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Electronic relaxation rates in metallic ferromagnets
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We show that the magnon-exchange contribution to the single-particle and transport relaxation rates in
ferromagnetic metals, which determine the thermal and electrical conductivities, respectively, at asymptotically
low temperatures does not obey a power law as previously thought, but rather shows an exponential temperature
dependence. The reason is the splitting of the conduction band, which inevitably results from a nonzero
magnetization. At higher temperatures, there is a sizable temperature window where the transport rate shows a
T? temperature dependence, in accord with prior results. This window is separated from the asymptotic regime
by a temperature scale that is estimated to range from tens of millidegrees of Kelvin to tens of degrees of Kelvin
for typical ferromagnets. We motivate and derive a very general effective theory for metallic magnets that we
then use to derive these results. Comparisons with existing experiments are discussed, and predictions for future

experiments at low temperatures are made.
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I. INTRODUCTION

Electronic relaxation rates contain important information
about the excitations in a metallic system. The single-particle
relaxation rate 1/t determines the lifetime of quasiparticles as
well as the thermal conductivity x = v} cy7/3; the transport
relaxation rate 1/t,, determines the electrical conductivity
via the Drude formula o = n.e2, /m.. Here, m. and n. are
the conduction electron effective mass and number density,
respectively, vp is the Fermi velocity, and cy is the specific
heat. There are various contributions to these relaxation rates,
including those from the scattering of electrons by propa-
gating, or particlelike, excitations. For instance, the coupling
of longitudinal phonons to conduction electrons leads to the
well-known Bloch T behavior of the electrical resistivity; the
corresponding effect in the single-particle relaxation rate is a
T3 law [1]. In magnetically ordered phases, the coupling of
the conduction electrons to any magnetic Goldstone modes
contributes to the relaxation rates. In isotropic Heisenberg
ferromagnets, the Goldstone modes are the ferromagnons
with a frequency-momentum relation w ~ k%. They have been
found to contribute a T2 term to the transport relaxation rate
[2,3]. In helimagnets [4,5], which have a helically modulated
magnetic ground state, the corresponding Goldstone mode (the
helimagnon) has been shown to lead to a term in the electrical
resistivity that is proportional to 7°/2 in the low-temperature
limit [6-8]. In antiferromagnets, the corresponding contribu-
tion is known to be proportional to T3 [9]. These results all
hold for three-dimensional systems, which is the only physical
dimension in which long-range magnetic order exists. For
later reference, we note, however, that the various power laws
quoted above are dimensionality dependent. For instance, in a
generic dimension d > 2, the contribution from ferromagnons
to the resistivity is proportional to 7¢+D/2,

In addition to the scattering by propagating excitations,
there are contributions to the transport coefficients due to
excitations with a continuous spectrum. The best known
example is the one due to the Coulomb interaction between
the electrons. In simple metals, it leads to a T2 contribution
to both the single-particle rate and the transport rate, i.e., a
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lower power than the phonon contribution. However, since
the relevant energy scale is the Fermi energy ep or Fermi
temperature Tr (we use units such that 7~ = kg = 1), which
is much larger than the Debye temperature, this dominates
the phonon contribution only at very low temperatures [10].
In metals that display ferromagnetism, the latter statement
is not necessarily true, due to Fermi surfaces that consist
of multiple sheets, and the issue of both the temperature
dependence and the prefactor of the Coulomb contribution to
the electrical resistivity is complicated. These are old questions
[1,11,12] that recently have been revisited in the context
of quantum criticality and exotic metals [13,14]. Another
example is the scattering of electrons in ferromagnets by
both longitudinal magnetization fluctuations and the so-called
Stoner excitations in the transverse channel [2]. The latter
are dissipative, nonhydrodynamic transverse excitations in
addition to the propagating spin waves. In a random-phase
approximation, the contribution to the resistivity from these
dissipative excitations, both longitudinal and transverse, was
shown in Ref. [15] to result in a 7% behavior with a prefactor
that is inversely proportional to the magnetization. This
is qualitatively the same behavior these authors found for
the scattering by magnons, and it agrees roughly with the
trend observed in Fe, Co, and Ni [16]. As we will see,
this conclusion, as far as the magnons is concerned, is true
only in a temperature window, but not at asymptotically low
temperature. It should be stressed, however, that this similarity
is somewhat accidental and approximation dependent even
in the regime where it holds. For instance, the power law
of the magnon contribution is dimensionality dependent, as
mentioned above, while the contribution from the dissipative
excitations is not. Also, the prefactor of the former is essen-
tially determined by the dispersion relation of the magnons,
which is governed by very general principles, whereas the
latter is dependent on many nonuniversal details. Nevertheless,
the fact that various contributions of very different nature to
the relaxation rates show a T'>-temperature dependence makes
the interpretation of the experimentally observed T2 behavior
of the electrical resistivity in many ferromagnetic materials
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difficult [16]. At the same time, the electrical resistivity is a
basic physical property that is very useful, for instance, for
tracking and identifying magnetic phase transitions [17-21],
and establishing its behavior in the ferromagnetic phase as a
benchmark is important.

In this paper, we focus on the magnon contribution to
the relaxation rates in ferromagnets and show that for this
process the established result is qualitatively incorrect at
asymptotically low temperatures; instead of a 7'>-temperature
dependence, the magnon contributions to both the electrical
resistivity and the thermal resistivity display an exponential
behavior. A problem with the established ferromagnetic result
was first noted in Ref. [22], which showed that the results for
the helimagnetic and ferromagnetic cases are not mutually
consistent: if one considers the ferromagnetic limit of the
helimagnetic ground state, by letting the wavelength of the
helix go to infinity, one finds that the leading contribution
to the relaxation rate, which would yield a power law,
vanishes. What is left behind is an exponential behavior of the
form [23]

1/7e o (T? /1) exp(—=To/T) (1.1)
where the temperature scale 7y depends on the conduction
band splitting or “Stoner gap” A or, equivalently, the mag-
netization [24], and on the Fermi energy eg. This result is
surprising, given that the relaxation rates due to magnetic
Goldstone modes in both helimagnets and antiferromagnets
show a power-law behavior. The purpose of this paper is to
discuss this problem and to elaborate on the brief remarks that
were given in Appendix D of Ref. [22]. We will show that
the asymptotic low-temperature behavior of both the transport
relaxation rates due to magnons is indeed exponential of the
form shown in Eq. (1.1), with Ty = Dkl%-()\/el:)2 with D the
spin-wave stiffness, which itself depends on A, and kr and
er the Fermi wave number and Fermi energy, respectively.
This result holds in an asymptotic regime defined by T < Tj.
However, in a sizable preasymptotic temperature window
given by Ty « T <« DkZ, one recovers the 72 behavior found
previously. The reason for the exponential asymptotic result is
the fact that, in a ferromagnet, the Goldstone modes are purely
transverse, and therefore couple only quasiparticles in different
Stoner bands. The effective electron-electron-interaction due
to ferromagnon exchange therefore describes purely inter-
Stoner-band scattering, which leads to an activated process.
In contrast, in helimagnets and antiferromagnets, there is an
intra-Stoner-band coupling, which leads to a power law. This
vanishes as the characteristic wave number of the magnetic
order goes to zero in the ferromagnetic limit.

These results are valid for all metallic ferromagnets,
whether or not the magnetism is caused by the conduction
electrons themselves or by localized electrons in a different
band. We will refer to such systems as “itinerant ferromagnets”
and “localized-moment ferromagnets,” respectively. In the
main body of the paper, we will consider a very general model
that does not depend on which of these two cases is realized
and that uses only very general properties of ferromagnets that
follow from symmetry arguments. A more specific Stoner-type
model for the case of itinerant ferromagnets is considered in
Appendix A.
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This paper is organized as follows. In Sec. II, we derive
an effective action that describes an effective electron-electron
interaction due to the exchange of ferromagnons. The effective
action is valid for calculating relaxation rates to first order
in the magnon propagator, and it holds for both itinerant
and localized-moment ferromagnets. In Sec. III, we use this
model to calculate the single-particle relaxation time, and
in Sec. IV, we calculate the transport relaxation time, and
hence the electrical conductivity, by evaluating the pertinent
Kubo formula in an approximation that is equivalent to the
Boltzmann equation. In Sec. V, we discuss our results. In
Appendix A, we recall the Stoner-Moriya mean-field treatment
of itinerant ferromagnets. In Appendix B, we recall the
cases of electron-electron and electron-phonon scattering in
nonmagnetic metals and cast them in a language that illustrates
why our general method works even in the case of itinerant
ferromagnets.

II. EFFECTIVE ACTION

In this section, we derive and motivate an effective action
that is suitable for calculating the effects of long-range
ferromagnetic order and the associated Goldstone modes, on
the electronic relaxation rates in a metallic ferromagnet.

A. Coupling of magnetic fluctuations to conduction electrons

Let So[v,v] be an action for conduction electrons in terms
of fermionic spinor fields Y = (¥4,%,) and ¥ = (¥4,¥,) that
depend on a spin projection index o = (1, |) = (+,—). The
electronic spin density is given by

ny(x) =Y o (X) 0 g0 Yo (X).

o,0’

@2.1)

Here, o = (6!,0%,0°) denotes the Pauli matrices, and x =
(x,7) comprises the real-space position x and the imaginary-
time variable r. Now assume that the conduction electrons
are subject to a magnetization M (x) of unspecified origin.
The magnetization will act as an effective magnetic field that
couples to the conduction electrons via a Zeeman term. The
action then reads

S, ¥ = Soly,¥] + thdx M(x) - ny(x), (22)

with T’y a coupling constant that dimensionally is an energy
times a volume, or an inverse density of states. In a ferro-
magnetic state, the magnetization has a nonzero average value
that we assume to be in the 3-direction, (M;(x)) = §;3m. In
a mean-field approximation that replaces M by its average
value, the action then takes the form
Sip) =Sl 4 [denam, @3
where A = ['ym is directly proportional to the average magne-
tization. Here, we have chosen the sign of the action such that
the partition function is given by
2, = [ DUy e, (23b)
A splits the conduction band into two subbands, one for
each spin projection. We will refer to A as the Stoner gap
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[24], but we emphasize that the physical situation we are
considering is much more general than the one considered
in the Stoner model [25]. In particular, we do not necessarily
assume that the conduction electrons themselves are the source
of the magnetization.

Now consider fluctuations 6 M of the magnetization. The
action, Eq. (2.2), then reads

Sy, vl = Sy, vl + F[/dx SM(x) - ny(x). (2.4a)

In addition, we need an action that governs 6 M . If the latter
is to describe the fluctuations of the physical magnetization,
then this must be

—1
St M1 = — / dx dy SM,;(x) x5 (x,y) 8M, (7).
(2.4b)

where x;;(x,y) is the physical magnetic susceptibility. In a
ferromagnetic phase, the transverse (i, j = 1,2 with our choice
for the magnetization direction) components of x;; contain
the ferromagnons, which are the Goldstone modes associated
with the ferromagnetic order. The transverse part of y;; is thus
singular in the limit of small frequencies and wave numbers.
Adding Egs. (2.4a) and (2.4b) and integrating out §M, we
obtain a purely electronic effective action

Setel¥, W1 = Sil¥, ¥+ Sexl¥r, 91, (2.52)

with
. r?
Sex[¥,¥] = Tt/dXdy dng i (x) X,-j(x,Y) Sns,j()’)o (2.5b)

If we use only the singular, transverse, part of x;;, then Sex
describes an effective electron-electron interaction mediated
by an exchange of magnons [26].

B. Effective action

In order to make the effective action given by Eq. (2.5)
suitable for explicit calculations, we now specify Sy and y;;.
The former, in principle, describes interacting electrons in a
conduction band. However, the electron-electron interaction
is not of any qualitative importance for our purposes, and
we therefore take S, to describe noninteracting electrons with
an energy-momentum relation €. We denote the chemical
potential by u and define &, = € — p. S, then reads

SW1=) > lioy — 0,(k)] Yo (k) Yo k), (2.62)
k a

with
w+(k) =& F A

Here, we see explicitly that the magnetization splits the
conduction band into two Stoner bands whose Fermi surfaces
(FS) are defined by

(2.6b)

@5 (D), cps, = 0. 2.7)

and we denote the density of states at the o-Fermi surface
and the corresponding Fermi wave number by Nf and k7,
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respectively. In the case of a parabolic band, we have

ki =key/1 % r/ep, Ni =kime/2n%. (2.8)
The Green functions for the two Stoner bands are
Gio(p) = 1/liw, — ws(p)] (2.9

with w, = 27T (n + 1/2) (n integer) a fermionic Matsubara
frequency.

The structure of the transverse magnetic susceptibility
at small frequencies and wave numbers in an isotropic
ferromagnet is entirely determined by symmetry arguments
[27]. The Goldstone modes of the spontaneously broken
rotational symmetry in spin space are ferromagnons with a
resonance frequency

wo(k) = D(L) k. (2.10)

The spin-stiffness coefficient D vanishes as A — 0. It has
the dimensions of a diffusion coefficient and is given by a
magnetic energy scale divided by a microscopic wave number
scale squared, with the latter on the order of the Fermi wave
number. In the Stoner-Moriya mean-field theory [2] of itinerant
ferromagnets the former is given by A, and for nearly free
electrons, one obtains

D(A) = A/6ki  (Stoner). (2.11a)

In a Heisenberg spin model with exchange energy J and lattice
constant a, the corresponding result is [28,29]

D = Ja* (Heisenberg). (2.11b)

If one takes into account mode-mode coupling effects that
are not included in the mean-field theory one finds that D(A) is
a nonanalytic function of A [30,31]. The transverse magnetic
susceptibility can be expressed in terms of simple poles that
describe circularly polarized ferromagnons, viz.,

K@) 1
QNeT')? wok) £iQ°
The coefficient K(A) is dimensionally an inverse volume. It

vanishes as A — 0; in the Stoner-Moriya mean-field theory, it
is given by (see Appendix A)

x(k,iQ) = 2.12)

K(LA) = 4NgA (Stoner). (2.13a)
In a Heisenberg spin model, one has [32]
K =2m (Heisenberg). (2.13b)

The transverse susceptibility tensor takes the form

) = L ( X406+ x_ (k) i[X+(k)—X—(k)]>
! 2\ =il k) — x-(0)]  xet+ x_(k) )’
(2.14a)
where k = (k,i2). Explicitly, one has for small k and €2,
) = K(x) 1 (D(A)kz —i(iQ))
K= ONeT2 ool — G2 \ Q) DOVK)
(2.14b)

In Appendix A, we show how this structure emerges in an
explicit model calculation.
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p'+k, o

FIG. 1. Effective electron-electron interaction due to magnon
exchange. The dashed line represents the effective potential V,, (k).

The magnon exchange interaction, Eq. (2.5b), can now be
written:

- 1
Sex[V, 9] = 3 Z/}:Bnm/(k) Voo (k) 8ng16(=k).  (2.15a)

Here, [, = (1/V) Y, T Y_,;q. and the effective potential is
given by

Voo k) = Varg(k) + Ve (—k) (2.15b)

with

Voo (k) = (1 = 855) T] X (k). (2.15¢)

This effective interaction is shown diagrammatically in
Fig. 1. Notice that the exchange of magnons couples only
electrons with opposite spin projections, i.e., it leads to inter-
Stoner-band scattering only. This is in contrast to the case of
helimagnets, where there is an intra-Stoner-band contribution
whose prefactor is proportional to the square of the helical
pitch wave number [6].

We add a few remarks concerning the validity of this ef-
fective action. We have assumed that the conduction electrons
are subject to a magnetization and magnetic fluctuations of
unspecified origin whose dynamics are governed by the phys-
ical magnetic susceptibility. Integrating out these fluctuations
leads to an effective action that is purely electronic. Since
the feedback of the conduction electrons on the magnetic
susceptibility has already been built into the effective action,
the latter must not be used in ways that constitute, directly
or indirectly, a renormalization of the susceptibility; doing
so would constitute double counting. However, it is safe
to use the effective action for perturbative calculations of
any observable to first order in the effective potential given
by th X, and we will use it to calculate the quasiparticle
and transport lifetimes to that order. We also note that the
validity of this procedure is more obvious in cases where the
magnetization is due to localized electrons in a band different
from the conduction band than in the case of itinerant magnets.
However, the coupling of the spin density to the magnetization
fluctuations produced by the other electrons is still the same if
all electrons are in the same band, and with the above caveats
the effective action is still valid in that case. To illustrate this
point, we consider the ordinary Fermi-liquid contribution to the
electronic relaxation rate, as well as the one due to phonons,
in Appendix B, where we demonstrate that a reasoning for
density fluctuations that is analogous to the one given above
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for magnetization fluctuations leads to the standard results for
the relaxation rate in these cases.

C. Energy scales

Before we use the effective action to calculate the single-
particle and transport relaxation rates, let us discuss the
relevant energy scales and their relation to experimentally
observable quantities. Here, we do so for the simple case of
one conduction band; in Sec. V, we will discuss the more
complicated, and more realistic, situation that arises from the
presence of several bands.

The most obvious fundamental magnetic energy scale is
the Stoner gap A, or the closely related exchange splitting
8 Eex = 2).[24]. It can be measured by photoemission, and also
obtained by band-structure calculations. The smallest wave
number that can be transferred by means of magnon exchange
is ko = 8 Eex/vp. For a parabolic band, this corresponds to
ko = kit — kg, but the above expression is more general. The
smallest energy that can be transferred by magnon exchange
is thus

To = Dkj ~ 1 Dkp(SEex /€r). (2.16)
The largest momentum transfer is given by k; &~ 2kg, and we
thus have another energy scale,
T, = 4Dk} . (2.17)
One expects 7T} to be close to the exchange splitting; within
Stoner theory, one has T} = 2A/3 = §E/3. Finally, the
microscopic energy scale is given by the Fermi energy ep, and
and we have a hierarchy of energy scales, viz., Tp < T} <K €p.
In particular, the ratio Ty/ 7T} is given in terms of the Stoner
gap in units of the microscopic energy,

To/Ti ~ % (A/ep)* . (2.18a)
Alternatively, we can use n./2Np as the microscopic energy
scale and express the ratio Tp/ T in terms of the magnetization
m,
To/Ti ~ § (m/ne) . (2.18b)
Within Stoner theory this relation holds for A /eg < 1, see
Eq. (A7b), but as an order-of-magnitude estimate it is expected
to hold much more generally.
We finally mention that crystal-field effects break spin-
rotational invariance, which gives the magnons a small gap
and leads to yet another energy scale that affects the relaxation

rates at very low temperatures. The magnitude of this effect is
highly material dependent, and we neglect it for simplicity.

III. SINGLE-PARTICLE RELAXATION RATE

‘We now calculate the single-particle inelastic relaxation rate
due to the exchange of magnons. To linear order in the effective
potential, Eq. (2.15a) yields two contributions to the electronic
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FIG. 2. Self-energy contributions %, (p) for the o-spin Green
function.

self-energy X, which are shown in Fig. 2. Analytically, we have

Ze(p) = /k D Vo) Gy o (p + k)

=2I7 / X0 k) G —o(p + ). 3.1)
k

Here, we have defined the self-energy such that the full Green
function G is given by a Dyson equation:

G, '(p)= 2. (p).

Now we consider the single-particle relaxation rate I" for a
spin-o quasiparticle, averaged over the Fermi surface:

G, (p) — (3.2)

1

(3.3)

[o(e) = NOV

where X)(p,e) = Im 2(p,iw — € +i0) is the spectrum of
the self-energy. Using a spectral representation for the effective
potential and performing the Matsubara frequency sum in
Eq. (3.1), we find

Fo(e) = / du [np @) +np(u+e)] ZV”
=2I2N° | dulngu)+npu+ )] )W),
(3.42)
where np(u) = 1/“/T —1) and np(u) = 1/(*/T + 1) are

the Bose and Fermi distribution functions, respectively. Here,
we have defined

Vi) = — s Z 8w (k)] 8[wo (P)IVy,,. (k — p,u)

NZNE'
(3.4b)

and, analogously,
=1 l "
Xw) = ———— " 8lws ()] 8[w, (p)x, (k — p.u),
NENg'V2 4=

(3.4¢)
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with

FKO

m S[wo(k) F u]
t

Xi(ku) = (3.4d)
the spectra of the susceptibilities x. defined in Eq. (2.12). We

note the symmetry relation

N{ Ty(e) = Ny T_(—e), (3.4¢)

which follows from the symmetry properties of x.(u).
Notice that the wave vectors k and p in Eq. (3.4a) are pinned

to different Fermi surfaces as a result of the pure inter-Stoner-

band scattering mentioned after Eq. (2.15b). The spectrum

X (u) will therefore be nonzero only for frequencies
To < lul < Th, (3.5)

with Ty and T given by Eqs. (2.16) and (2.17).
On the energy shell, ¢ = 0, we obtain for the relaxation rate
1/t on the o-Fermi surface,

T K T/T‘/T dx
2N}§’T1 T,/T sinh x

0

1/21, =T,(e =0) =

T e W/T if TTy
K 1 .
=ver 127 IT/Ty) if To<T<KT.
P L Ty T it T T
(3.6)
For the thermal resistivity py, = 1/, this implies
6 /N T e W/T if TT,
T .
= EN T /) if o< T <Th.
pev Lin(h/Ty) T it T T
(3.7)

In Eq. (3.7), the prefactor is valid in the limit A — 0; more
generally, there are corrections of O[(\/er)?]. The second
line in Egs. (3.6) and (3.7) is valid to leading logarithmic
accuracy only. We see that at asymptotically low temperatures,
the relaxation rate is exponentially small, and that in the
preasymptotic temperature window Ty <« T < T) there is a
logarithmic correction to the linear behavior. We will further
discuss these results in Sec. V.

IV. TRANSPORT RELAXATION RATE

We now turn to the transport relaxation rate, which
determines the electrical resistivity. The latter is the inverse
of the electrical conductivity, which is given by the Kubo
formula [33]

O',‘j(iQ)Z é[ﬂij(ig)—ﬂ'ij(iﬂz())], (4121)
where the tensor
7(iQ) = = T Z Z vi(k) v;(p)
X (wnl,o(k) WV!1+n,0 (k) d/nz,a’(p) I/fnzfn,a’(p»
(4.1b)
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is the current-current susceptibility or polarization function.
Here, v(k) = d¢/0k, and the average is to be taken with
the effective action, Eq. (2.5a). The four-fermion correlation
function in Eq. (4.1b) is conveniently expressed in terms of
the single-particle Green function

Go(p) = 1/[Gio(p) — Lo (p)] 4.2)
and a vector vertex function T', with components I". :
T (i) = —ie’T Y L > rg (p.i®)G
! iw |4 p.o Me o ’
x (piio —iQTi(piw,io —iQ). (4.3)

Here, we have assumed a quadratic dependence of ¢, on k for
simplicity. It is important to calculate the vertex function I' and
the self-energy ¥ in mutually consistent approximations [34].
We use the familiar procedure that consists of a self-consistent
Born approximation for the self-energy, which to linear order
in the potential V is represented by Eq. (3.1), and a ladder
approximation for the vertex function,

I',(pjiw,io —i)

—z—+ Znga(k p.if)

th’ o’
X Go(kyiow +i2) Gor(kyiow —iQ+iQ)

X To(kyioo+iQio —iQ+iQ). 44
We mention that umklapp processes, which are not explicitly
considered here, are necessary in order to obtain a nonzero
transport relaxation rate. In fact, in a Galilean invariant system
the electrical resistivity vanishes due to momentum conserva-
tion and the contributions contained in our approximation are
canceled by terms not included in the ladder approximation.
However, the above approximation is effectively valid in the
presence of umklapp processes, as is the case for Coulomb
scattering [1]. If we define a scalar vertex function y by
I'(p;iw,io') =i(p/me)y(p;iw,iv),then the Bethe-Salpeter
equation for the latter becomes

Vo(Piiw,iow —i2)

=15 2 Y Verp— i)

ki o
p-k . o o
X == Go(kjio +iQ) Gy (kiw — Q2+ i)

X Yo (ki —iQio —iQ — Q). 4.5)
The polarization and conductivity tensors are diagonal,
0;j(i2) = §;; 0(i€2), and the sum over Matsubara frequencies
in Eq. (4.3) can be transformed into an integral along the
real axis. In the limit of low temperature, the imaginary part
of the self-energy, which yields the relaxation rate, goes to
zero as we have seen in the preceding section. The real
part just renormalizes the Fermi energy. The relevant limit
is thus the one of a vanishing self-energy, and in this limit,
the leading contributions to the integral come from terms
where the frequency arguments of the two Green functions
lie on different sides of the real axis. In the static limit, the
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Kubo formula for the conductivity o = limg_,oReo(i2 —
Q +i0), thus becomes

&? de 1
o= 2 / 20 AT Z 4
3wmg 4T cosh (e/2T) v

X Y 1Go(p.€ +i0)* ¥, (p; € +i0,€ — i0).

(4.6)

The pole of the Green function ensures that the dominant
contribution from the momentum integral comes from the
momenta that obey w,(p) = €. Furthermore, since € scales
as T, for the leading T dependence, we can neglect all €
dependencies that do not occur in the form € / T'. Equation (4.6)
then reduces to

Ao (€)

e’ /°° de 1 Z
= _— ng ——.
2me J oo 4T cosh?(e/2T) %~ 7 Ty (e)

Here, n, is the density of the o-spin electrons, I', is the
single—particle rate defined by Eq. (3.3), and

(4.72)

Aq(€) =

TV Z(S[wa(p)] Yo(ps€ +i0,e —i0). (4.7b)

Using analogous arguments we find, from Eq. (4.5), that
A, (€) obeys an integral equation:

Mol = 1+ N7 [ d W lnata)

Ao’(e + Ll)
_—, 4.8
+ np(u 4 €)] Tt b u) (4.8a)
where
Woor(u) = NeNTVR > Z 8 [wor (k)]
p.k o'#o
x 8lwg(P)IVy,(k — pu)k - p/p*  (4.8b)
with V/_, the spectrum of the effective potential defined in
Eq. (2.15b).

Now we exploit the fact that k and p are pinned to the
respective Fermi surfaces, and use the resulting identity

k-p=Kki[1 — wy(k — p)/2Dk;]

to write
Woo ) = (ke /KE) [Vip ) = VI2w)]  (49)
with V" from Eq. (3.4b) and
y/1(2) ( P)
Vs ) = —N(, ~T Z 8, (k)] 8we(p)] —2 Y
ij,’(,,(k — p,u). (4.10)

Note that the magnon frequency wy in Eq. (4.10) is equal to
+u on account of the spectrum, and therefore V(,f,,)(u) has

an extra factor of u compared to V"(u). V" determines the
single-particle rate I" via Eq. (3.4a), and we define analogously

) = N;° f du [ng() + np@+ )] Yy VoS w).

@.11)
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The integral equation for the vertex function A now reads

k ? o' [y Y4
As(e) =1+ <é> /du ;NF [V (u) — Vaf,)(u)]

Ao(u+€)

X [np() +ne(u + €)1 1 Wt

(4.12)
For the case of a spin-independent potential, Eq. (4.12) reduces
to the integral equation familiar from the electron-phonon
scattering problem; only the u dependence of the kernel is
different. This integral equation is usually solved in the seem-
ingly uncontrolled approximation that replaces A(u + €)/
I'(u + €) on the right-hand side by A(e)/I'(¢), turning the
integral equation into an algebraic equation. In Ref. [35], two
of the present authors have shown that the integral equation
can be solved asymptotically exactly, the exact solution yields
a result for the conductivity that coincides with the lowest-
order variational solution of the Boltzmann equation, and
the simple approximation yields the same low-temperature
dependence (albeit with a different prefactor) as the exact
solution. The proof of these statements can be generalized
to the current case of a two-by-two matrix equation. For
the purpose of deriving the low-temperature behavior, we
thus can employ the approximation, which turns Eq. (4.12)
into two coupled algebraic equations for Ay(e). Since the
prefactor of the temperature dependence of the conductivity is
approximation-dependent anyway, we can put € = 0 and use
the temperature-dependent rates ', = I'; (e = 0) and vertices
Ay = Ay(e =0) in the Kubo formula, Eq. (4.7a). A, then
obeys

Ay =1+ (ke/K Ty —TPIA_/T_,
(4.13)
A =1+ (kg/kg)PIT- —TP1A,/T,.

I, is given by Eq. (3.6), and T'® is given by an analogous
integral with an additional power of the frequency in the
integrand. We find

ro — ﬂT_z/dex o
7 Ng T12 To/T sinh x

B+ £)e T i T LT

_aK T |} .
—N—gi TT/T if o <T<KT -
1 if T>T

(4.14)

Comparing with Eq. (3.6), we see that for asymptotically
small 7, I'® is proportional to I" with a small factor of
proportionality 27y/7T; < 1, whereas for Tp K T « Ty, it
carries an additional factor of temperature.

We now solve the equations (4.13). Neglecting A/ep < 1
wherever it is not of qualitative importance, we find

Ay F++F——F§:2) (4.15)
ry  —opr 4rr®4+rr?-rPr?’

Equation (3.4e) allows us to express A,/ [, entirely in terms
of I', and T'?. Neglecting all prefactors that just give small
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corrections of O(A/er) to factors of O(1), we finally obtain a
transport relaxation time,

r—-r®,
4T, ’
—F([)? 4+ 2IT@ — (T@)

Ty = (4.16a)

in terms of which the electrical conductivity is given by a
Drude formula

2

(4.16b)

o = Tir,
€

Here, T ~ Ty ~T_ and I'® ~ T? ~ T? are given by
Eqgs. (3.6) and (4.14), respectively, with N7 replaced by Ng.
Note that our approximations have affected overall prefactors
only, but not the relative prefactors of the four terms in the
denominator in Eq. (4.16a). Comparing Eq. (3.6) with (4.14)
we see that for T < Ty, I'® is proportional to I':

re - 20

= ?1( +T/Ty)T, (4.17)
and an inspection reveals that the leading contributions among
the three terms in the denominator in Eq. (4.16a) cancel,
whichleadsto 1 /7, o« T? exp(—T,/T). Atasymptotically low
temperatures, T, is therefore not proportional to 1/ ', but
rather carries an extra factor of T/ T . For the contribution, to
the electrical resistivity po = 1/0 due to magnon exchange,
we finally obtain

@/T)T?e /T if T KTy
(% /2T) T? if Hi<T<KT .
if T>T
(4.18)

Me
Ne 62 NFT1

pel(T) =

We see that in the preasymptotic temperature window Ty <
T « T, we recover the T2 behavior that was obtained in
Ref. [15], but for asymptotically low temperatures, we obtain
an exponentially small result that has the form of Eq. (1.1).
We will discuss this result in the next section.

V. DISCUSSION

To summarize our results, we have presented a very
general theory of electron relaxation due to the exchange of
magnons in metallic ferromagnets. The theory is valid for
both itinerant ferromagnets, where the magnetization is due
to the conduction electrons themselves, and for localized-
moment ferromagnets, where the magnetization is due to
localized spins in a different band. We have found that at
asymptotically low temperatures, below a temperature scale
Ty, both the single-particle relaxation rate and the transport
relaxation rate are exponentially small. This behavior carries
over to the magnon-exchange contributions to the thermal
and electrical resistivities, which are determined by these
respective rates. The exponential temperature dependence
is a direct consequence of the split conduction band in a
metallic ferromagnet. In a preasymptotic temperature regime,
To <« T < T, with T close to the exchange splitting, we
recover the T2 behavior of the transport rate that was found
in Ref. [15]. The single-particle rate is proportional to 7" in
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(b) =

AEext 1%

N(e) v, [/

N, (€)

FIG. 3. (Color online) Fermi surfaces and associates Fermi wave
numbers (a) and densities of states (b) for the up- and down-spin
electrons. X is the Stoner gap and AE. is the exchange splitting.
ko and k; are the smallest and largest transferrable wave numbers,
respectively. See the text for more explanation.

this regime. For T > T, the two rates both show a linear
temperature dependence.

We start our discussion of these results by recalling the
physical reason for the exponential dependence at low tem-
peratures. Figure 3 schematically shows the split conduction
band (a), and the densities of states for the up (+) and
down (—) spin electrons (b), for the case of a spherical
Fermi surface. Since the magnons couple only electrons
with opposite spin, the smallest transferrable wave number
is kg = k; — kg ~ AE./vr. Given the magnon dispersion
relation, @ = Dk?, this translates into a smallest transferrable
energy Ty = D kZ, and since the magnon stiffness coefficient
D is itself roughly proportional to AE., we have Tp
(AE.)>. For temperatures T < Ty, the relaxation rates will
thus show activated behavior with an activation energy 7.
The exponential behavior is multiplied by a power law that
cannot be captured by elementary arguments. The largest
momentum transfer is given by k; = k;r + kg =~ 2kg, and the
corresponding largest energy transfer is 77 = D kf ~ AE.
T, is the fundamental magnetic energy scale, analogous to
the Debye temperature ®p in the case of electron-phonon
coupling. Ty has no analog in the electron-phonon problem.
For T « T, the transport-relaxation rate is small compared to
the single-particle rate by a factor of 7/ 7. This is analogous
to the electron-phonon case, where the corresponding factor
is (T /®p)?. The difference between our results and those of
Ueda and Moriya, Ref. [15], can be traced to the fact that these
authors neglected the exchange splitting in the final stages of
their calculation. As a result, they obtained a T2 behavior of
the transport relaxation rate at low temperatures, which in fact
is valid only for temperatures larger than Tj. Note that this
discrepancy pertains to the magnon or spin-wave contribution
to the electrical resistivity only. The contributions from
dissipative excitations, which we have not discussed, have
been found to be unaffected by the exchange splitting and pro-
portional to 72 even at asymptotically low temperatures [15].

For the power-law behavior at T > Ty, the quadratic
spectrum of the magnons is important, and also the coupling of
the electrons to the magnetic fluctuations. Comparing with the
case of helical magnets [6], we notice one important difference
with respect to the latter. In either case, the Goldstone mode is
a phase fluctuation, but in the ferromagnon case, the electron
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spin density couples directly to the phase, whereas in the
helimagnon case, the coupling is to the gradient of the phase.
This is because in the helimagnon case the dominant low-T
contribution to the scattering rates comes from intra-Stoner-
band scattering. Within a given band, the phase itself has
no physical meaning, and the coupling therefore involves a
gradient. In the ferromagnetic case, on the other hand, we
deal with inter-Stoner-band scattering. The coupling therefore
effectively is to the difference of two phases, which does have
a physical meaning. We note in passing that this latter notion
also manifests itself in a spin Josephson effect, see Ref. [36].

We now turn to estimates of the values of 77 and Ty. To
get an idea about the order of magnitude of these temperature
scales, let us first consider the fictitious case of simple (i.e.,
single-conduction-band) metals with magnetic properties as
in the classic “high-temperature” ferromagnets nickel, cobalt,
and iron. The values of the exchange splitting in these
materials, as determined by photoemission, are A E¢x = 0.25,
1.0, and 2.0 eV, respectively [37,38]. Values for the spin-
stiffness coefficient D in meV A? obtained from neutron
scattering are 364 for Ni, 500 for Co, and 281 for Fe [28]. With
a generic value kp ~ 1 A~ for the Fermi wave number, and
er ~ 10° K for the Fermi energy, Eqs. (2.16) and (2.17) yield
T; =~ 1000020000 K for these materials, and 7 ~ 500 mK
for Ni, 10 K for Co, and 30 K for Fe. Estimates of the ratio
Ty/ Ty using the relation (2.18b) yields similar results. Notice
that the prefactor w K /NgT; in Eq. (4.18) is of order unity, so
the prefactor of the T2 behavior of the resistivity is larger than
the Fermi-liquid 72 contribution [see Eq. (B7)] by roughly a
factor of g/ T =~ 10 in a single-band model.

Also of interest are weak ferromagnets, such as MnSi
[39] or Ni3Al, where D ~ 23.5 meV A? (MnSi) [40] and
D ~ 70 meV A? (NizAl) [41], respectively. The magnetic
moments, 0.4 per formula unit for MnSi [42] and 0.17 up for
Niz Al [41], are about two thirds and one third, respectively, of
that of Ni. Given the observed near-linear correlation between
the magnetic moment and the exchange splitting [37], this
suggests AEcx ~ 0.17 eV for MnSi [43],and AE¢ =~ 0.07 eV
for NizAL If we use again kg ~ 1 A~! and e ~ 10° K,
this yields 73 =~ 1000 K and Ty =~ 20 mK for MnSi, and
T, =~ 2800 K and T &~ 10 mK for NizAlL

In reality, all of these materials are transition metals, or
compounds containing transition metals, with a complicated
band structure and Fermi surfaces that consist of multiple
sheets. One consequence of this is that the electron-electron
scattering contribution to the electrical resistivity is likely
much larger than a single-band model would imply, and it
has been suggested that it makes the largest contribution
to the observed T2 behavior at low temperatures [16]. The
reason is that different band edges have different distances
from the common chemical potential, which in effect leads
to different Fermi temperatures. Depending on whether or
not the various scattering processes flip the electron spin,
and whether or not they couple different sheets of the Fermi
surface, the relaxation rates or the relaxation times may be
additive, which leads a complicated structure of the overall
resistivity. In addition, there are the contributions from the
dissipative spin excitations, which also are proportional to 7>
[15]. As a result, the low-temperature transport rate in Fe,
Ni, and Co is about 100 times larger than one would expect
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from the Coulomb contribution in a single-band model with a
single Fermi temperature of about 10° K [16]. T, on the other
hand, is largely unaffected by a complicated band structure; it
is given by D times the largest possible momentum transfer
squared, see Sec. II C, and in a good metal the latter is on the
order of 2w /a, with a the lattice constant, which is close to
the value of 2kg for a single spherical Fermi surface that yields
the same electron density. The estimates of the temperature
scale 77, which is the magnetic analog of the Debye tempera-
ture for phonons, given above are therefore model independent
and depend only on the experimentally measured spin stiffness
coefficient.

As a result, we expect the magnon contribution to the
electrical resistivity in Fe, Ni, and Co at temperatures T > T
to be about an order of magnitude less than the combined
contribution from the Coulomb interaction and the dissipative
magnetic excitations. In MnSi and Ni3Al, 7 is much lower
and the magnon scattering is accordingly stronger. However,
the observed prefactors of the T2 term in the resistivity of
MnSi and NizAl are orders of magnitude larger than even
the ones in Fe, Ni, and Co, and the same is true for the
weak ferromagnet ZrZn, [44,45]. The prefactor w K /NgT;
in Eq. (4.18) is expected to be of O(1) not just in model
calculations, but also in real materials, since both K and T
correlated roughly with the magnetization. Given the above
discussion of the relatively narrow range of plausible values of
T,, we conclude that the experimental value of the prefactor of
the T2 term in the electrical resistivity of weak ferromagnets
cannot possibly be explained by electron-magnon scattering.
We emphasize again, however, that these considerations do
not take into account the scattering of electrons by dissipative
magnetization fluctuations, which lead to a T2 contribution to
the resistivity even at low temperatures and whose prefactor
is not as universal as that of the magnon-exchange contri-
bution. A corresponding statement holds for the Coulomb
contribution.

For T, the influence of the band structure is more compli-
cated. Consider the effective potential given by Egs. (3.4b)—
(3.4d). If the up-spin and down-spin electrons, respectively,
belong to different bands with different effective masses, then
there will be a lower cutoff for the frequency u even in the
limit of a vanishing Stoner gap, . — 0. For magnon-exchange
scattering between electrons in Stoner subbands of the same
band, on the other hand, the structure of the calculations in
Secs. III and IV is unchanged. We therefore expect different
values of Ty for the various scattering processes that involve
electrons on different sheets of the Fermi surface.

The following picture now emerges. With decreasing
temperature, contributions to the magnon-exchange part of
the electronic scattering rate will sequentially freeze-out as
the temperature drops below a sequence of temperature scales
Ty. Rough estimates for the lowest of these temperature
scales have been given above; estimating the higher ones
requires a detailed analysis of the band structure. Below
this lowest T the magnon contribution to both the transport
and the single-particle rates will be exponentially small,
leaving the Coulomb contribution and the one from dissipative
magnetization fluctuations as the most obvious candidates for
a T? behavior. Experimentally, this is expected to manifest
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itself in a distinct temperature dependence of the prefactor of
the 72 term in the electrical resistivity. It is desirable for the
relevant temperature scales to be small enough that phonon
contributions are negligible. In that respect, Fe, Ni, and Co are
not ideal. In MnSi, the helical nature of the magnetic phase
is expected to manifest itself on the temperature scale given
by Ty. This leaves Ni3Al, or other true weak ferromagnets as
the most promising candidates for observing this consequence
of the exchange splitting in a metallic ferromagnet. We stress,
however, that according to the above discussion the magnon
contribution to the electrical resistivity in weak ferromagnets
is likely dwarfed by other contributions.

Another possible effect of a complicated band structure is
that there may be points or lines in reciprocal space where
the two Stoner band cross. This will weaken the exponential
suppression of the relaxation rates, but the weakening will
depend on the nature of the crossing.

We finally mention that the interplay of quenched disorder
with the scattering processes discussed above constitutes an
interesting problem that is likely important for a quantitative
understanding of real materials. For fairly strong disorder,
AT < 1 with 7 the elastic scattering time, the theory of
Ref. [46] applies, and it is easy to see that there is no
exponential suppression of the magnon contribution to the
relaxation rates at low temperature. A complete discussion of
disorder effects constitutes a separate problem.
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APPENDIX A: STONER MODEL FOR
ITINERANT FERROMAGNETS

In this Appendix, we show how to recover the Stoner-
Moriya results [2] for itinerant ferromagnets within the present
formalism. Our starting point is a fermionic action,

- - r
S ¥l = Soly. 1+ é/dx ny(x) - ny(x),  (Al)

with T, the spin-triplet interaction amplitude that is responsible
for ferromagnetism. Our notation is the same as in Sec. II.

1. Mean-field approximation

A simple mean-field approximation that describes ferro-
magnetic order, and its coupling to the electron spin density,
consists of replacing one of the spin density fields in Eq. (A1)
by its expectation value according to

n? ~ 2(ng) - ng — (ng)? . (A2)

If we take the magnetic order to be in the 3-direction, (n ;) =
8i3 A/ T, then this approximation amounts to replacing the
action S with an action S; that describes electrons with not
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spin-triplet interaction subject to a magnetic field of strength
A in the 3-direction:

STV = Slbl 4 [ denaw. 4
The remaining question pertains to the action one should use
to calculate (ng); this choice determines A. The usual self-
consistent mean-field requirement stipulates that this average
be determined by S, itself :

I _ .
A =T(ng3(x))s = — | DI¥.¥]ngs(x) VY

Z,

d
= Fld)\ In Z,. (A4)
For simplicity, we take Sy to describe free electrons. That
is, we neglect all electron-electron interactions that are not
crucial for magnetism, and we assume a parabolic band; a
generalization to band electrons is straightforward. The Green
function corresponding to Sy then is

1
Golk,iw,) = ————,
iw, — &

and the self-consistency condition, Eq. (A4), takes the form

1
1= —2Ft/_2—.
P Go (P)—)Lz

We recognize this as the equation of state of Stoner theory,
with XA the Stoner gap. The condition for a nonzero solution
for A is 2NgI'y > 1, and by performing the integral, we find
explicitly

(AS5)

(A6)

A = 2NgT, %F (14 xr/ep)? — (1 —r/ep)?).  (ATa)
If we recall that the magnetization is given as m = A/ I'; [see
Egs. (2.2) and (2.3a)], we can write this result as

m = 2NgA {1 + O[(A/ep)*1}. (ATb)

The action S, contains information about the long-range
order, but does not contain any ferromagnetic fluctuations. It
will serve as a building block for the effective action, and we
will refer to it as the “reference ensemble.”

We now determine the spin susceptibility

X5,ij (X, ¥) = (8ngi(x) 8ng j(¥))s, (A8)

associated with the reference ensemble. In terms of the
reference-ensemble Green function

G, (k) A

Guhy=—0* o+
=G 2 T G ”

o3, (A9)

X can be written

Xij(x,y) = —tr[o; Gy(x,y)0; G (y,%)], (A10)

where the trace is over the spin degrees of freedom. Evaluating
the trace and performing a Fourier transform, we find

fitk)y  falk) 0
Xk =-HLK&  fitkh 0 |, (A11)
0 0 f3(k)
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where
Gy (p)Gy'(p— k) — 22
k)= -2 / 0 0 . (A2
fl( » [Gaz(p) _ Az][Gaz(p k) — AZ] a)
. Gy'(p)— Gyl (p—k)
(k) = —2iA / ——9 0 ,
/2 162 =216y — o — 7]
(A12b)
Gy (p)Gy'(p — k) + 22
k) = -2 o . (AL2
S /,, G — 2][Go 2 b — a7 A%
‘We note that
filk =0)=1/Ty, (A13a)
fHlk=0)=0, (A13b)

with the first equality following from the equation of state,
Eq. (A6).

2. Physical spin susceptibility and Goldstone modes

The reference ensemble does not reflect the magnons that
are the Goldstone modes of the spontaneously broken sym-
metry in the ferromagnetic phase. To describe the magnons,
we need a theory of fluctuations that is consistent with
the treatment of the static magnetization. Quite generally, a
Gaussian approximation for the order-parameter fluctuations
is consistent with a mean-field treatment of the order parameter
itself [47]. To determine the former, we first note that the
reference ensemble spin susceptibility x; corresponds to a
Gaussian fluctuation action

—1
A uslbnd = S [ drdy nei 0 1 ) om0

(Alda)

that generates x, via

o) = [ DIsm onsx) om0 €40 (ALab)

To this we need to add the fluctuation contribution from
the original spin-triplet interaction in Eq. (A1). The Gaussian
fluctuation action then reads

-1 B
Ansalond = 5+ [ dxdy om0 x5 'm0 (Alsw
with the physical spin susceptibility x given by

X 06,y) = X (e,y) = 85 T (A15b)
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Focusing on the transverse (T) channel (i = 1,2), and performing a Fourier transform, we have

xr (ki) = (

where

N(k,iQy) = [fitk,iQ)F + [fo(k,i Q).

fl(kviQn)/N(kviQn) - Ft
Ja(k,iS2,)/ N (k,i€2,)

— fa(k.i2)/ N (ki ) ) , (Al6a)

Ji(k,i€2,)/ N (k,i€2,) — Ty

(Al6b)

From Eq. (A.13), we see that ! at zero frequency and wave number has two zero eigenvalues. These reflect the two
Goldstone modes. Expanding to linear order in i €2 and to second order in k, we find explicitly

2 ~2 LA
0 i) = (ZNel')” kAfk()\)/?’ 2!(1522;1)1"9(%)@/)» ’ (Al7a)
2Nr —2i(i€2,) fa(A)er/A k fr(2)/3
where k = k/2kg, Q@ = Q/4ep, and
fuy = =2 [(1 - 3—’\) (1 + —)3/2 - (1 + S—A) (1 - &)3/2} (A17b)
513 2er 2er €F ’
3/2 3/2
faO) = — [ <1 + i) - (1 - —) } (A17¢)
31 €F €F

Physically, the Stoner gap is always small compared to the
Fermi energy, and it therefore is useful to consider the limit
of weak ferromagnets, 2NpI'y & 1 and A/ep < 1, where we
have

filh = 0) = fo(h — 0) =14+ 0(W\?). (A18)
Inverting Eq. (A17a), we obtain the transverse physical spin
susceptibility in the form given in Eq. (2.14b), with the mean-
field values for K (1) and D()) as quoted in the main text. We
note that the spin precession effect, which is represented by
the off-diagonal matrix elements in Eq. (A17a) and leads to
the characteristic w o« k> dispersion relation of ferromagnetic
magnons, appears in a rather elementary way in this treatment
of itinerant electrons. In spin models, by contrast, it emerges
from a topological contribution to the action [48].

APPENDIX B: SINGLE-PARTICLE SCATTERING
RATE IN A FERMI LIQUID DUE TO COULOMB
AND ELECTRON-PHONON INTERACTIONS

As a further illustration of our arguments leading to an
effective action for calculating relaxation rates, let us consider
the well-known case of quasiparticle relaxation due to density
fluctuations. To this end, we consider the very simple case of
spinless, noninteracting electrons with action Sy, and add a
statically screened Coulomb interaction

St = / 5(k) vic (k) Sn(—k) (B1)
k

Here, vy (k) = 4me?/(k* + k?), with k the screening wave
number, and n(k) is the Fourier transform of the electron
number density n(x) = ¥ (x)¥(x). A finite average density
is already built into Sy via the chemical potential, so Sy serves
the purpose of the reference ensemble action S, in Sec. II or
Appendix A. Now we follow the logic of Sec. Il A. A number
density fluctuation § N will couple to the field dn(x) via the

interaction vy, to produce an action,

S, vl = Solvr, v —}—/dx dy SN(x)8(ty — 1y)
X v = ) 3n(), (B2)

and the density fluctuations are governed by a Gaussian action

—1
Snal8N] = =+ / dxdy SN() x~'(x — y)SN(y).  (B3)

with x the physical density susceptibility. Integrating out the
density fluctuations, we obtain an effective action

- - 1
Serl ¥, ¥] = Solvr ¥ 1+ 5 /k3n(k) V(k)dn(—k)  (B4a)

with an effective potential
V() = [use(0)F x (k).

Now we calculate the single-particle relaxation rate as in
Sec. III. We obtain

(B4b)

(o]

2% =T(e=0)= 2NF/ du V" (u) (B5a)

oo sinh(u/T)’

where

Va4 _ 1 4 _
V(“’——<NFv>2§3@")5@P’V(" p.u).  (BSb)

From Eq. (B4b), we see that the spectrum of the potential

V is given by the spectrum of the density susceptibility, which

to lowest order in the screened Coulomb interaction is just

the Lindhard function xo. For |u| < (2kg|k| — k2)/2me, the
spectrum of the latter is

X0 (k,u) = 7 Ng u/vr|kl, (B6)

with vp the Fermi velocity. For the relaxation rate due to the
electron-electron interaction we thus obtain the well-known
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Fermi-liquid result

1 T2
_r (B7)
2Tee 4 €g

The above derivation is similar in spirit to the arguments given
in Ref. [49]. The point of this exercise is to demonstrate that
our heuristic method of coupling density fluctuations to the
appropriate fermion fields that we employed in Sec. II still
works in this case where the density fluctuations are produced
by the very electrons they couple to. To put the result for
the effective interaction, Eq. (B4a), in context, consider a
bare Coulomb interaction, v.(k) = 4mwe?/ k* and perform an
RPA resumption to produce a dynamically screened Coulomb
interaction

ve(k)
1+ ve(K)xo(k)

To linear order in the frequency, the spectrum of the effective
potential V coincides with the spectrum of V., and V therefore
suffices to produce the leading low-temperature dependence of
the relaxation rate. Our effective action thus captures the
leading effects of the soft modes in the system (here, the soft
particle-hole excitations that are reflected in the spectrum of
the Lindhard function; in Secs. II and III, the magnons). Note
that it does not suffice to produce static screening, which
requires taking into account massive modes, which is why the
above argument starts with a statically screened interaction.
Also note that the effective interaction V is quadratic in the
bare interaction vy, in accordance with Fermi’s golden rule.
Analogously, the effective interaction in Sec. I, Eq. (2.15b), is
quadratic in the coupling constant I';. We also mention that the

Vielk) = (B8)
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T2 result, Eq. (B7), holds for any short-ranged interaction, with
the prefactor proportional to the potential strength squared.
The above considerations assumed an electronic density
fluctuation én interacting with a density fluctuation §N
created by all other electrons, in analogy with magnetization
fluctuations in the case of an itinerant magnet. However, there
is no reason why § N cannot be a density fluctuation extraneous
to the electron system, in analogy to magnetization fluctuations
due to electrons in a band other than the conduction band. For
instance, if SN is an ionic density fluctuation, it will still
couple to dn via a statically screened Coulomb interaction.
Equations (B2)—(B5) remain formally valid, except that the
susceptibility x now describes ionic density fluctuations, i.e.,
phonons. If we consider longitudinal phonons, the susceptibil-
ity is the same as in a fluid and given by [32]
x"(ku) = p* k u? 8[u* — wi (k)] (B9)
with w (k) = c|k| the longitudinal phonon frequency. Here,
p is the ionic number density, ¢ is the longitudinal speed of
sound, and k = —(dV /dp)/V, with V the system volume and
p the pressure, is the compressibility. We thus have

T pk

=— = B10
16 2kZN? (B10)

V" (u) u?sgnu,

which leads to the familiar 72 result for the single-particle
scattering due to the electron-phonon interaction in metals,

T P’k
Vte = 560025 T
e e

(B11)
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