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Multiscale and multimodel simulation of Bloch-point dynamics
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We present simulation results on the structure and dynamics of micromagnetic point singularities with atomistic
resolution. This is achieved by embedding an atomistic computational region into a standard micromagnetic
algorithm. Several length scales are bridged by means of an adaptive mesh refinement and a seamless coupling
between the continuum theory and a Heisenberg formulation for the atomistic region. The code operates on
graphical processing units and is able to detect and track the position of strongly inhomogeneous magnetic
regions. This enables us to reliably simulate the dynamics of Bloch points, which means that a fundamental
class of micromagnetic switching processes can be analyzed with unprecedented accuracy. We test the code by
comparing it with established results and present its functionality with the example of a simulated field-driven
Bloch-point motion in a soft-magnetic cylinder.
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I. INTRODUCTION

Textbooks on ferromagnetism typically list three funda-
mental modes for magnetization reversal: buckling, curling,
and rotation in unison [1–3]. Those basic instabilities were
derived analytically for homogeneously magnetized ferro-
magnetic cylinders in an external magnetic field [4]. Over
the past two decades, high-resolution imaging techniques and
advanced micromagnetic simulation studies have shown that
the magnetization reversal is usually a much more complex
process than predicted by analytic theory. It may involve
the nucleation and the propagation of vortices, antivortices,
as well as domain walls of various types, and it is usually
accompanied by a broad spectrum of spin-wave excitations.
Such complications arise mainly from finite-size effects. The
three fundamental reversal modes are only correct for the
hypothetical case of an infinitely extended ferromagnetic
cylinder; but the end of a real cylinder acts as a nucleation
site, leading to a completely different type of reversal. The
importance of the end of a cylinder was investigated by Arrott
and co-workers [5,6]. They predicted that point singularities
play a decisive role in the switching of soft-magnetic cylinders.
Such point singularities of the magnetization are known as
Bloch points. They were described by Feldtkeller [7] and
later by Döring [8] and they represent a fundamental class
of micromagnetic structures.

II. TOPOLOGICAL DEFECTS AND SINGULARITIES

The simulation of Bloch points is connected with great
difficulties. A reason for this is that they represent singu-
larities in the continuum theory of micromagnetism. As a
prototype and as the simplest version of a large family of
Bloch-point structures, one can imagine such singularities
as a centrosymmetric hedgehog-type arrangement, where the
magnetization vectors are radially oriented away from the
Bloch point. For symmetry reasons, no magnetization direction
can be assigned to the point at the center of such a structure.
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This violates a fundamental aspect of micromagnetic theory,
which treats the magnetization as a continuous and smooth
vector field with constant magnitude at every point within
the ferromagnet. Bloch points are hence topological defects
in the vector field of the magnetization. Around these points,
the magnetization is maximally inhomogeneous, which causes
the exchange energy density to diverge. In spite of this
singularity in the energy density, the total energy of a Bloch-
point structure remains finite. The strong inhomogeneity
generates another, from a practical viewpoint, even more
important difficulty: The exchange energy density formulation
in micromagnetism relies on the assumption of a smooth
variation of the magnetization on the length scale of the atomic
lattice constant. Based on this assumption, which is perfectly
valid in the case of ordinary micromagnetic structures such as
vortices or domain walls, it is easy to derive that the exchange
field is proportional to the Laplacian of the magnetization,
which is used, e.g., in any micromagnetic code based on
the Landau-Lifshitz-Gilbert equation [9–11]. Removing the
approximation of a slow spatial variation makes the entire
calculation of the exchange field questionable. In addition
to the difficulties concerning the theoretical foundations, the
simulation of singularities in continuum theories is a delicate
subject. The discretization error displays a power-law behavior
as a function of the cell size [12], with a low convergence rate
that makes it particularly difficult to obtain reliable solutions.
The most careful studies on Bloch points, therefore, make use
of various grids and extrapolate the computed values to infinite
discretization density [13,14]. This procedure is tedious, but it
can at least remove the numerical artifacts.

III. THE MULTISCALE PROBLEM

It appears that all difficulties connected with Bloch points
stem from micromagnetic theory, as it is also the case, e.g.,
for the correct treatment of nanoparticle grain boundaries
[15]. If an atomistic Heisenberg model [16] is used, nothing
prevents neighboring atomistic magnetic moments from being
strongly misaligned. Moreover, once the assumption of a
continuous vector field of the magnetization is replaced by
a discrete set of magnetic moments and the ferromagnetic
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exchange is treated with a Heisenberg term instead of the
micromagnetic formulation, the singularities disappear and
the problems dissolve. However, such an approach implies
an atomistic treatment of the entire ferromagnet—a model
that is extremely expensive from a computation point of view
and which constitutes a dramatic waste of resources since
almost the entire ferromagnet could safely be simulated at
significantly lower computational costs within the framework
of micromagnetism. One might thus be tempted to discard
the regions outside the Bloch point and investigate only the
volume containing the Bloch point. However, as pointed out in
the textbook of Hubert and Schäfer [17] (p. 252), “a singularity
has always to be analyzed together with the environment
into which it is embedded.” To better understand this, an
analogy with basic astronomy might help. In stars, the weak
but long-range gravitational force provides the confinement of
a plasma with sufficiently high energy density to overcome
the Coulomb barrier in nuclear fusion processes. Similarly,
the relatively weak but cumulative long-range magnetostatic
interaction can stabilize a highly energetic Bloch point in the
volume of a sufficiently large ferromagnet. The Bloch-point
structure would immediately dissolve if it was removed from
the mesoscopic environment into which it is embedded.
The situation is, therefore, extremely complicated to treat
numerically, since different length scales and energy densities
have to be combined. A recent approach to treat Bloch
points consists of dropping the micromagnetic assumption of
constant magnitude of the magnetization and allowing for its
gradual reduction to zero in the vicinity of the Bloch point
by means of the Landau-Lifshitz-Bloch equation [18]. Other
authors have suggested a phenomenological Landau-type
energy term to account for the reduction of the magnetization in
Bloch points [19]. This has provided the basis for a remarkable
numerical study on its static three-dimensional configuration
[20]. These approaches solve the topological part of the
problem because they remove the character of a point defect
from these structures. But as far as the exchange representation
is concerned, the difficulties remain, and only a combination
of an atomistic Heisenberg model with a continuum model
seems to be able to overcome this obstacle. Important previous
work on multiscale simulations in micromagnetics has been
reported by Jourdan et al. [21]. Their method was based on
an adaptively refined finite-difference grid with the smallest
cell size equivalent to the atomic lattice constant. The atomistic
region was carefully connected to the micromagnetic part with
a suitable coarse-graining transition. The application of this
method is, however, restricted to the case of a simple cubic
lattice, which usually does not correspond to the crystalline
structure of ferromagnets. Other approaches [15,22] consisted
of coupling a specific atomistic region to the micromagnetic
continuum. The main difference between our model and those
reported before is that the atomistic region of interest is mobile
and capable of tracking strong inhomogeneities wherever they
occur.

In order to obtain the largest possible flexibility concerning
the lattice type and the sample geometry, while being able
to atomistically resolve the position of the Bloch-point
singularity, we have developed a different type of multiscale-
multimodel algorithm, which is described in detail in this
paper. A multiscale model extends our graphics processing

unit (GPU) accelerated micromagnetic code TETRAMAG [23],
which solves the Landau-Lifshitz-Gilbert [9–11] equation us-
ing a finite-element/boundary-element method (FEM/BEM).
We implemented an atomistic Heisenberg model with realistic
crystalline structure to treat the exchange interaction in
quasiclassical approximation. The dynamics of the magnetic
moments in the atomistic region is coupled to the motion of the
magnetization into which the structure is embedded. In order
to investigate the motion of the Bloch point, the atomistic
part moves within the ferromagnet in a self-adaptive way, by
recognizing the position of the Bloch point.

After a short description of the fundamental equations,
we discuss the implementation of the multiscale/multimodel
algorithm. In Sec. VI, we demonstrate the functionality of the
program on the basis of the well-defined system of a gyrating
vortex, which is a complicated yet nonsingular structure. This
is to ascertain that the multiscale/multimodel simulation does
not alter the results obtained from established micromagnetic
theory. In the last part, we present an example where we
employ the code to simulate the field-driven motion of a Bloch
point in a soft-magnetic cylinder with atomistic resolution in
the core region.

IV. BASIC EQUATIONS

For the multiscale/multimodel simulation, we assume ferro-
magnetic crystalline samples and combine the representation
of exchange energy in the micromagnetic (MM) model with
the one of the Heisenberg (Hei) formulation. In micromagnetic
theory, the exchange energy density is defined as [2]

exc = A

x,y,z∑
α

(
∂m
∂xα

)2

, (1)

where A is the exchange stiffness and m is the normalized
magnetization vector. The classical Heisenberg model [16]
represents the exchange energy density at a lattice site i

according to

e(i)
xc = −

∑
j

Jij

Vi

si · sj = −
∑

j

Jij

Vi

cos θij , (2)

where Vi is the volume ascribed to the lattice site i, and Jij is
the exchange constant between the magnetic moments i and j

with orientation si and sj enclosing the angle θij .
Equation (2) can be expanded into a Taylor series,

e(i)
xc = −e0 +

∑
j

Jij /Vi

[
θ2
ij

2
− O

(
θ4
ij

)]
, (3)

with a constant offset energy density e0 that can be omitted.
To derive the exchange stiffness Ai for a given set of exchange
constants Jij in the vicinity of the lattice site i, a spin spiral
with arbitrary wavelength λ � a can be used as a reference
structure (a is the lattice constant). Owing to the isotropy of
Eqs. (1) and (2), the direction of the spin spiral can be chosen
without loss of generality along the x axis,

m(x) =
⎛
⎝sin(πx/λ)

cos(πx/λ)
0

⎞
⎠ . (4)
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FIG. 1. Error estimate for the intrinsic deviation of the micromag-
netic exchange energy formulation from a Heisenberg calculation.
The error is displayed for the test case of a spin spiral of wavelength
λ, where � is the distance between neighboring magnetic moments
along the direction of the spin spiral.

The values can then be calibrated such that the micromagnetic
and Heisenberg exchange are identical. By considering only
the first nonvanishing part of the Taylor series, a comparison
between Eqs. (1) and (3) yields the following condition for
the spin spiral:

∑
j

Jij

2Vi

(
π

�xij

λ

)2

= Ai

π2

λ2
, (5)

where �xij represents the distance between the lattice sites
i and j along x. Discarding the obviously irrelevant case
λ = 0 yields a direct connection between the micromagnetic
exchange constant Ai and the Heisenberg exchange tensor Jij .
Since the micromagnetic model acts in volumes much larger
than the volume Vi associated to a single atom, a straightfor-
ward way to determine the micromagnetic exchange stiffness
A is to compute a volume-weighted average of the values Ai ,

A = 1∑
i Vi

∑
i,j

Jij�x2
ij

/
2. (6)

In a single-phase monocrystalline material, such an averaging
is not necessary, but it can be important in more complex
materials. For monoatomic lattices, the above equation allows
one to estimate the difference between the micromagnetic
and the Heisenberg model in the case of short wavelengths λ.
On a distance � along the spin spiral with wavelength λ, the
error of the micromagnetic term introduced by truncating the
Taylor series (3) is

errMM(�,λ) = π2�2

2λ2

[
1 − cos

(
π�

λ

)]−1

− 1. (7)

Figure 1 displays the systematic error which, according to
Eq. (7), results from the small-angle approximation in the
micromagnetic formulation of the exchange energy density.
This equation was derived assuming a Heisenberg model with
nearest-neighbor interaction. The dotted and the dashed line
indicate the minimum spin-wave half length below which
the micromagnetic error exceeds 0.1% (λ < 29�) and 1%
(λ < 9�), respectively.

V. IMPLEMENTATION

Implementations of atomistic/continuum multiscale models
in other domains of physics [24] are based on the refinement

of the discretization grid used in the continuum model, such
that the cell size is of the order of atomic distances in the
region of interest. Finally, an atomistic treatment is implanted
on the discretization points of the grid to combine the equations
governing the atomistic effect with those describing the
continuum. As long as the region of interest remains at the
same position, the interaction matrices can be preprocessed,
meaning that the simulation can be performed efficiently.
In the cases that we wish to study, however, the region of
interest (i.e., the Bloch point) propagates through the sample.
In this case, the standard procedure would require a dynamic
remeshing, resulting in prohibitively high numerical costs. We,
therefore, chose another approach, which consists of leaving
the sample mesh unchanged and tracing the region of interest
with a spherical structure implanted into the sample. This
multiscale sphere (MS) can be preprocessed and incorporates
the Heisenberg model as well as the mesh that coarsens with
increasing distance from the center of the MS. The MS used
in the simulation is shown in Fig. 2, where a part has been
removed to display the internal structure. The Heisenberg
region in its center (blue part in Fig. 2) represents the atomic
lattice, which is surrounded by a finite-element mesh (green
and orange regions in Fig. 2) with a shell in which a gradual
transition between the atomistic and the sample discretization
length scale is achieved. An interface region (blue to green
shading in Fig. 2) accounts for this transition from the
micromagnetic to the Heisenberg model, while the outer part
is treated entirely in the framework of micromagnetism. Only
the orange region inherits its magnetic properties directly from
the surrounding finite-element structure. The details of the
coupling will be described in Sec. V C.

A. Multiscale sphere construction

In the core region of the sphere, a ferromagnetic crystalline
structure is modeled by placing magnetic moments at the

FIG. 2. (Color) Two different models are used to calculate the
exchange interaction in the MS: Heisenberg (blue) and micromagnetic
(green and orange). The green to orange shading illustrates a transition
region from the outer sample to the MS, inside of which the MS
stamps its properties onto the sample (green), and vice versa (orange).
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ANDREAS, KÁKAY, AND HERTEL PHYSICAL REVIEW B 89, 134403 (2014)

atomistic positions of the Bravais lattice. This is performed
within a sphere of radius R1. The atomistic positions also serve
as the vertices for tetrahedral meshing in the inner part of the
sphere. We thereby obtain a structure where the positions of
atomic magnetic moments and vertices of finite-element cells
coincide.

The core of the MS consists of three parts which are
arranged according to the following conventions:

(i) In the inner core, a pure Heisenberg model is employed
for radii smaller then RH . The location of the sphere is
determined from the error estimate according to Eq. (7). We
assume that a local error between 0.1% to 1% is acceptable;
if this threshold is trespassed, the MS is either displaced
accordingly, or a new MS is generated.

(ii) Within a transition region of thickness δT , the exchange
energy is calculated by a weighted average of the result from
both the Heisenberg model and the continuum representation.
If r is the distance from the center of the MS, we use

Emultiscale = f (r)EHei + [1 − f (r)] EMM, (8)

where f (r) is

f (r) = 1

2

[
cos

(
π

r − RH

δT

)
+ 1

]
. (9)

This form was chosen in order to maintain analytic differen-
tiability at the boundaries of the transition region. Although
we have not studied the impact of using other weighting
functions, it is safe to assume that (as long as the interpolation
is consistent) any other form of f (r), such as, e.g., a linear
transition, would equally be possible.

(iii) To provide a full set of exchange partners for all mag-
netic moments with r < RH + δT , ghost magnetic moments
are introduced in the transition region. The thickness of this
shell is given by

δG = max{|ri − rj|} with Ji,j �= 0, (10)

where ri is the position of the magnetic moment i, which
results eventually in the relation R1 = RH + δT + δG.

In the shell region, the atomistic core is surrounded by and
attached to spherical shells of finite elements with radially
increasing cell size. The starting point for the construction
of these shells is an icosahedron that acts as a scaffolding
structure, with geodesic domes [25] built around it, based on its
triangular facets. We choose the initial construction frequency
f (1)

geo (the number of subdivisions of the spherical triangle edge)
so that the edge length of subtriangles matches the edge length
of tetrahedra in the core of the sphere. In each further shell
n, we reduce the frequency to f (n)

geo = f (n−1)
geo − m, where m

is a small integer that is typically between 2 and 4. Smaller
values of m lead to a slower increase of cell size, a larger total
sphere radius, and, consequently, more vertices. This increase
of numerical costs results in smaller inhomogeneities of the
mesh and, therefore, in a higher accuracy. The circumference
radius r (n)

geo of the scaffolding icosahedron for every additional
shell n is chosen to be r (n)

geo = r (n−1)
geo + l(n)

c , with l(n)
c the average

edge length of surface triangles in the new shell. Using this
procedure, spherical shells are added until l(n)

c is larger than
the average edge length used for the sample mesh. Finally,
the volume between the spherical surfaces is discretized into

tetrahedral simplex elements with a Delaunay algorithm using
GMSH [26]. Since this triangulation is part of the preprocessing,
the choice of parameters can be tuned carefully to ensure that
the transition of cell sizes is smooth, thereby significantly
improving the accuracy of the calculation of the exchange
field and energy.

Figure 2 shows that the entire mesh is highly regular except
for the transition between the core and the shell, which is
an irregularity that cannot be avoided since it connects the
atomistic core based on a Bravais lattice to the mesoscopic
spherical shell.

At radii r > RH + δT , the simulations are purely micro-
magnetic. The radially increasing cell size of the shell region
prevents an abrupt change of length scales, which could give
rise to significant artifacts [24].

B. Multiscale regions near the surface

Regions of interest traced by a MS can move to the surface
of the sample, so that the MS may partially leave the sample
volume. In that case, the MS must be cropped in order to
preserve the shape and volume of the simulated sample, i.e.,
nodes of the MS outside the volume are discarded. If the
protruding part of the MS is removed, the remaining internal
nodes and elements of the MS generally do not form a set
that can serve as a replacement for the sample surface without
further corrections. To maintain the surfaces of the sample
mesh, on one hand, and to avoid a time-consuming remeshing
of the MS, on the other hand, a specific solution is needed,
which in our case literally resembles a patch. If the MS is
cropped, the gradual reduction of the discretization density is
lost, resulting in a direct synchronization of nodes attached to
very different cell size. To achieve a smooth transition, we use
a set of typically 10 to 12 preprocessed micromagnetically
treated calotte structures that connect the central parts of
the sphere to the surface. A subset of typical calottes for
a cylindrical structure is shown in Fig. 3. By using such
“patches,” we abandon the generality of the code, since the
shape of each calotte is prepared to fit to the sample surface:
in this case, that of a cylinder. While it is straightforward to
generalize this approach to other geometries, the preparation of
the meshes must be performed for each specific geometry. The
calottes used in our case penetrate the sample by a thickness of
twice the discretization size of the background mesh. The set of
calottes is designed so that the change of discretization density
is compatible to the MS at a given distance from the surface:
If the MS barely touches the surface, there is no particular
need for adjustments, but as the core of the MS approaches
the surface, the calotte structure must be replaced by one that
covers a large difference in discretization density.

C. Hierarchical coupling of the discretization grids

So far, if we neglect the connecting boundary shells
discussed before, we have four distinct discretization levels
that enter into the simulation:

(i) the atomistic Heisenberg structure in the core of the MS,
(ii) the micromagnetic outer part of the MS with radially

increasing cell size,
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FIG. 3. (Color) Set of calotte structures acting as “refinement
patches” for different distances of the MS to the boundary of the
cylindrical sample. As the MS reaches the surface, the transition is
achieved with calotte meshes of appropriate discretization density,
which are chosen dynamically from a predefined set of meshes
according to the penetration depth of the MS into the surface.

(iii) the “patches” in the form of calotte structures with
spatially varying discretization density, and

(iv) the original mesh of the sample, which represents the
background into which all of the entities listed above are
embedded.

Each of these discretized regions is connected to a set
of data for the magnetic structure, and they can partly or
entirely share fractions of the volume of the sample. In order
to obtain a consistent representation, a hierarchical structure
is defined according to the list shown above, so that the
smallest available discretization cell is decisive and donates
its magnetic properties to those structures with larger cell size.
This means that the magnetic moments of the Heisenberg
model are used to determine the magnetization direction at
nodes of calotte structure located in the Heisenberg region,
that the finer discretization in the calotte structure dictates the
magnetization direction of the background mesh, etc. This is a
simplified and general description in the sense that there is, of
course, also, e.g., a coupling of the background onto the MS,
but the hierarchical order is, in principle, as listed above.

To couple the MS to the background, i.e., to the ferromag-
netic volume into which the Bloch point is embedded, each
surface node of the MS receives the magnetic orientation and
the effective field components by interpolation from the nodes
of the tetrahedron of the static background mesh containing
it. Conversely, a handshake between the regions is obtained
as the data of each background node located inside the MS
is assigned by the MS sphere, except for those background
nodes which assign data to the boundary nodes of the MS

themselves. In general, a transition region between the two
meshes (outer MS sphere and background) could be included,
similar to the one used to connect the Heisenberg region with
the micromagnetic inside the MS. In Sec. VI, it is shown that
better results are obtained without such an additional transition
region.

Note that the magnetostatic field contribution represents
an exception of the coupling discussed above. As analytic
calculations have shown, the magnetostatic energy density in
the vicinity of a Bloch point is significantly smaller than the
exchange energy [7,8,27]. On a local scale, the dipolar energy
(and the resulting effective field) near a Bloch point is merely a
perturbation that—unlike the exchange term—does not require
any particular correction. It can safely be calculated using the
background mesh only. The result is then interpolated onto the
vertex positions of the MS/“patch” meshes in order to account
for the contribution of the dipolar field to the effective field.

D. Intersections of multiscale spheres

During a simulation, inhomogeneities may be distributed
in space such that several multiscale regions and calotte
structures are required simultaneously. The code can handle
such situation, but some attention is necessary when different
MS and/or calotte structures intersect. In order to synchronize
the various regions, we use a hierarchical approach to decide
which mesh is chosen as the source of the magnetic properties
(the donor) and which one is adapted to them (the acceptor).
Several cases can be encountered:

(i) If two MS are nearly concentric, the atomistic region of
each sphere is overlapping but it is basically identical. There
is no reason to favor one MS over the other in that purely
atomistic region and there is no requirement to interpolate or
to change anything.

(ii) When the atomistic region of one MS enters the
continuum region of another MS, the values of the Heisenberg
region are prioritized. The Heisenberg structure imprints the
magnetization at any node of the finite-element mesh in that
region.

(iii) When two or more finite element regions of multiscale
spheres overlap, the values at the nodes of the elements in one
sphere may be adapted according to the values of the other
sphere. For this, the role of the donor is first ascribed to the
MS for which a given node is closest to the center point. This
is, however, only a necessary, and not a sufficient, condition
to discard the original values. To decide whether the values of
the donor MS are used to interpolate onto the acceptor MS,
we introduce a further criterion, which is based on the position
of the nodes of the tetrahedral element of the donor sphere
containing the acceptor node. We first determine the distance
between these nodes and the center of the donor sphere and
take the largest value. If this value is smaller than the distance
between the acceptor node and the center of the acceptor
sphere, the interpolation is performed, else the value remains
unchanged, thereby preventing repeated interpolations that
could introduce artifacts in the magnetic structure [28].

(iv) If a calotte structure is used, the magnetization is
interpolated from the elements of the calotte acting as a donor
onto the background mesh. If both the donor and the acceptor
mesh are calotte structures, an interpolation is performed only
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ANDREAS, KÁKAY, AND HERTEL PHYSICAL REVIEW B 89, 134403 (2014)

if the cell size of the donor cell is smaller than the smallest cell
size in the Voronoi cell belonging to the acceptor node.

In the code, more details are considered in terms of donor
and acceptor mesh, but most of these conventions are uncritical
and the procedure described above should be sufficient to ob-
tain a general picture of the complications arising and the pro-
cedures applied in the handshake regions of different meshes.

E. Dynamics

The dynamics of the magnetization within the multiscale
model is governed by the Landau-Lifshitz-Gilbert equation.
The equation is applied to calculate the orientation of the
magnetic moments in the Heisenberg model and the direction
of the magnetization in the micromagnetic region—both
denoted here as m,

dm
dt

= −γ m × Heff + α

[
m × dm

dt

]
, (11)

where γ is the gyromagnetic ratio and α is the phenomeno-
logical Gilbert damping parameter. The effective field Heff is
defined as

HMM
eff = − δetot

μ0Msδm
, (12)

HHei
eff (i) = − Viδetot

μ0μiδm
, (13)

where μ0 is the vacuum permeability, etot is the total free-
energy density, Ms is the saturation magnetization, μi is the
magnetic moment with index i, and Vi is its associated volume.

By creating a joint array of magnetic orientations com-
bining the arrays of the involved meshes, we use Sundials’
CVODE solver [29] in the same way as in the original, purely
micromagnetic GPU-accelerated version of TETRAMAG [23].

We dynamically track the region of interest, e.g., a Bloch
point or (as discussed in the following test case) a vortex, and
move the sphere if the region of interest is off-centered by
a small number of lattice constants, usually one or two. The
tracking of a Bloch point is a three-step process in order to
save computational time. First, all cells of all MSs as well as
the background mesh are tested for a change of sign of the mx ,
my , and mz component, which is a necessary condition for the
presence of a Bloch point inside of a cell. Second, for all those
cells n fulfilling this condition, we solve the system of linear
equation

4∑
i=1

f
(n)
i (rBP)m(n)

i = 0, (14)

where rBP is the position of the Bloch point, f
(n)
i (r) are the

shape function of tetrahedral finite elements n, and the index
i is the local number of the element’s vertex. If rBP is inside
of the circumsphere of the tetrahedron n, we identify rBP as
the Bloch-point position which is located within the cell n.
For the case in which the Bloch point is in an adjacent finite
element, we choose the element for which the Bloch point is
closest to the in-sphere center of the tetrahedron. Usually, the
Bloch point can be found in the background mesh as well as in
at least one MS. Therefore, in a last step, we compare the lists

of Bloch-point coordinates obtained from different meshes
and compare these positions with each. More specifically, we
ensure that the same Bloch point has been detected in the
different meshes, and we do this by comparing the variations
of the Bloch-point positions with the cell size of the meshes.
Finally, once this is confirmed, we retain only the Bloch-point
position that is calculated using the smallest tetrahedron.

Every propagation step moves the structure by an integer
number of lattice vectors. This ensures that interpolations
are performed only in the micromagnetic part, but not in
the Heisenberg region of the MS. The position of the atoms
remains fixed.

VI. TEST OF THE CODE

Before studying the structure and the propagation of Bloch
points with this complex algorithm, it is necessary to gain
confidence into its capabilities and to test its reliability. Most
importantly, it is necessary to ensure that the complicated
nesting of meshes does not introduce numerical artifacts, such
as artificial oscillations, instabilities, or increased damping.
In order to investigate such effects, or the absence thereof,
we study the gyrotropic motion of a vortex in a thin-film
element. Such situations of gyrating vortices in patterned
magnetic elements have been studied intensively over the past
years and the physics is well understood (cf., e.g., Ref. [31]
and references therein). This example can be considered as a
typical problem that modern micromagnetic simulation codes
such as TETRAMAG can simulate with high accuracy, yet it is
sufficiently nontrivial to unveil possible problems connected
with the dynamic multiscale-multimodel code.

This case does not contain a singularity, hence an atomistic
treatment is unnecessary. Nevertheless, we introduce a MS
here which resolves the core of the vortex with atomistic
accuracy. The position of the vortex core can be traced
conveniently by using the intersection of the isosurfaces
mx = 0 and my = 0 of the in-plane magnetization components
(cf. Ref. [30]). Since these isosurfaces can be tilted, so that their
crossing line is not necessarily parallel to the z axis, we chose
the intersection in the middle, z = t/2, of the disk to determine
the vortex position, where t is the thickness and the bottom
surface is at z = 0.

The material parameters of the simulations are the
typical values of permalloy, with exchange stiffness A =
1.31 × 10−11 J/meter, saturation magnetization μ0Ms =
1.00 T, and negligible magnetocrystalline anisotropy. The
damping is set to α = 0.02. The exchange length lexc of this
material is about 5.7 nm, from which the vortex core radius
can be estimated to [32]

rcore = 0.68 lexc

(
h

lexc

)1/3

≈ 6.1 nm. (15)

In the vortex core, the magnetization rotates by 180◦, which ac-
cording to Eq. (7) corresponds to λ ≈ 12.2 nm. For the Heisen-
berg parameters, we use a bcc lattice with lattice constant
a = 2.86 Å, resulting in δG ≈ 2.2 Å. This yields a magnetic
moment of μ = 1.01μB per lattice site. The Heisenberg ex-
change constant between nearest neighbors is J = 11.79 meV.
By virtue of Eq. (7), we choose R1 = 7 nm with δT = 2 nm in
order to keep the local micromagnetic error below 0.1% for a
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180◦ rotation within the diameter of the core region. The disk
is meshed with a tetrahedral cell size of 1.75 nm.

As shown in Fig. 4, the dynamic multiscale-multimodel
algorithm perfectly reproduces the results obtained by the
micromagnetic code. The MS sphere follows the position
of the vortex core, as can be seen in a movie provided in
the Supplemental Material [33]. This agreement is reassur-
ing because it demonstrates that in spite of the numerous
interpolations, the simultaneous use of different models, and
the enormously different length scales that are bridged at any
time step of the calculation, the result remains unchanged. In
the two frames shown on the upper part of Fig. 4, the evolution
of the energy and the average magnetization component 〈my〉
are displayed as a function of time. In both cases, the data
obtained from the multimodel code perfectly matches the
data of the micromagnetic code, so that the lines cannot
be distinguished on that scale. In order to examine minor
variations, we examined this data in greater detail. More

FIG. 4. (Color) As a test case for the multimodel-multiscale code,
we use a permalloy disk of 100 nm diameter and 35 nm height with
a vortex structure. A spatially homogeneous in-plane field pulse with
Gaussian time profile is applied to the relaxed vortex structure. The
field pulse is applied along the x axis; it has an amplitude of 50
mT, width σ = 100 ps, and a peak delay of tMax = 300 ps. This
perturbation of the system generates a well-known micromagnetic
low-frequency excitation (gyrotropic motion) which represents a
spiraling motion of the vortex core around the equilibrium position.
The background mesh has a cell size of 1.75 nm. On the upper
left, the evolution of the total energy of the system is displayed as
a function of time, while on the upper right, the spatially averaged
and normalized y component of the magnetization 〈my〉 is shown.
The results obtained from the purely micromagnetic code and the
multiscale-multimodel code are identical. The main frame on the
bottom shows a snapshot of the magnetic structure at the moment
indicated by the yellow dots in the upper frames. The color code
represents the out-of-plane component mz of the magnetization and
the semitransparent representation shows the position of the MS
sphere at the core of the vortex. In the core of that sphere, the magnetic
structure is calculated on an atomistic level. The crossing ribbons are
the mx = 0 and my = 0 isosurfaces, which we use routinely to track
the position of the vortex (cf. Ref. [30]).

specifically, we used this data to investigate the necessity
of an internal transition region between the MS sphere and
the background. Such a transition region was previously
introduced to connect the micromagnetic model with the
Heisenberg calculation. In that case, the accuracy of the
calculation increased with the width of the transition region.
Remarkably, this is not true for the connection of the outer
part of the MS sphere to the background. There, a direct
connection of the nodes on the outer shell of the MS to the
background gives the best results. This is shown in Fig. 5,
where the previously described test case of a gyrating vortex
is simulated with identical conditions but different thickness
δT of a transition region at the boundary of the MS. This
transition region is illustrated in Fig. 2 as the shading where
the color changes from orange to green. While in all cases
the deviations from the micromagnetic reference result are
very small, the results clearly show that such a transition is
detrimental to the accuracy. A direct connection of the nodes at
the boundary of the MS sphere to the background leads to better
agreement than a weighted averaging of the contributions
from the outer regions of the MS and the background. The
accuracy of the simulation is considerably lower when δT

exceeds about one nanometer. The results indicate that for the
given discretization, it is best to discard any transition region

FIG. 5. (Color) (a) Total energy and (b) average y component
of the magnetization 〈my〉 for the previously discussed case of a
gyrating vortex. The various lines correspond to the results obtained
with transition regions of different thickness δT . (c) The error of the
total energy connected with the multiscale-multimodel method as a
function the thickness of the transition region δT . Each of the lines
refers to a moment in time (as indicated) after the beginning of the
simulation at t = 0. Here, the exact value of the energy is assumed
to be the one obtained from the micromagnetic simulation, and the
deviation from this value is displayed in percentage points.
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between the two meshes and use the coupling rules described
in Sec. V C instead.

In addition to the simulations with nearest-neighbor ex-
change interaction, we studied the same systems with the
Heisenberg exchange parameters of Fe, as described by Pajda
et al. [34], with a total of 144 neighbors, scaled to match the
micromagnetic exchange stiffness A = 1.31 × 10−11 J/m of
permalloy. This yielded no significant change of the results
compared to those obtained with a nearest-neighbor exchange
interaction.

VII. BLOCH-POINT MOTION IN A SOFT-MAGNETIC
CYLINDER

As mentioned in Sec. I, an important example for the
propagation of Bloch points is the magnetization reversal of a
sufficiently large soft-magnetic cylinder [5]. In soft-magnetic
nanowires, the magnetization aligns almost everywhere with
the wire axis because of the predominant impact of shape
anisotropy, and the regions separating domains with opposite
magnetization are head-to-head or tail-to-tail domain walls.
Although countless studies have been reported over the past
decade investigating these domain walls, they were almost
exclusively limited to the simple case of flat strips with a
rectangular cross section, where head-to-head structures are
either transverse or vortex walls, depending on the width and
thickness [36]. In cylindrical wires with circular cross sections,
the situation is different. There, the magnetic structure has
the possibility to preserve the axial symmetry, resulting in a
Bloch point in the middle of an axial vortex wall. In spite
of its high energy density, a Bloch-point structure becomes
energetically favorable at sufficiently large wire radius, owing
to the cumulative long-range magnetostatic interaction which
outweighs the effect of the strong but short-range exchange
interaction. From a magnetostatic perspective, the Bloch point
is the most convenient arrangement of a head-to-head domain
wall in a cylinder: The magnetization aligns everywhere with
the surface, thereby preventing surface charges [37]. Moreover,
the axial vortex is a divergence-free arrangement, which
prevents magnetostatic volume charges [37]. This nearly
perfect suppression of magnetostatic fields is the reason for the
formation of Bloch points in thick cylinders. It is well known
that Bloch points carry a magnetostatic monopole charge [38].
Therefore, this type of domain wall is also not completely
free of stray fields. However, the magnetostatic monopole
contribution is inevitable in any kind of head-to-head domain
wall [39] and the Bloch point therefore represents the smallest
possible source of magnetostatic fields for the given boundary
conditions. The only energy term that tends to suppress the
formation of the Bloch point is the exchange interaction. But
the role of the exchange interaction becomes negligible if the
sample size is sufficiently large—so large that minimizing
the magnetostatic energy is the predominant tendency. Precise
boundaries describing the transition region between transverse
domain walls and vortex domain walls with a Bloch point
have not yet been determined. Typical values for the minimum
diameter of a soft-magnetic cylinder with a Bloch point
seem to be above 40 nm [39,40], since simulations indicate
that at larger wire diameters the one-dimensional, transverse
domain-wall type becomes unstable.

When the vortex domain walls in the cylinder move, e.g.,
because an external magnetic field is applied, the Bloch point
can propagate along the cylinder axis. Earlier publications
[5,13,41] studied this type of reversal process in the framework
of pure micromagnetism, even though a rigorous treatment of
the Bloch-point structure and its dynamics requires a multi-
model method. Using our multiscale algorithm, we examined
the propagation of a Bloch point in a 4-μm-long cylinder with
a diameter of 60 nm, with material/simulation parameters ac-
cording to Ref. [35]. We distinguished two cases: one in which
the cylinder axis points in the (100) direction and another in
which it points along the (110) direction of the lattice. On a
single NVIDIA GTX 580 GPU, the simulations presented here
require, on average, a time ratio of 1.4 ps per minute.

The chirality of the domain wall, defined as the sense of
circulation of the magnetization in the vortex wall combined
with the direction of the external field, determines the degree
of stability of the domain wall during its motion. This is
analogous to the dynamics of vortex domain walls in nanotubes
[42,43], where the highest stability is obtained for head-to-
head domain walls with right-handed chirality and tail-to-tail
domain walls with left-handed chirality, respectively. If we
discard the unstable combinations, it is sufficient to analyze
only the right-handed chirality of the head-to-head type, since
it is identical to the other combination due to time-inversion
symmetry.

In the equilibrium (zero-field) configuration, the Bloch
point resides in the center of the vortex domain wall and the
magnetic configuration displays cylindrical symmetry. Close
to the Bloch point, we find inflow angles γ of 72.3◦ and
73.1◦ for the cases of the (110) and the (100) orientation of
the lattice, respectively. Those values lie within the interval
predicted by Döring [8] (γ = 67.6◦) and by Pylypovsky et al.
[27] (γ = 75.1◦).

Below H = 1 and H = 1.8 mT in the cases of (110) and
(100) orientation of the cylinder axis, respectively, the Bloch
point experiences a pinning. This effect was theoretically
predicted by Reinhardt [44] in 1973, and it is clearly visible
in Fig. 6. The last point in Fig. 6 at which the velocity is
zero corresponds to the depinning field, which was determined
by an adiabatic increase of the external field with a rate of
2 mT/ns. If the applied field is sufficiently large to overcome
this lattice-orientation-dependent pinning, the Bloch point and
the domain wall propagate smoothly in the axial (z) direction.
During an initial acceleration period, the system preserves the
cylinder symmetry and the combination of Bloch point and
domain wall reaches a field-dependent maximum speed. This
velocity is plotted with filled symbols in Fig. 6 and connected
by solid lines. Figure 7 shows the evolution of the Bloch-point
velocity as a function of the external field, with the cylinder
axis oriented in the (100) direction. Our results indicate a
significant influence of the lattice orientation with respect
to the cylinder axis on the domain-wall dynamics. First, the
depinning field is much lower in the (100) case compared to
the (110) case. Second, we obtain a markedly reduced domain-
wall velocity at the same external field for the case of the (110)
axis orientation compared to the (100) axis orientation. In both
cases, the magnetic structure of the domain wall moving at
maximum velocity displays a metastable configuration, whose
stability improves with increasing external field. But after a
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FIG. 6. (Color online) Bloch-point velocity as a function of the
applied field in a wire with a diameter of 60 nm. Different propagation
behaviors are found, depending on the relative orientation of the
cylinder axis and the atomic lattice. The last data point with zero
velocity represents the depinning field. For both orientations, two
metastable dynamic domain-wall configurations can be distinguished.
The first is a propagation mode with almost field-independent
velocity, as indicated by empty symbols. The system can also display a
second propagation mode, with a different domain-wall configuration
and for which the velocity increases significantly with the external
field.

certain, field-dependent period, the domain wall undergoes
a structural transition and the velocity drops to a constant
value of v ≈ 300 m/s—for both relative orientations of the
lattice and the cylinder axis, as marked by open symbols and
connected by dotted lines in Fig. 6. Note that the Bloch point
is still in the middle of the domain wall. The difference is
that the magnetic structure around the Bloch point is distorted,
leading to an unforeseen spontaneous break of symmetry. The
different domain-wall structures are shown in Fig. 8, where
two snapshots of the Bloch-point propagation are displayed:
one for the initial configuration and one after the conversion
into a tilted domain-wall structure. In this case, an axial field of
Hext = 2 mT is applied and the cylinder axis is along the (100)
orientation. These two effects, i.e., the metastable dynamic
domain-wall profile and the impact of the lattice orientation
on the dynamics of the Bloch point and the domain wall con-
taining it, are most pronounced for domain-wall speeds below

)
(

)(

FIG. 7. (Color online) Evolution of the Bloch-point velocity vs
times in the low field (regime below the magnonic limit) for a wire
with a diameter of 60 nm and a cylinder axis oriented in the (100)
direction.

FIG. 8. (Color) Snapshots of the simulated vortex domain-wall
(DW) propagation in a ferromagnetic cylinder [35] with a Bloch
point in its core. The two magnified images show the magnetic
configuration around the Bloch point in the equilibrium configuration
and after applying an external field of 2 mT for four nanoseconds. The
crossing of the three m{x,y,z} = 0 isosurfaces indicates the position
of the BP in the center of the multimodel sphere, and the coloring
represents the axial magnetization component.

the minimum spin-wave phase velocity. At velocities above
the “magnonic limit” [45,46], the transition to another type of
domain-wall propagation is observed, with completely differ-
ent features, which will be the subject of a forthcoming paper.

As the driving field increases, the differences resulting from
different lattice orientations diminish. From this, it can be
concluded that an atomistic/multimodel treatment may not
be necessary if two conditions are fulfilled: The mesh size
should correspond to the atomistic lattice parameter and the
driving field should be strong enough to overcome any pinning
effect. Nevertheless, it may be preferable to use the multimodel
algorithm, not the least because in the case of nearest-neighbor
interaction, the numerical costs connected with a Heisenberg
model are smaller than those of a finite-element calculation
with cell size in the range of the atomic lattice parameter. This
is because a typical Voronoi cell includes 10 to 20 vertices,
whereas a nearest-neighbor interaction takes into account only
six to eight neighbors.

VIII. SUMMARY

We have presented in detail the implementation of a
dynamic multiscale-multimodel algorithm which combines a
micromagnetic finite-element code with a classical Heisenberg
model. The code runs entirely on graphic cards, which
allows for a fast computation of the complex interacting
meshes involved in the simulation. An analytical estimation
has been derived to calculate the critical distance between
misaligned magnetic moments below which an atomistic
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treatment becomes decisive. This critical size is used as a
criterion for the minimum diameter of the region in the
model in which exchange interaction is treated purely by
the Heisenberg model. We have shown that the numerically
critical part of the method, i.e., the interface between the
sample and the implanted multiscale sphere, gives rise to a
local error of less then one percent, which is good enough to
use the method for reliable future studies on the dynamics of
Bloch points. The code has been thoroughly tested, ensuring
that the simultaneous treatment of different methods does
not introduce artifacts. The multiscale region consists of a
preprocessed sphere that can move through the sample without
the need of numerically expensive remeshing processes.
Owing to this ability to trace regions of interest dynamically,
we could demonstrate in an example study the dynamics of
Bloch points with unprecedented accuracy.

We showed that the dynamics of vortex domain walls in
cylindrical nanowires containing a Bloch point depends on
the orientation of the lattice with respect to the cylinder axis
for a broad range of external fields. For that system, we
confirmed the existence of a finite depinning field, as well
as two metastable propagation modes—one with a constant
propagation velocity for a broad range of external fields and
one with an almost constant mobility for external fields above
the depinning field.

The dynamics of Bloch points can be expected to contain
a number of surprising effects, similar to the rich variety of
effects that have been discovered concerning the dynamics of
vortices and domain walls. The algorithm presented in this
paper enables a precise study of the Bloch-point dynamics for
different lattice types and orientation. More studies on this
topic will be published soon.
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moment of one Bohr magneton per lattice site. The atomistic
model considers nearest-neighbor interaction with an exchange
constant of J = 11.79 meV. In micromagnetic terms, these
parameters correspond to a saturation magnetization of μ0Ms =
1.00 T and an exchange stiffness of A = 1.31 × 10−11 J/m. The
sample (background) mesh consists of tetrahedrons with 3 nm
cell size, resulting in 494 914 vertices. The multimodel sphere
has a total diameter of 37 nm, and an atomistic core region with
a diameter of 14 nm, including a model transition region of 2 nm
width.

[36] R. McMichael and M. Donahue, IEEE Trans. Magn. 33, 4167
(1997).

[37] W. F. Brown, Magnetostatic Principles in Ferromagnetism
(North-Holland, Amsterdam, 1962).

134403-10

http://dx.doi.org/10.1103/PhysRev.106.446
http://dx.doi.org/10.1103/PhysRev.106.446
http://dx.doi.org/10.1103/PhysRev.106.446
http://dx.doi.org/10.1103/PhysRev.106.446
http://dx.doi.org/10.1109/TMAG.1979.1060342
http://dx.doi.org/10.1109/TMAG.1979.1060342
http://dx.doi.org/10.1109/TMAG.1979.1060342
http://dx.doi.org/10.1109/TMAG.1979.1060342
http://dx.doi.org/10.1016/S0304-8853(97)01125-6
http://dx.doi.org/10.1016/S0304-8853(97)01125-6
http://dx.doi.org/10.1016/S0304-8853(97)01125-6
http://dx.doi.org/10.1016/S0304-8853(97)01125-6
http://dx.doi.org/10.1063/1.1656144
http://dx.doi.org/10.1063/1.1656144
http://dx.doi.org/10.1063/1.1656144
http://dx.doi.org/10.1063/1.1656144
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1103/PhysRevB.67.094410
http://dx.doi.org/10.1103/PhysRevB.67.094410
http://dx.doi.org/10.1103/PhysRevB.67.094410
http://dx.doi.org/10.1103/PhysRevB.67.094410
http://dx.doi.org/10.1088/1742-6596/303/1/012005
http://dx.doi.org/10.1088/1742-6596/303/1/012005
http://dx.doi.org/10.1088/1742-6596/303/1/012005
http://dx.doi.org/10.1088/1742-6596/303/1/012005
http://dx.doi.org/10.1016/j.physb.2005.10.078
http://dx.doi.org/10.1016/j.physb.2005.10.078
http://dx.doi.org/10.1016/j.physb.2005.10.078
http://dx.doi.org/10.1016/j.physb.2005.10.078
http://dx.doi.org/10.1007/BF01328377
http://dx.doi.org/10.1007/BF01328377
http://dx.doi.org/10.1007/BF01328377
http://dx.doi.org/10.1007/BF01328377
http://dx.doi.org/10.1103/PhysRevB.86.094409
http://dx.doi.org/10.1103/PhysRevB.86.094409
http://dx.doi.org/10.1103/PhysRevB.86.094409
http://dx.doi.org/10.1103/PhysRevB.86.094409
http://dx.doi.org/10.1016/0304-8853(93)90441-4
http://dx.doi.org/10.1016/0304-8853(93)90441-4
http://dx.doi.org/10.1016/0304-8853(93)90441-4
http://dx.doi.org/10.1016/0304-8853(93)90441-4
http://dx.doi.org/10.1140/epjb/e2011-20146-6
http://dx.doi.org/10.1140/epjb/e2011-20146-6
http://dx.doi.org/10.1140/epjb/e2011-20146-6
http://dx.doi.org/10.1140/epjb/e2011-20146-6
http://dx.doi.org/10.1103/PhysRevB.77.224428
http://dx.doi.org/10.1103/PhysRevB.77.224428
http://dx.doi.org/10.1103/PhysRevB.77.224428
http://dx.doi.org/10.1103/PhysRevB.77.224428
http://dx.doi.org/10.1063/1.3519906
http://dx.doi.org/10.1063/1.3519906
http://dx.doi.org/10.1063/1.3519906
http://dx.doi.org/10.1063/1.3519906
http://dx.doi.org/10.1109/TMAG.2010.2048016
http://dx.doi.org/10.1109/TMAG.2010.2048016
http://dx.doi.org/10.1109/TMAG.2010.2048016
http://dx.doi.org/10.1109/TMAG.2010.2048016
http://dx.doi.org/10.1088/0965-0393/17/5/053001
http://dx.doi.org/10.1088/0965-0393/17/5/053001
http://dx.doi.org/10.1088/0965-0393/17/5/053001
http://dx.doi.org/10.1088/0965-0393/17/5/053001
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1103/PhysRevB.85.224401
http://dx.doi.org/10.1103/PhysRevB.85.224401
http://dx.doi.org/10.1103/PhysRevB.85.224401
http://dx.doi.org/10.1103/PhysRevB.85.224401
http://dx.doi.org/10.1109/20.728305
http://dx.doi.org/10.1109/20.728305
http://dx.doi.org/10.1109/20.728305
http://dx.doi.org/10.1109/20.728305
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1103/PhysRevLett.97.177202
http://dx.doi.org/10.1103/PhysRevLett.97.177202
http://dx.doi.org/10.1103/PhysRevLett.97.177202
http://dx.doi.org/10.1103/PhysRevLett.97.177202
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1016/0304-8853(93)90428-5
http://dx.doi.org/10.1016/0304-8853(93)90428-5
http://dx.doi.org/10.1016/0304-8853(93)90428-5
http://dx.doi.org/10.1016/0304-8853(93)90428-5
http://link.aps.org/supplemental/10.1103/PhysRevB.89.134403
http://dx.doi.org/10.1103/PhysRevB.64.174402
http://dx.doi.org/10.1103/PhysRevB.64.174402
http://dx.doi.org/10.1103/PhysRevB.64.174402
http://dx.doi.org/10.1103/PhysRevB.64.174402
http://dx.doi.org/10.1109/20.619698
http://dx.doi.org/10.1109/20.619698
http://dx.doi.org/10.1109/20.619698
http://dx.doi.org/10.1109/20.619698


MULTISCALE AND MULTIMODEL SIMULATION OF . . . PHYSICAL REVIEW B 89, 134403 (2014)

[38] A. P. Malozemoff and J. C. Slonczewski, Magnetic Do-
main Walls in Bubble Materials (Academic, New York,
1979).

[39] R. Hertel and A. Kákay, arXiv:1401.0909.
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