with a magnon bound to the kink is

Ebs(p,k) = 4α + 2	 − 8 + 8	/(	 + 4)

+ 2λ{[(8 − 	2)/(4 + 	)2] cos p − cos k}, (5)
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where p and k are the kink and antikink momenta, respectively.
The lower edge of this continuum is achieved at p = π ,
k = 0, i.e., when the magnon is essentially a propagating
singlet dimer. This excitation softens at λ = λc = 4

3 (α − 2) +
2
9 (α + 4)	 + O(	2). Hence, for λ > λc a different phase
is expected with a finite density of composite kink-dimer
particles “floating” in the ferromagnetic background [23].
An infinitesimal density of moving kinks and antikinks
immediately suppresses the orbital order, so the orbital AF
order parameter experiences a jump at the transition. Indeed,
the (F,AF) product wave function remains an exact eigenstate
all the way up to λ = λc, and λc remains smaller than the Ising
transition value λIsing in a finite range of 	. The ferromagnetic
order in spins is retained, but the magnetization is no more
fully saturated.

In the phase mentioned above, the SU(2) symmetry in the
spin sector remains spontaneously broken, exactly as in the
(F,AF) phase, but the ground state belongs to a degenerate
multiplet with some spin Stot < N/2, where N is the number
of particles (N = L at unit filling considered here). This phase
is expected to have two branches of gapless excitations, one
with a quadratic dispersion at small momenta (“spin” mode,
ferromagnetic magnons), and the other with a linear dispersion
(“charge” mode, sound waves in the Luttinger liquid of kink-
dimer particles). This resembles the situation found in spin- 1

2
Bose gas, where such a spin-charge separation has been found
both in the 1D [24–27] and two-dimensional (2D) [28] cases.
Since the longitudinal spin correlator is related to the kink-
dimer density fluctuations, it must decay algebraically on top
of the long-range order. This highly unusual phase can be
called a ferromagnetic spin-orbital liquid (FSOL) [29].

When zigzag chains are coupled into a 2D structure by weak
interchain hopping ε � t as shown in Fig. 1(a), assuming (α −
2),	 � 1, similar calculations as those presented for purely
1D case show that the FSOL-type phase, characterized by a
finite density of orbital domain walls carrying bound magnons,
survives next to the (F,AF) state in a finite interval of 	 at least
for (ε/t)2 < 2

3 (α − 2). In contrast to its 1D counterpart, this
phase is both magnetically and orbitally ordered, but it retains
the unique feature of the FSOL phase, namely, its “diluted”
ferromagnetism with a reduced magnetization. At larger 2D
coupling, 5(α − 2) � (ε/t)2 � 1, the FSOL-type phase gives
way to a striped dimer phase consisting of (D,F) chains as
shown in Fig. 1(b), with alternating orientation of spins in
neighboring chains.

IV. NUMERICAL RESULTS FOR 1D CASE

Our DMRG results confirm the analytical arguments given
above. Figure 2 shows our numerical results for the (λ,	)
phase diagram of the 1D version of the model (4) at α = 3.
We considered open systems consisting of up to L = 96 sites,
monitoring different correlation functions, total spin of the
ground state, and fidelity susceptibility [30] to detect phase
boundaries. In addition, we have checked our data on systems
of up to L = 48 sites with periodic boundary conditions. We
have typically kept up to 800 states (within a subspace with
fixed Sz) in our DMRG calculations.
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FIG. 2. (Color online) Phase diagram of the 1D spin-orbital
model for α = 3 and L = 96 sites (for open boundaries). Symbols
denote numerical results (solid and dotted lines are a guide to the
eye), whereas dashed lines correspond to the analytical estimates λF

and λc. Curves b1 and b2 mark the boundary phase transitions that
involve nonlocal entanglement between edge spins τ 1 = S1 + S2 +
S3 and τN = SN + SN−1 + SN−2. The inset shows the ground-state
correlation between edge spins 〈τ 1τN 〉 as a function of 	 for λ = 4.

We indeed observe the FSOL phase in a wide region of
	 and λ. As shown in Fig. 3(a), spontaneous magnetization
in the FSOL phase changes smoothly, confirming that there
is no gap for single-particle excitations. In accordance with
the composite-particle transition mechanism outlined above,
there is a clear correlation between the peaks in the densities
of orbital domain walls and magnons [see Fig. 3(b)]. We have
checked that such a correlation persists at all magnetization
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FIG. 3. (Color online) Properties of the FSOL phase for α = 3
and λ = 4: (a) Magnetization curve for different system sizes L,∑

i〈Sz
i 〉/L, calculated in the highest weight states of ground-state

SU(2) multiplets; (b) magnon density (circles) and orbital domain
wall density (triangles) in the ground state at 	 = 1.02, Sz = 44,
L = 96 (open boundary conditions break translation symmetry and
pin kink magnons); finite-size scaling of the particle-hole (c) and
magnon (d) excitation gaps at Sz = N/3; (e) ground-state correlators
for 	 = 0.86, L = 48. See text for details.
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values, and that the number of peaks in the domain wall density
is always equal to the number of magnons in the ground state.

Moreover, the energy of the lowest excitation in the same Sz

sector as the ground state (the particle-hole gap) scales as L−1

with the system size L, while that in the sector corresponding
to adding a magnon scales as L−2, as shown in Figs. 3(c)
and 3(d). Thus these are two gapless excitation branches with
linear and quadratic dispersion, respectively.

The phase transition from (iH,P) into (F,P) is first order,
as the total spin jumps abruptly from 0 to L/6. Similarly, the
transition from (F,AF) into FSOL is first order since the AF
orbital order in σ z changes discontinuously. In contrast to that,
the transition from (F,P) into FSOL seems second order of the
commensurate-incommensurate type (even though the system
sizes studied are not enough to observe a square root behavior
of the kink-magnon density close to the fully polarized state),
since all quantities observed change in a continuous manner.
The minimal model capturing this transition is a system of two-
component repulsive SU(2)-symmetric bosons undergoing a
transition from vacuum into a finite density state driven by a
chemical potential. Note that this finite density state is not a
two-component Luttinger liquid, since the continuous SU(2)
symmetry is spontaneously broken.

In the FSOL phase the correlators 〈Sx
l Sx

l′ 〉 and 〈Sx
l σ x

l Sx
l′ σ

x
l′ 〉

are very close to each other, despite the fact that 〈σx
l σ x

l′ 〉 can
be significantly lower than one [see Fig. 3(e)]. In fact, for
the parameters presented in Fig. 3(e), 〈Sx

l σ x
l Sx

l′ σ
x
l′ 〉 is larger in

absolute value than 〈Sx
l Sx

l′ 〉 even though |〈σx
l σ x

l′ 〉| ∼ 〈σx
l 〉2 �

0.6, where the finite value of 〈σx
l 〉 is induced by the coupling

λ in Eq. (4). One can straightforwardly check that this follows
from the fact that the wave function of the bound state is very
close to a singlet bond across the orbital domain wall, so that
the operator S+

l (1 − σx
l ) nearly annihilates the ground state.

V. BOUNDARY PHASE TRANSITIONS

In addition to the existence of the FSOL phase, the spin-
orbital model with α > 2 is characterized by the appearance
of peculiar boundary phase transitions within the (iH,P) phase
(curves b1 and b2 in Fig. 2) at which the behavior of the edge
spins in open chains changes drastically. When increasing 	

at fixed λ, localized and strongly correlated S = 1
2 edge spins

emerge when crossing the b1 curve. Further increasing 	 leads
to a second transition at the b2 line, where the value of the
boundary spin changes from S = 1

2 to S = 1. This effect is
illustrated in the inset of Fig. 2, where the correlation between
edge spins is depicted as a function of 	 for λ = 4 [31].

The boundary transitions inside the (iH,P) phase are
peculiar in 1D, since edge spins are separated by a macroscopic
distance, and the only way to communicate between them is
through the bulk from which they effectively decouple. To
prove that we are dealing with a boundary phenomenon we
compare the excitation gaps for open and periodic boundary
conditions. One can clearly see from Fig. 4 that low-lying states
below the bulk modes develop for open boundary conditions.
Another illustration of this boundary transition is provided by
Fig. 5, which shows the behavior of the first excited states in
the Sz = 1 and Sz = 2 sector.

To describe the physics of this transition at the qualitative
level, it is instructive to consider the limit of large λ. In the
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FIG. 4. (Color online) Excitation gap for open boundary condi-
tions (OBCs) and periodic boundary conditions (PBCs) as a function
of 	 and the system size L. The inset zooms in the region 0.36 <

	 < 0.6, revealing the existence of the two boundary transitions at
b1 and b2.
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strong λ limit one can integrate out orbital degrees of freedom
to obtain an effective spin- 1

2 model. In the leading order in 1/λ,
its Hamiltonian has the form of a J1-J2 model with modified
first and last nearest-neighbor links:

HS = j1

N−2∑
n=2

Sn · Sn+1 + j2

N−1∑
n=2

Sn−1 · Sn+1

+ j ′
1(S1 · S2 + SN−1 · SN ), (6)

where

j1 = 2(1 − 	) + 4 + (1 + 	)(	 + 2 − 2α)

2λ
,

j2 = 1/λ, j ′
1 = j1 + 1 − 2α

2λ
. (7)

One can see that with increasing 	, the boundary link strength
j ′

1 goes through zero at some point and changes its sign to a
ferromagnetic coupling. This effectively creates “impurity”
spins attached ferromagnetically at the ends of the spin- 1

2
chain. Interaction between the end spins is mediated by the
bulk. For an even number of sites the effective interaction
is antiferromagnetic, whereas for an odd number of sites the
effective interaction between the end spins is ferromagnetic.

The second boundary transition, b2, is similar in nature to
the first one, but now the last two spins decouple from the bulk,
creating an effective spin-1 localized at each boundary that
is ferromagnetically attached to the antiferromagnetic spin- 1

2
chain. The interaction between the spin-1 edge impurities is an-
tiferromagnetic for an even number of sites and ferromagnetic
for an odd number of sites. The lowest excitations are boundary

excitations: a boundary triplet with total spin ST = 1, and a
boundary quintet with ST = 2 with a slightly higher energy.

VI. SUMMARY

We have shown that dipolar two-component fermions
loaded in the p bands of a zigzag optical lattice may allow
for the realization of a different, inaccessible in solid-state
systems, spin-orbital liquid phase characterized by a finite
but unsaturated magnetization. This phase, as a ferromagnet,
has spontaneously broken SU(2) symmetry, but, unlike a
ferromagnet, it has algebraically decaying longitudinal spin
correlations. Remarkably, its magnetization changes contin-
uously from saturation value with a change of the model
parameters, in the absence of any magnetic field. This phase
can be viewed as the Luttinger liquid of bound composites of
singlet spin dimers and orbital domain walls on top of a fully
polarized ferromagnetic phase.

Finally, we remark that observation of this magnetized
spin-orbital liquid demands to cool down the system to
the temperatures of the order of the spin-coherence scale
4t2/U , which constitutes a major experimental challenge
presently [32].
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