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Quantized thermal conductance via phononic heat transport in nanoscale
devices at low temperatures
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We study phononic heat transport in nanoscale devices. In the nonequilibrium Green’s function formalism, an
analytical small-frequency expansion of the phonon current transmission is derived for an arbitrary oscillator chain
with typical contact-device-contact structure. Applying this expansion in a Landauer formula, it is possible to
construct a systematic low-temperature expansion of the thermal conductance. It follows that quantized thermal
conductance occurs as a plateau of the thermal conductance divided by the temperature within second order
of the temperature expansion for completely heterogeneous systems as long as the product of force constant
and oscillator mass is identical in both contacts, independent of the scattering area. Beyond this plateau, the
higher-order terms of the low-temperature expansion yield a finite-temperature correction exhibiting the form
of a cubic power law depending on the details of the scattering area. These findings are in agreement with
experiments and numerical calculations. Our general results are applied to a double junction chain, where we find
as the first phenomenon beyond our low-temperature expansion a second plateau. This plateau is associated with a
thermal phase averaging of the phonon transmission, which leads for increasing temperatures to an independence
of the thermal conductance from the device length.
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I. INTRODUCTION

In the past years, the problem of mesoscopic heat transport
in nanoscale devices such as thermal rectifiers and diodes [1],
thermal transistors [2], thermal logical gates [3], and thermal
memory [4] has attracted an increasing amount of attention.
As the device dimensions shrink to the magnitude of typical
phonon wavelengths, scattering in the devices is reduced and
the wave nature of phonons becomes more and more important.
In the arising quantum transport problems, heterogeneities in
the device structure and associated interface scattering effects
play a central role.

The study of heat transport in one-dimensional systems
with a typical contact-device-contact structure has led to the
concept of the quantization of the thermal conductance �(T )
in multiples of π2k2

BT /3h, universal for fermions [5,6], bosons
[7–10], and anyons [11–13]. Here, we focus on the phononic
thermal conductance where quantization has been observed
experimentally [14]. There exist three essential conditions for
the occurrence of this effect [7,14]. First, optical phonons
have to be negligible, second, the upper cutoff frequency
of the acoustic phonons has to be negligible as well, and,
third, perfect transmission should exist for all relevant acoustic
phonon modes. It is found that the first two conditions can
be met in any thermal junction at low enough temperatures.
The first condition becomes fulfilled because optical phonons
exhibit a lower cutoff frequency so that their occupation
freezes out. The second condition becomes fulfilled because
the correction to the thermal conductance coming from the
upper cutoff frequency decays exponentially with the inverse
temperature [see Eq. (5)]. In our study, we therefore focus on
the third condition, the necessary existence of transmission
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unity. In this case, one might expect that deviations should
be present at all temperatures in any chain exhibiting an
inhomogeneity that causes scattering effects. Indeed, in a
variety of numerical studies on inhomogeneous systems, a
reduction of the thermal conductance from its quantized value
has been found, for instance, in the presence of scattering from
substructures [15,16], surface roughness [17], or structural
defects [18]. Such effects are also observable experimentally
[14]. However, it is also observed that scattering effects of the
relevant occupied long-wavelength phonons become smaller
with decreasing T .

For a deeper understanding of these phenomena, it would
be desirable to have analytical tools for quantum heat transport
which, unfortunately, are very rare in the literature. Analytical
formulas exist for a single junction [19,20] (SJ) between
two homogeneous contact chains (no device) or a double
junction [19,21] (DJ) consisting of a homogeneous device
chain sandwiched between two homogeneous contact chains.
In the theory for the DJ in Ref. [21], the characteristic Fabry-
Perot multiple reflections (MR) are derived as a geometric
series of reflections in the SJ system with appropriate phase
factors. A further MR-approach is given in Ref. [19] based on
the scattering boundary method.

We develop an analytical theory for quantum heat transport
in a very general, one-dimensional contact-device-contact
system consisting of an arbitrary scattering area (device)
sandwiched between two homogeneous, not necessarily iden-
tical contacts (see Fig. 1). In our model, we include only
nearest-neighbor interaction and neglect the influence of
external potentials [22,23] as well as anharmonic effects,
which is allowed for device lengths below about 20 nm at room
temperature [24,25] and correspondingly longer devices at
low temperatures. Using the nonequilibrium Green’s function
(NEGF) formalism [21,26–29], we derive an expression for the
frequency-dependent heat current transmission function �(ω).
This compact expression allows for the analytical evaluation of
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FIG. 1. Schematic representation of a one-dimensional contact-
device-contact structure with a arbitrary scattering area (device)
coupled to two homogeneous, not necessarily identical contacts.

the first few terms in a power series expansion of �(ω) around
ω = 0. Applying this expansion in a Landauer-type formula
[30–32], one is able to derive a systematic low-temperature
expansion of the thermal conductance.

This expansion shows that quantized thermal conductance
occurs for an arbitrary scattering area within second order of
the temperature expansion if and only if the product of force
constant and oscillator mass is identical in both contacts. We
give an expression for the temperature Tε above which third-
order effects in the temperature have to be taken into account
for a given atomic wire. Therefore this temperature determines
the range on which our expansion is valid. Most interestingly,
we find that quantized thermal conductance is not excluded
in completely heterogeneous quasi one-dimensional systems
of the considered contact-device-contact shape. Therefore
thermal quantization seems to be more robust than expected
from previous investigations [5,7,14].

Finally, our general formalism is illustrated and confirmed
analyzing the thermal conductance of a DJ system. For the
relevant frequencies below the maximum frequency in the
device, we find exact agreement with Ref. [19]. As expected,
a plateau in �(T )/T corresponding to the quantization of the
thermal conductance is found in the DJ system. In addition, our
investigation show the formation of a second, lower plateau
for higher temperatures. This plateau is the first phenomenon
arising for temperatures beyond our low-temperature expan-
sion. We demonstrate that it is associated with a thermal phase
averaging in the scattering states. Finally, for temperatures
beyond, the second plateau �(T )/T decreases and the curves
for different numbers of atoms merge as has been seen in
numerical calculations [10,26,33].

The article is organized as follows. In Sec. II, we present
the model and derive the low-temperature expansion of the
ballistic thermal conductance including first interpretations
and discussions. The analysis in Sec. II is based on specific
properties of the phonon current transmission, which is
calculated in detail in Sec. III. Our general results in Secs. II
and III are applied for a DJ system in Sec. IV.

II. LOW-TEMPERATURE EXPANSION OF THE
THERMAL CONDUCTANCE

We consider phononic heat transport in a one-dimensional
chain of atoms in nearest-neighbor interaction with a
contact-device-contact structure as depicted in Fig. 1. The
parameters fi denote the coupling strengths between the
ith atom with mass Mi and the (i + 1)th atom. In our
model, the device consists of N atoms, i = 1, . . . ,N , with
arbitrary fi and Mi . The two contacts, s = 1 for i � 0
and s = 2 for i � N + 1, are taken to be homogeneous
but not necessarily identical, fi�0 = fC1, fi�N+1 = fC2,

Mi�0 = MC1, and Mi�N+1 = MC2. The contacts themselves
serve as thermodynamic reservoirs with the constant
individual temperatures Ts . Assuming ballistic transport, the
heat flux takes the typical Landauer form [26,30–32]

J (T1,T2) =
∫ �

0

�ω

2π
�(ω)[N (ω,T1) − N (ω,T2)]dω. (1)

The function N (ω,T ) = 1/[exp(�ω/kBT ) − 1] is the
Bose-Einstein-distribution, �(ω) is the transmission function
for the heat current, and � := min{ωmax

s ,s = 1,2} is the
lower of the two maximum frequencies in the contacts. From
Eq. (1), we find the thermal conductance

�(T ) = lim
�T →0

J (T ,T ′)
�T

=
∫ �

0

�ω

2π
�(ω)

∂N (ω,T )

∂T
dω

=
∞∑

k=0

�2k

(2k)!

∫ �

0

�ω2k+1

2π

∂N (ω,T )

∂T
dω (2)

with �T = T − T ′. In the last step of Eq. (2), we use a
Taylor expansion of the transmission function around ω = 0
and assume the interchangeability of the summation and the
integration. As we will see in the next section, in a general os-
cillator chain �(ω) is an even function so that uneven terms in
the Taylor expansion around ω = 0 vanish. Upon introduction
of the variables x := �ω/kBT and β := kBT /�� a dimen-
sionless expression for the thermal conductance follows as

λ(β) = �

�∞
=

∞∑
k=0

�2k�
2k

(2k)!

[∫ 1/β

0

x2(k+1)ex

(ex − 1)2 dx

]
β2k+1,

(3)

where �∞ = kB�/2π is the thermal conductance of the
homogeneous chain corresponding to the contact with
the lower maximum frequency at T → ∞. Carrying out
the integration, the normalized thermal conductance takes the
form

λ(β) =
∞∑

k=0

2(k + 1)!

(2k)!
ζ [2(k + 1)]�2k�

2kβ2k+1 − λ2k(β),

(4)
with Riemann’s zeta function ζ [2(k + 1)]. Here, from the
existence of the maximum phonon frequency �, an additional
correction term arises with

λ2k(β) = �2k�
2k

(2k)!

[∫ ∞

1/β

x2(k+1)ex

(ex − 1)2 dx

]
β2k+1

≈ �2k�
2k

(2k)!

e−1/β

β
. (5)

For the second step of (5), we include the leading-order term
only which results from an expansion of the integrand for
large x (small temperatures). From this leading-order term,
it is evident that λ2k(β) can be practically always neglected
for low temperatures because of the exponential decay with
1/β. Then with Eq. (4) we can express the low-temperature
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FIG. 2. Current transmission according to Eq. (17) for DJ structures with N = 5. (Left) Si-Ge-SiX with MX equal to MSi (solid), 2MSi

(dashed), and 3MSi (dotted). (Right) Ge-Si-GeX with MX equal to MGe (solid), 2MGe (dashed), and 3MGe (dotted). Further parameters
are taken from Ref. [10]: MSi = 4.7 × 10−26 kg, fSi = 16.9 N/m, dSi = 5.43 × 10−10, MGe = 1.2 × 10−25 kg, fGe = 13.7 N/m, and
dGe = 5.66 × 10−10 m. In addition, f0 = (fC1 + fD)/2, and fN = (fD + fC2)/2.

thermal conductance in a third-order expansion as

λ(β) = π2

3
�0β + 2π4

15
�2�

2β3. (6)

As shown below, this concise representation is sufficient to
discuss the most important properties of the low-temperature
thermal conductance of a very general one-dimensional
contact-device-contact system.

The quantized thermal conductance is given by (π2/3)β.
Therefore it follows from the inspection of the leading-order
term in Eq. (6) that the quantized thermal conductance occurs,
within second order of the temperature expansion if and only
if �0 = 1. To explore this condition, an exact expression

�0 = 4
√

y

[1 + √
y]2

(7)

will be derived in the next section which is valid for an arbitrary
oscillator chain as depicted in Fig. 1. The condition �0 = 1 is
found to hold for all chains with y := MC2fC2/MC1fC1 = 1,
independent of the scattering area, i.e., the contacts do not
have to be equal only the product of mass and coupling constant
does. Therefore it is not excluded to observe quantized thermal
conductance in a completely heterogeneous contact-device-
contact setup. For all chains not meeting this condition, the
thermal conductance is reduced by a factor of �0 < 1 below
its quantum value.

For the physical interpretation of (7), we consider the
acoustic mismatch model (AMM) [34]. This low-temperature
theory describes the transport of phonons across a SJ sep-
arating two different materials. Assuming complete spec-
ular scattering, the AMM-transmission function is given
by �AMM(ω) = 4Z1Z2/(Z1 + Z2)2 with Zs = ρsvs(ω) as

the acoustic impedance. For our one-dimensional problem,
ρs = MCs/dCs is the length mass density and vs(ω) =
dω(ks)/dks = (dsω

max
s /2) cos[ks(ω)ds/2] (see Sec. III) the

group velocity of the phonons. At small frequencies, we can
write vs(ω → 0) = dsω

max
s /2 yielding �AMM(ω → 0) = �0

as represented in Eq. (7). From this result it follows that at low
temperatures the transport problem with a arbitrary scattering
area behaves like a SJ problem in which the contacts are
coupled directly. Now it is possible to express our condition for
quantized thermal conductance as y = Z2

2(ω → 0)/Z2
1(ω →

0) = 1. If the volumetric mass density is used, �AMM(ω) is
also valid for three-dimensional systems. Therefore we assume
that under certain prerequisites the condition y = 1 for the
quantized thermal conductance is applicable for each acoustic
mode in the greater class of quasi-one-dimensional systems
separately.

For increasing temperatures, it can be taken from (6) that
the leading-order linear term is corrected by a cubic term ∝T 3,
which can be, in general, smaller or larger than zero depending
on the expansion coefficient �2 (see Fig. 2 as well as for
example Fig. 7 of Ref. [24]). It is seen that for �2 > 0 (�0 < 1)
a suitable device region improves the thermal conduction
compared to the SJ system in which one connects the contacts
directly (AMM). This is in analogy to the blooming coat in
optics. Such an effect is not possible in classical diffusive
heat transport in which thermal resistances add. If we obtain
quantized thermal conductance (�0 = 1), then it is always
�2 < 0 and the thermal conductance is reduced. In our case,
this behavior is caused by the scattering of phonons at the
device region for increasing temperatures. In other cases
of heterogeneous nanosystems, a similar behavior was also
found and it can be always attributed to different scattering
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mechanisms like scattering on sub structures [15,16], by
surface roughness [17], or structural defects [18]. Such an
effect is also observable in experiment [14].

To quantify the precision of the quantization of ther-
mal conductance, we introduce the ratio of the cor-
rection term to the leading-order term in Eq. (6)
ε = (2π4/15)�2�

2β3/(π2/3)�0β. Then, for a given preci-
sion requirement ε, an upper temperature

Tε = �

πkB

√
ε

5�0

2 |�2| (8)

results for the occurrence of the plateau associated with the
quantization of the thermal conductance (see Fig. 4). The
quantity Tε can thus be interpreted as the width of the quantized
conductance plateau.

III. CALCULATION OF PHONON CURRENT
TRANSMISSION

Starting point for the evaluation of the phonon current
transmission in our oscillator chain is the general expression
in the NEGF formulation [26]

�(ω) = Tr[�1(ω)GD(ω)�2(ω)G+
D(ω)]. (9)

Here,

[GD(ω)] := [ω2I − DD − �1(ω) − �2(ω)]−1 ≡ [MN (ω)]−1

(10)

is the (N × N ) Green’s matrix of the device with its hermitian
transpose [GD]+ and the identity matrix [I ]. The explicit form
of the dynamic matrix [DD] in our oscillator chain and the
form of the other relevant matrices [�s(ω)] and [�s(ω)] is
derived in Appendix A. It results that [MN (ω)] is a tridiagonal
matrix of the form

[MN (ω)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(ω) b1 0 · · · 0

b1 a2(ω)
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . aN−1(ω) bN−1

0 · · · 0 bN−1 aN (ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

Here, the individual matrix elements are defined as follows. For
2 � i � N − 1, we have ai(ω) = ω2 − (fi−1 + fi)/Mi and,
for 1 � i � N − 1, one has bi = fi/

√
MiMi+1. Furthermore,

one obtains

a1(ω) = ω2 − f0 + f1

M1
− f 2

0

MC1M1
g1(ω) (12)

and

aN (ω) = ω2 − fN−1 + fN

MN

− f 2
N

MNMC2
g2(ω). (13)

To describe a contact-device-contact structure with the matrix
(11), we have to choose N � 2. The functions gs(ω) are
the (1 × 1) surface Green’s matrices (see, e.g., Refs. [26,35])

FIG. 3. Representation of �(ω → 0) = �0 as a function of the
ratio of the contact masses y = MX/MC1. Points: for a Si-Ge-SiX
structure with a device region consisting of five Ge atoms and a
Si contact. Circle: for a Ge-Si-GeX structure with a device region
consisting of five Si atoms and a Ge contact. The points and circles
are calculated from (17) and the solid line is calculated from the
universal result (7).

corresponding to the uncoupled contacts given by

g1(ω) =
[

(ω + i0+)2 − fC1 + f0

MC1
+ fC1

MC1
eik1(ω)d1

]−1

(14)

and

g2(ω) =
[

(ω + i0+)2 − fN + fC2

MC2
+ fC2

MC2
eik2(ω)d2

]−1

.

(15)

The expression ks(ω) = (2/ds) arcsin(ω/ωmax
s ) is the disper-

sion relation and ds is the lattice constant in contact s. The
maximum frequencies in the respective contacts are given by
ωmax

s = 2
√

fCs/MCs . (Note, if i is not used as a subscript, it
has the meaning of the imaginary unit.)

In Appendix B, we show that from Eqs. (9)–(11) the current
transmission function in our oscillator chain can be written in
the form

�(ω) = C
γ1(ω)γ2(ω)

|det[MN (ω)]|2 with C =
N−1∏
i=1

f 2
i

MiMi+1
, (16)

where γs(ω) = Cs[gs(ω) − g∗
s (ω)], C1 = if 2

0 /MC1M1, and
C2 = if 2

N/MNMC2. Using Eq. (16) it is not necessary to invert
the matrix [MN (ω)] in contrast to the fundamental equation
of transmission (9). It is merely necessary to calculate a
determinant for which an analytical low-frequency expansion
can be established as demonstrated in Appendix C. The central
result of this expansion is the expression for �0 given in Eq. (7).
Finally, starting from (16) we show also in Appendix B that
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FIG. 4. (Left) Transmission for a Si-Ge-Si DJ structure with a device region consisting of five Ge atoms (solid) as well as the averaged
transmission according to Eq. (19) (solid line with points). The peaks resulting from multiple reflections between the two interfaces of the
DJ system. The minima of the transmission are enveloped by the square of the averaged transmission function (dotted). The arrow marked
the maximum device frequency 2ω̃0 = 21.4 THz. In the “forbidden” gray region above 2ω̃0, we observe phonon tunneling as the small tail.
(Right) Thermal conductance �(T ) divided by T for a Si-Ge-Si DJ structure with a device region consisting of 5 (solid), 10 (dashed dotted), 25
(dashed), and 50 (long dashed) Ge–atoms. The upper plateau corresponds to the quantum of the thermal conduction. We see also the forming of
a second plateau for increasing the number of atoms in the device with the value (20). The dotted line represents the expansion corresponding
to Eq. (6) for a device consisting of five atoms. The arrow indicates the plateau width Tε = 1.6 K according to a deviation of the thermal
conductance from the quantum value of about 1% (ε = 0.01). All curves for different N merge with a asymptote (solid line with points), which
is given by �av(T )/T .

�(ω) is an even function and therefore the assumed Taylor
expansion of �(ω) in Eq. (2) has indeed no uneven terms.

IV. APPLICATION TO THE DJ ATOMIC WIRE

To illustrate our analytical results, we consider a DJ
chain of two homogeneous contacts and a homogeneous
device region between them, Mi = MD and fi = fD for
1 � i � N . Because of the homogeneous device area, one
has in Eq. (11) a2�i�N−1(ω) := ω2 − 2ω̃2

0 and b1�i�N−1 := ω̃2
0

with ω̃2
0 := fD/MD where in Eqs. (14) and (15) we choose

f1 = fN−1 := fD as well as M1 = MN := MD .
Starting from this setup, we evaluate (16) in Appendix D to

obtain for N � 3

�(ω) = Cγ1(ω)γ2(ω)∣∣a1aNnN−2 − ω̃4
0(a1 + aN )nN−3 + ω̃8

0nN−4

∣∣2 (17)

with n−1 := 0, n0 := 1, and

nL(ω) =
L∏

n=1

{
ω2 − 4ω̃2

0 sin2

[
nπ

2(L + 1)

]}
. (18)

Here, we have suppressed the explicit frequency dependence
in various variables.

This formula is applied to a Si-Ge-SiX structure with one Si
contact and a device consisting of five Ge atoms. In the other

contact, SiX symbolizes a fictitious type of isotopes with the
same spring constant like in Si but a different mass MX. The
evaluation of (17) leads to typical transmission curves depicted
in Fig. 2. For comparison, the transmission for a Ge-Si-GeX

structure is represented in Fig. 2 as well. In both cases, �(ω →
0) = �0 is not always equal to one. Then, from the first term
(π2/3)�0β in Eq. (6) a deviation from the quantized thermal
conductance follows. According to Eq. (7), this deviation
only depends on the structure of the contacts, namely, on the
parameter y = MC1fC1/MC2fC2. To demonstrate this result,
we have plotted in Fig. 3 for the considered chains the value
of �(ω → 0) = �0 as deduced from (17) and �0 as deduced
from Eq. (7). Complete agreement is found for both chain
types and all considered ratios MX/MC1. As expected, only
for MX = MC1 and thus for y = 1, we obtain �0 = 1 yielding
universal quantized thermal conductance, independent of the
scattering area.

In Fig. 4, we analyze more precisely the NEGF-
transmission (17) for the Si-Ge-Si chain in Fig. 2 (MX = MSi)
and find exact agreement with Ref. [19] in the “allowed”
region of frequencies below the maximum device frequency
2ω̃0 = 21.4 THz, which is marked by an arrow. The effect of
phonon tunneling, which is possible in general [36] and visible
as the small tail in the “forbidden” gray region (ω > 2ω̃0) was
not discussed in Ref. [19]. However, for long enough devices
the tunneling effect vanishes. Then, one can use Eq. (16) from

134309-5



M. KÄSO AND U. WULF PHYSICAL REVIEW B 89, 134309 (2014)

FIG. 5. The plateau width Tε of the Si-Ge-Si DJ structure in
Fig. 4 as a function of the device length N . We choose ε = 0.01
corresponding to a maximum deviation of the thermal conductance
from its quantized value by 1%.

Ref. [19] to obtain straightforwardly (see Ref. [21], p. 199) a
simple phase-averaged expression,

�av(ω) = �2
SG(ω)

1 − [1 − �SG(ω)]2
, (19)

for the transmission, which is depicted as the solid line with
points in the left picture of Fig. 4. In Eq. (19), �SG(ω) is the
transmission of a SJ system consisting of Si and Ge, which can
be easily calculated, for example, from Eq. (17) by considering
a Si-Ge-Ge structure for N = 3.

Finally, we calculate the overall thermal conductance from
Eqs. (2) and (17) for a series of Si-Ge-Si DJ chains with
different device lengths (5, 10, 25, 50 atoms) plotted in the
right picture of Fig. 4 in the typical representation �(T )/T .
Since y = 1 in the systems, one finds for small temperatures
T < Tε an upper plateau at π2k2

B/3h, which corresponds
to the quantized thermal conductance. The width of this
plateau Tε is given by Eq. (8) and for the device of five
atoms marked by an arrow with ε = 0.01 according to a
deviation of 1%. For higher temperatures, the third-order
term of the low-temperature expansion in Eq. (6) is gaining
influence and �(T )/T decreases below its plateau value,
which depends sensitively on N . In Fig. 5, we have plotted
the plateau width Tε as a function of the device length
N . At yet higher temperatures, exceeding the range of our
third-order expansion, the curves for different N merge with
a single asymptotic curve. This asymptote results from the
phase-averaged thermal conductance �av(T ) calculated from
the averaged transmission in Eq. (19). It shows a lower plateau

for �av(T )/T at the value of

�2
0,SG

1 − (1 − �0,SG)2

π2k2
B

3h
, (20)

which is obtained from (2) and (19) for �SG(ω → 0) = �0,SG

with �0,SG given in Eq. (7).
For temperatures beyond the lower plateau, the trace

�(T )/T drops again. The described convergence of the
thermal conductance against the phase-averaged value for
increasing temperatures offers a natural explanation for the
independence of �(T ) of the number of atoms in the device,
found in numerical calculations [10,26,33].

V. CONCLUSION

We derived the low-temperature expansion of the ballistic
thermal conductance in a very general, one-dimensional
contact-device-contact system. Quantized thermal conduc-
tance is found within second order of the temperature
expansion whose leading-order term yields the condition
that the quantized value occurs if and only if the product
of force constant and oscillator mass is identical in both
contacts. This result is independent of the scattering area and
explained invoking the AMM valid for a SJ system. From this
discussion, it seems that the concept of the quantized thermal
conductance is more robust than expected. However, above
a certain temperature Tε a finite-temperature correction must
be taken into account leading to a deviation from the ideal
value of quantization which follows a T 3-behavior. In our
case it is caused by the scattering of the phonons at the device
area. Further investigations of the DJ atomic wire illustrated
and confirmed our general results. In this context, we found
two plateaus in the representation of �(T )/T . The first one
corresponds to the expected quantized thermal conductance
present at low temperatures, while the second one at slightly
higher temperatures is in a close relation to a more classical
picture of transport. This can be understood by the expression
(19), which is also interpretable as the transmission of a
classical particle (see Ref. [21], pp. 63) in which we neglect any
phase information. We see for high enough temperatures that
we can not differentiate between the quantum and the classical
particle picture by a measurement of the thermal conductance
whereas for low temperatures there is significant difference.
In the transition area between both plateaus, we obtained a
clear dependence of the thermal conductance on the device
length. At even higher temperatures, this dependence vanishes
as expected for our ballistic transport regime.
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APPENDIX A: APPLICATION OF THE
NEGF-FORMALISM TO A ONE-DIMENSIONAL

CONTACT-DEVICE-CONTACT SETUP

In this Appendix, the relevant matrices entering the Green’s
matrix in Eq. (10) are constructed recapitulating the general
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formalism described in Refs. [26,37]. We begin with the
dynamic matrix

[D]i,j = Di,j = 1√
MiMj

(
∂2V

∂ui∂uj

)
R0

. (A1)

Here, Mi is the mass of the ith atom and ui its displacement
from its equilibrium position. The vector R0 consists of the
equilibrium coordinates of all atoms and the vector u of
coordinates of their displacements. For a one-dimensional
structure and nearest-neighbor interaction, the underlying
crystal potential takes the form

V (u) = 1

2

∞∑
i=−∞

fi(ui+1 − ui)
2 (A2)

leading to

Di,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−fi−1/
√

MiMi−1 for j = i − 1,

(fi−1 + fi)/
√

MiMi for j = i,

−fi/
√

MiMi+1 for j = i + 1,

0 else.

(A3)

This tridiagonal matrix can be divided in a standard way into
submatrix blocks of the form

[D] =
⎡
⎣D1 τ+

1 0
τ1 DD τ2

0 τ+
2 D2

⎤
⎦. (A4)

Here, the matrix [DD]i,j (i,j ∈ [1,N ] see Fig. 1) describes
the dynamics of the device, while the semi-infinite matrices
[Ds] represent the dynamics of the contact regions s = 1,2.
These three system components are coupled via the (N × ∞)-
dimensional coupling matrices

[τ1]i,j = t1δi,1δj,0 for 1 � i � N, j � 0, (A5)

and

[τ2]i,j = t2δi,Nδj,N+1 for 1 � i � N, j � N + 1.

(A6)

The matrix elements ts are given by t1 = f0/
√

MC1M1 and
t2 = fN/

√
MNMC2. The contact self-energy matrices take the

general form

[�s(ω)] = [τs][gs(ω)][τs]
+. (A7)

In this matrix product, [gs(ω)] = [(ω + i0+)2I − Ds]−1 de-
notes the Green’s matrices of the uncoupled contacts. In
our case, the [gs(ω)] are given by Eqs. (14) and (15). From
Eq. (A7), we calculate the self-energy matrices to find

[�s(ω)]i,j = (δ1,sδi,1δj,1 + δ2,sδi,Nδj,N )t2
s gs(ω). (A8)

Applying the general definition

[�s(ω)] = i[�s(ω) − �+
s (ω)], (A9)

we obtain for the oscillator chain

[�s(ω)]i,j = (δ1,sδi,1δj,1 + δ2,sδi,Nδj,N )γs(ω). (A10)

Here, the functions γs(ω) are introduced in connection with
Eq. (16).

APPENDIX B: CURRENT TRANSMISSION

For a general matrix [GD(ω)]ij = Gij (ω) insertion of
Eq. (A10) in Eq. (9) yields

�(ω) = γ1(ω)γ2(ω)|G1N (ω)|2. (B1)

At this point, it becomes evident that it is not necessary to invert
the entire (N × N ) matrix [MN (ω)] in Eq. (10) to calculate
the transmission, only the element G1N (ω) is required. It can
already be calculated from the determinant formula for the
inversion of matrices,

Gij = 1

det[MN (ω)]
μij with μij = (−1)i+jmij . (B2)

In this equation, μij is the cofactor which results when the
ith row and the j th column is removed from [MN (ω)]T =
[MN (ω)] to form a submatrix with determinant mij . In our
case, the relevant cofactor μ1N can be easily calculated because
deleting the first row and the last column in the matrix [MN (ω)]
leads to an upper triangular matrix with the main diagonal
elements given by bi . We thus obtain for the determinant:

μ1N = (−1)1+N

N−1∏
i=1

bi = (−1)N−1
N−1∏
i=1

fi√
MiMi+1

. (B3)

Substituting this result into Eq. (B2) and subsequently into
Eq. (B1), we find the compact representation of the current
transmission (16).

Now, we can show that �(ω) is an even function. From
Eq. (16), it follows

γs(−ω) = iCs[gs(−ω) − g∗
s (−ω)]

= iCs[g
∗
s (ω) − gs(ω)] = −γs(ω), (B4)

which means that γs(ω) is an uneven function and therefore
γ1(ω)γ2(ω) is even. Furthermore, with the definitions for
the matrix elements from Sec. III it is easy to show that
mN (−ω) := det[MN (−ω)] = det[M∗

N (ω)] = m∗
N (ω). Then

|mN (−ω)|2 = mN (−ω)m∗
N (−ω)

= m∗
N (ω)mN (ω) = |mN (ω)|2, (B5)

and finally �(ω) is an even function.

APPENDIX C: CURRENT TRANSMISSION AROUND ω = 0

To find the limit �(ω → 0) = �0, we consider Eq. (16)
and expand separately the occurring functions up to first order
around ω = 0. For the functions γ1/2(ω), we get directly

γ1(ω) ≈ ωmax
1

MC1

M1
ω and γ2(ω) ≈ ωmax

2
MC2

MN

ω, (C1)

and thus

γ1(ω)γ2(ω) ≈ ωmax
1 ωmax

2
MC1

M1

MC2

MN

ω2. (C2)

The expansion of det[MN (ω)] = mN (ω) takes slightly more
effort. First of all, we expand mN (ω) along the elements of the
last row and gain the following recursive representation for the
determinant:

mN (ω) = aN (ω)mN−1(ω) − b2
N−1mN−2(ω) (C3)
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with m−1(ω) = 0 and m0(ω) = 1. Here, is mN−1(ω) the
subdeterminant that remains after deletion of the last row and
the last column in the matrix [MN (ω)]. The index N − 1 shows
that the original dimension of [MN (ω)] is reduced by one.
Analogously, we obtain mN−2(ω) by removing again the last
row and column of the matrix, which is underlying mN−1(ω).
Finally, we expand the determinants mN−1(ω) and mN−2(ω)
along the first row. Then we can write in a recursive form,

mN−1(ω) = a1(ω)nN−2(ω) − b2
1nN−3(ω), (C4)

mN−2(ω) = a1(ω)n̄N−3(ω) − b2
1n̄N−4(ω). (C5)

The determinants nL(ω) and n̄L(ω) no longer contain the
special corner elements a1(ω) and aN (ω), what we will need
later. Now, for the expansion of mN (ω) around ω = 0, we
have first to determine mN (0). Therefore we set in Eq. (11)
ω = 0 and use the recursive representation in Eq. (C3) for the
determinant mN−q(0) in which we have deleted the last q rows
and columns. For N − q = 1,2,3, it follows

m1(0) = a1(0)m0(0) − b2
0m−1(0) = − f1

M1
,

m2(0) = a2(0)m1(0) − b2
1m0(0) = f1f2

M1M2
,

m3(0) = a3(0)m2(0) − b2
2m1(0) = − f1f2f3

M1M2M3
.

It is natural to surmise that mj (0) for j < N has the general
form

mj (0) = (−1)j
j∏

i=1

fi

Mi

. (C6)

We want to prove this assertion by mathematical induction.
Assume, this assertion is true for j , then we get for j + 1,

mj+1(0)

= aj+1(0)mj (0) − b2
jmj−1(0)

= −fj + fj+1

Mj+1
(−1)j

j∏
i=1

fi

Mi

− (−1)j−1f 2
j

MjMj+1

j−1∏
i=1

fi

Mi

= (−1)j
(

− fj

Mj+1

j∏
i=1

fi

Mi

−
j+1∏
i=1

fi

Mi

+ fj

Mj+1

j∏
i=1

fi

Mi

)

= (−1)j+1
j+1∏
i=1

fi

Mi

.

It follows that (C6) is true for each j < N with N from the
natural numbers. Now, we can calculate mN (0), it is

mN (0) = aN (0)mN−1(0) − b2
N−1mN−2(0)

= −fN−1

MN

(−1)N−1
N−1∏
i=1

fi

Mi

− (−1)N−2f 2
N−1

MN−1MN

N−2∏
i=1

fi

Mi

= (−1)N
(

fN−1

MN

N−1∏
i=1

fi

Mi

− fN−1

MN

N−1∏
i=1

fi

Mi

)
= 0.

This means that the zeroth order of our expansion vanishes.
For the next order, we derive the first equation in Eq. (C3) by
ω and get for ω = 0,

dmN

dω
= mN−1

daN

dω
+ aN

dmN−1

dω
− b2

N−1
dmN−2

dω
, (C7)

where we have suppressed the argument ω = 0. In this
equation, we have to evaluate the expressions dmN−1(0)/dω

and dmN−2(0)/dω. For that, we use (C4) and (C5), which
follows

dmN−1

dω
= nN−2

da1

dω
+ a1

dnN−2

dω
− b2

1
dnN−3

dω
, (C8)

dmN−2

dω
= n̄N−3

da1

dω
+ a1

dn̄N−3

dω
− b2

1
dn̄N−4

dω
. (C9)

The determinants nL(ω) and n̄L(ω) are polynomials of degree
2L, whose derivative vanishes at ω = 0. Thereby, Eq. (C7)
takes the form

dmN

dω
= mN−1

daN

dω
+ (

aNnN−2 − b2
N−1n̄N−3

)da1

dω
. (C10)

If we use our definitions for nL(ω) and n̄L(ω), it is easy to
show that the expression in brackets is one of the possible
expansions of the determinant m̄N−1(ω). Here, m̄N−1(ω) is the
subdeterminant, which we get when we delete the first row
and column in the matrix [MN (ω)]. So, we can represent the
derivative dmN (0)/dω by

dmN (0)

dω
= m̄N−1(0)

da1(0)

dω
+ mN−1(0)

daN (0)

dω
. (C11)

Analogous to Eq. (C6), we can calculate m̄j (ω) and proof the
result by mathematical induction. This leads to

m̄j (0) = (−1)j
N∏

i=N−j+1

fi−1

Mi

with j � N − 1. (C12)

From (C6) and (C12), we find for m̄N−1(0) and mN−1(0) the
following correlation:

M1mN−1(0) = MNm̄N−1(0). (C13)

Finally, we have to calculate the derivatives of the elements
a1(ω) and aN (ω) at the point ω = 0, it is

da1(0)

dω
= i

MC1

2M1
ωmax

1 and
daN (0)

dω
= i

MC2

2MN

ωmax
2 , (C14)

where we used the dispersion relations ks(ω) = (2/ds)
arcsin(ω/ωmax

s ) defined in Sec. III. With (C13) and (C14),
we can write for Eq. (C11):

dmN (0)

dω
= i

mN−1(0)

2MN

(
MC1ω

max
1 + MC2ω

max
2

)
. (C15)

Now, we have all details for the first-order expansion of mN (ω)
around ω = 0. Especially for |mN (ω)|2, we find then the
following representation:

|mN (ω)|2 = mN−1(0)2

4M2
N

(
MC1ω

max
1 + MC2ω

max
2

)2
ω2. (C16)

The last step of our derivation is to insert (C2) and (C16) as
well as

C =
N−1∏
i=1

f 2
i

MiMi+1
= M1

MN

N−1∏
i=1

f 2
i

M2
i

= M1

MN

mN−1(0)2 (C17)
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in Eq. (16) for �(ω → 0) resulting in

�0 = 4MC1ω
max
1 MC2ω

max
2(

MC1ω
max
1 + MC2ω

max
2

)2

= 4
√

MC1fC1
√

MC2fC2

(
√

MC1fC1 + √
MC2fC2)2

. (C18)

With the definition y := MC2fC2/MC1fC1, we get finally the
universal representation (7).

APPENDIX D: CURRENT TRANSMISSION FOR THE DJ
ATOMIC WIRE

To derive Eq. (17), we use (C3) in which we substitute
mN−1(ω) and mN−2(ω) by (C4) as well as (C5). In our special
chain, b1 = bN−1 = ω̃2

0 and nL(ω) = n̄L(ω) leading to

mN (ω) = a1aNnN−2 − ω̃4
0[a1 + aN ]nN−3 + ω̃8

0nN−4. (D1)

We have suppressed the frequency dependence of a1(ω),
aN (ω), and nL(ω). The nL(ω) are determinants of symmet-

ric tridiagonal matrices with the dimensions L = N − 2,

N − 3,N − 4, which have on the main diagonal only the
elements ω2 − 2ω̃2

0 and on the secondary diagonals only
the elements ω̃2

0. In this case, the nL(ω) corresponding to
analytically solvable Toeplitz eigenvalue problems [38] with
the eigenvalues

ω2
L,n = 2ω̃2

0

[
1 − cos

(
nπ

L + 1

)]
with n = 1, . . . ,L. (D2)

For the resulting diagonal matrices, the determinants nL(ω)
can be calculated easily,

nL(ω) =
L∏

n=1

(
ω2 − ω2

L,n

)
, (D3)

which yields (18). Finally, from (16) and (D1), the analytical
expression for �(ω) in Eq. (17) follows.
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