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Long-distance quantum transport dynamics in macromolecules
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Using renormalization group methods, we develop a rigorous coarse-grained representation of the dissipative
dynamics of quantum excitations propagating inside open macromolecular systems. We show that, at very low
spatial resolution, this quantum transport theory reduces to a modified Brownian process, in which quantum
delocalization effects are accounted for by means of an effective term in the Onsager-Machlup functional. Using
this formulation, we derive a simple analytic solution for the time-dependent probability of observing the quantum
excitation at a given point in the macromolecule. This formula can be used to predict the migration of natural
or charged quantum excitations in a variety of molecular systems, including biological and organic polymers,
organic crystalline transistors, or photosynthetic complexes. For illustration purposes, we apply this method to
investigate inelastic electronic hole transport in a long homo-DNA chain.
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I. INTRODUCTION

The striking observation of long-lived coherent quantum
energy transport in photosynthetic systems [1], and the per-
spective of realizing nanoscale molecular devices with specific
optoelectronics properties [2], has motivated an increasing
effort towards investigating the propagation of charged and
neutral quantum excitations across many organic [3–7] and
biological [8–18] macromolecules.

In contrast to the electric conduction in metals, quantum
transport in soft condensed matter can be significantly in-
fluenced by the coupling to the molecular vibrations and
to the surrounding environment. Consequently, the natural
theoretical framework to describe the propagation of excitons,
electrons, and holes through macromolecules is that of the
open quantum systems [19].

In this context, theoretical models have been developed
in which the dynamics of the quantum excitation is coarse
grained at the level of a simple one-body Hamiltonian, while
the coupling to the molecular motion and the environment is
collectively represented by means of an effective bosonic bath
(see, e.g., Refs. [9,13,18]). These models provide conceptually
sound and computationally efficient tools to investigate the
general mechanisms which underlie the long-range charge
transport and the loss of quantum coherence in macro-
molecules. On the other hand, the lack of chemical detail makes
it difficult to obtain quantitative predictions on the quantum
transport properties in specific molecular systems.

Complementary theoretical approaches have been devel-
oped which encode much information about the specific
chemical structure of the macromolecule, and hence are in
principle better suited to obtain quantitative predictions. These
models are generally based on combining the Schrödinger
equation for the one-body wave function of the quantum
excitation with molecular dynamics (MD) simulations for the
motion of the atomic coordinates (see, e.g., Refs. [7,11,20]).
The quantum excitation’s dynamics in these models can
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be investigated in great detail through extensive numerical
simulations. On the other hand, the lack of analytic insight
makes it difficult to identify the physical mechanisms which
are responsible for the transport dynamics.

In a recent paper [21], we developed a microscopic
theoretical framework to describe quantum transport in macro-
molecules, which combines chemical detail with analytic
insight. This approach is based on a coherent quantum field
path integral representation of the system’s reduced density
matrix. The path integral formalism is convenient because it
allows one to rigorously trace out from the density matrix the
atomic coordinates, hence avoiding computationally expensive
MD simulations. The quantum field theory (QFT) formalism is
adopted because it drastically simplifies the description of the
dynamics of open quantum systems. Indeed, we have shown
that, using QFT, the problem of computing real-time evolution
of observables in an open system can be mapped into the
problem of computing vacuum-to-vacuum Green’s functions
in some virtual system.

In the short-time limit, such a Green’s function can be
computed in perturbation theory by using standard Feynman
diagram techniques based on time-ordered propagators (rather
than a time-directed propagator), without having to perform
any numerical MD simulation. This feature makes the calcu-
lation of the density matrix computationally inexpensive or,
in some cases, even analytic. In addition, the diagrammatic
expansion offers physical insights, e.g., about the specific
processes which are responsible for quantum decoherence and
dissipation.

Unfortunately, such a perturbative approach breaks down in
the long-time regime, when the propagation is dominated by
multiple scattering processes and typically becomes inappli-
cable after 50–100 fs. Hence, the investigation of quantum
transport over larger distances and longer time intervals
using the QFT formalism requires a fully nonperturbative
approach.

In this paper we tackle this problem using the renormaliza-
tion group (RG) formalism to systematically coarse-grain the
dynamics. The result is a rigorous “low-energy” approximation
of our original microscopic QFT that yields the same dynamics
in the limit in which the quantum excitation travels for a long
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time and covers distances which are large compared to its de
Broglie’s thermal wavelength.

The advantage of coarse graining is that the resulting “low-
resolution” effective field theory (EFT) is much simpler than
the corresponding microscopic QFT and admits an analytical
solution. In particular, we shall show that the probability
density P (y,t |x) for a quantum excitation initially produced at
the point x to be found at the y after a time t can be written in
the path integral form

P (y,t |x,0) =
∫ y

x
DRe

− ∫ t

0 dτ

[
Ṙ2

4D0
−ξ 2(C2Ṙ2−C4Ṙ4)+···

]
. (1)

The inner products which appear at the exponent in this
equation are defined by a metric tensor which is in general
nondiagonal, while ξ 2 ∝ �

2 is a small expansion parameter
to be defined below and the dots represent terms which are
irrelevant in the large-distance and long-time limit. Hence,
the propagation of the quantum excitation corresponds to a
modified anisotropic diffusion process in which the quantum
effects are by a set of effective parameters and operators.

The effective parameters D0,C2,C4, as long as the entries
of the metric tensor defining the inner product, encode the
information about the unresolved short-distance physics, such
as the molecule’s electronic structure and vibrational spectrum.
All these parameters can be determined by measuring the
quantum excitation’s mobility.

In the physical regime in which the path integral Eq. (1)
holds, it is even possible to derive a simple analytic expression
for its solution by exploiting the fact that ξ � 1. Such
a solution offers a powerful tool to investigate complex
nonequilibrium quantum transport processes within a very
simple framework.

The paper is organized as follows. In the next section we
review the EFT formalism, which allows one to construct
rigorous low-energy approximations to physical theories.
In Secs. III and IV, we first define the Hamiltonian of a
microscopic model for quantum transport and then review its
equivalent QFT formulation, which can be used to compute
perturbatively the time-dependent density matrix in the short-
time regime. In Sec. V, we use the EFT framework to
derive a systematic approximation of such a QFT, which
yields the same dynamics in the large-distance and long-time
regimes. Next, in Secs. VI and VII, we analyze the long-time
regime and we show that our EFT can be formulated as
a modified diffusion process. In Sec. VIII we derive the
analytic expression for the probability density and discuss
the renormalization of the EFT. Section IX is devoted to the
illustrative application of this framework to investigate hole
propagation in homo-DNA. Finally, conclusions and outlooks
are summarized in Sec. X.

II. THE EFFECTIVE FIELD THEORY FORMALISM

The internal dynamics of macromolecules is characterized
by a multitude of time scales, which are spread over many or-
ders of magnitude. Conformational transitions typically occur
beyond the ns time scale, and hence are clearly decoupled from
the local thermal vibrations and the solvent-induced dissipative
relaxation times which occur at the ps scale. The hopping
of quantum excitations across nearby molecular molecular

orbitals and the loss of quantum coherence crucially depend on
the specific chemical structure of the molecule, but typically
range from a few fs to fractions of ps.

The existence of relatively large gaps between the dif-
ferent characteristic time scales in macromolecules natu-
rally suggests one to apply RG methods to devise rigorous
low-energy descriptions of the dynamics. In particular, the
EFT formalism (for a pedagogical introduction, see, e.g.,
Refs. [22,23]) provides a very practical implementation of
the RG scheme, which is both rigorous and systematically
improvable. Despite these features, to date there have been
only a few applications of this framework to quantum
transport problems [24,25] and to conformational dynamics in
macromolecules [26–28].

The main idea underlying the EFT approach is the fa-
miliar observation that an experimental probe with a given
wavelength λ is insensitive to the details of the physics
associated with length scales �λ and time intervals �λ/v

(where v is the velocity of propagation of the probe). This
fact can be exploited to build, in a rigorous way, predictive
physical theories in which only the degrees of freedom
that can be resolved by the probe’s wavelength are treated
explicitly, while all the ultraviolet (UV) effects (i.e., the
physics which is not resolved by the probe) are treated at the
implicit level, through a set of local interactions and effective
parameters.

A familiar example of this type of approach is the multipole
expansion in classical electrodynamics: The soft components
of the classical radiation generated by an arbitrarily compli-
cated current source J(r,t) of size d can be replaced by the
radiation generated by a sum of pointlike multipole currents
E1,M1, . . .. In such an expansion, the multipole coefficients
implicitly account for the UV physics, which is associated
with short distances, of the order of d. Only a finite number
of multipole terms are needed to reproduce to any arbitrary
(but finite) level of accuracy of the electromagnetic radiation
at distances �d. In the following, we shall refer to the physics
at length scales much larger than the UV cutoff length scale as
the infrared (IR) sector of the dynamics.

In the context of quantum theories, the EFT scheme is
implemented in four steps. First, one introduces the cutoff
scale λ which defines the separation between the IR physics
one is interested in and the UV physics to be treated implicitly.
Next, the most general possible description of the IR dynamics
is derived by analyzing the structure and symmetries of
the underlying (more) microscopic theory. Then, a so-called
power-counting scheme is introduced in order to identify
which coupling terms in the effective theory dominate in the
IR limit. Typically, in the QFT formalism, the last step leads
to retaining only operators with the lowest number of time
and space derivatives of the fields or of the wave function.
Finally, through the renormalization procedure, the effective
coefficients are determined by matching against experiment
or more microscopic calculations, and the dependence on the
cutoff is replaced by a (typically much weaker) dependence
on the renormalization scale.

It is important to emphasize that in EFTs there are no UV
divergences, because the cutoff specifies the level of resolution
of the theory, hence is kept finite at all times. However, the
short-distance physics which is excluded by the finite cutoff is
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not simply neglected. Instead, it is accounted for by means of
local effective vertices, called the counterterms, which enter in
the low-energy effective action. These vertices parametrize the
effects of very short-distance interactions on the long-distance
dynamics.

The effectiveness of the EFT scheme depends crucially on
the size of the gap separating the IR and the UV physics.
The smaller the gap, the larger is the number of effective
interactions and parameters that have to be introduced in
the EFT to reach the desired accuracy. In the absence of a
decoupling between IR and UV scales, the dynamics of the
EFT depends on infinitely many effective interactions and
parameters, hence losing its predictive power.

In this paper, we exploit the separations in the length
and time scales characterizing the internal dynamics of
macromolecular systems to build an EFT for dissipative
quantum transport in the large-distance and long-time regime.
In particular, we restrict our attention to systems in which
quantum excitations can propagate over distances much larger
than the size of the individual molecular orbitals, and we
consider time intervals that are much longer than those
characterizing the damping of local thermal conformational
oscillations of the macromolecule. Hence, our typical UV
cutoff length scale is of the order of nm and the typical UV
time scale is of the order of a few fractions of ps.

In the next two sections we begin by reviewing the
microscopic field theory description of quantum transport we
have introduced in Ref. [21]. Next, we shall apply the EFT
framework to construct a rigorous low-energy approximation
of this theory, and then discuss its implications in different
time regimes.

Throughout this paper, we shall adopt a bosonic description
of the quantum excitation degrees of freedom, which is clearly
appropriate for exciton propagation. However, in the physical
limits in which quantum statistics effects become irrelevant
(e.g., in the low-density limit), the same model can also be
used to describe the propagation of fermionic excitations such
as electrons or holes.

III. A MICROSCOPIC MODEL FOR QUANTUM
TRANSPORT IN MACROMOLECULES

An approach which has been often adopted to model the
propagation of quantum excitations within open macromolec-
ular systems (see, e.g., Refs. [7,11,20]) relies on two main
approximations: (i) The electronic problem is coarse grained at
the tight-binding approximation level, and (ii) the dynamics in
the absence of quantum excitations is described by the lowest
Born-Oppenheimer energy surface.

The starting point for such theories is a quantum Hamilto-
nian which consists of several parts:

Ĥ = ĤMC + ĤM + ĤCL. (2)

The quantum transport is pictured as the hopping across
different fractional molecular orbitals and follows from the
second-quantized Hamiltonian:

ĤMC = fmn[Q]â†
mân. (3)

In this definition the discrete vectors m,n label the different
fractional molecular orbitals (throughout the paper, we shall

adopt Einstein’s notation, implicitly assuming the summation
over repeated indexes). Q = (q1, . . . ,q3N ) is a vector in the
molecule’s configuration space (i.e., the set of all the 3N atomic
coordinates). In the adiabatic limit, the matrix elements fmn
depend parametrically on the molecular orbital wave functions
and on the electronic Hamiltonian Ĥel through the transfer
integrals and on-site energies, i.e.,

flm(Q) = 〈�l|Ĥel|�m〉. (4)

Hence, the dynamics of the atomic coordinates and that of the
quantum excitations are coupled.

The Hamiltonian ĤM provides the time evolution of the
atomic coordinates in the absence of quantum excitations and
of the coupling to the heat bath and reads

ĤM = P̂Q

2M
+ V̂ (Q), (5)

where V (Q) is a potential energy corresponding to lowest
Born-Oppenheimer energy surface, M is the atomic mass (here
taken to be the same for all atoms, for the sake of notational
simplicity).

HCL in Eq. (2) is the Caldeira-Leggett Hamiltonian [29],
which couples the atomic coordinates Q = (q1, . . . ,q3N ) to a
heat bath of harmonic oscillators,

ĤCL =
3N∑
α=1

∞∑
j=1

(
π̂2

j

2μj

+ 1

2
μjω

2
j x̂

2
j − cj x̂j q̂α + c2

j

2μjω
2
j

q̂2
α

)
.

(6)

X = (x1,x2, . . .) and 	 = (π1,π2, . . .) are the harmonic os-
cillator coordinates and momenta, μj and ωj denote their
masses and frequencies, and cj are the couplings between
atomic and heat-bath variables. In particular, we consider the
so-called Ohmic-bath limit for the spectrum of frequencies
of harmonic oscillations (see Ref. [30]). The last term in
Eq. (6) is a standard counterterm introduced to compensate
the renormalization of the molecular potential energy which
occurs when the heat-bath variables are traced out.

IV. MICROSCOPIC QUANTUM FIELD THEORY FOR
DISSIPATIVE TRANSPORT

The model defined in the previous section was used in
Ref. [21] as the starting point to derive a quantum field
theory which describes the dissipative real-time dynamics of
the quantum excitations, after all the molecular and heat-bath
degrees of freedom in this system have been rigorously traced
out from the density matrix.

Let us consider the probability to observe at some time t at
the site kf a quantum excitation, which was initially created
at t = 0 at the site ki :

Pt (kf ,t |ki) = Tr[|kf 〉〈kf |ρ̂(t)]

N , (7)

where

N = Tr[ρ̂(t)] = Tr[eiHt ρ̂(0)e−iH t ] (8)

is the normalization of the density matrix and

ρ̂(0) = |ki〉〈ki | × e−βĤCL × e−βĤM (9)

specifies our choice for the initial condition.
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The Feynman-Vernon path integral representation of the
probability density Pt (kf ,t |ki) is derived by applying the
Trotter formula to the two evolution operators appearing in
Eq. (8). In deriving the path integral, we choose to represent
the system’s state using the following basis set,

|Q,X,φl〉 = |Q〉 ⊗ |φl〉 ⊗ |X〉, (10)

where |φl〉 is the bosonic coherent state associated to the
quantum excitation, while |Q〉 and |X〉 denote the position
eigenstates of the molecular atoms and the set of Caldeira-
Leggett variables, respectively.

The functional integrals over the heat-bath Caldeira-Leggett
auxiliary variables and that over small thermal oscillations
of the molecule around its minimum-energy configuration
can be put in a Gaussian form, and hence can be evaluated
analytically. This procedure generates an influence functional
containing new effective couplings between the coherent fields
associated with the quantum excitation density. This effective
functional accounts for the dissipative character of the quantum
transport dynamics.

As usual, the path integral representation of the time-
dependent density matrix involves the doubling of the degrees
of freedom, corresponding to splitting the Trotter representa-
tion of forward and backward time-evolution operators e−itĤ

and eitĤ in Eq. (8). In particular, our approach involves
forward- and backward-propagating complex coherent fields,
hereby denoted with φ

′
m(t) and φ

′′
m(t), respectively.

As a merely formal trick to avoid using the Keldysh
contour formalism, in Ref. [21] we proposed to interpret the
fields evolving backwards in time as describing (nonphysical)
“antiparticle” excitations propagating forward in time. For
notational convenience, we introduced field doublets which

collectively describe both the quantum excitation and its
fictitious “antiparticle” component:

�m(t) = [φ′
m(t),φ′′

m(t)], �̄m(t) ≡ �†
m(t)τ3, (11)

where τ3 ≡ diag(1, − 1) is the third Pauli matrix.
The path integral representation of the probability density

Pt (kf ,t |ki) is given by

Pt (kf ,t |ki) = −1

N

∫
D�̄D�e−L0nkf

(t)nki
(0)

×e
i
�

S0[�̄,�]e
i
�

Sint[�̄,�], (12)

where

nk(τ ) ≡ 1
2 �̄k(τ )τ3τ1�k(τ ), (13)

and τ1 ≡ (0 1
1 0) is the first Pauli matrix. L0 is a surface term

which arises from the overcompleteness of the coherent states
and reads

L0 = �̄m(0)τ3τ+�m(0), with τ± = 1
2 (1 ± τ3) . (14)

The terms nki
(0) and nkf

(t) in the path integral (12) arise
from specifying the initial and final position of the quantum
excitation, respectively. In the equivalent relativisticlike quan-
tum field theory formalism, these terms contain both � and
�̄ fields, hence corresponding to density operators in which
a particle (quantum excitation) is created and its (fictitious)
antiparticle is annihilated. The normalization of the probability
density is given by

N ≡ −
∫

D�̄D�e−L0nki
(0)e

i
�

S0[�̄,�]e
i
�

Sint[�̄,�]. (15)

The action functionals appearing at the exponent of Eq. (15)
are defined as follows:

S0[�̄,�] =
∫ t

0
dt ′�̄m

(
i�∂t ′δmn − f 0

mn

)
�n, (16)

Sint[�̄,�] = 1

4

∫ t

0
dt ′dt ′′�̄l(t

′)τ3f
a
lh�h(t ′)Vab(t ′ − t ′′)�̄m(t ′′)f b

mn�n(t ′′)

+ iMγ

β�

∫ t

0
dt ′dt ′′�̄l(t

′)f a
lh�h(t ′)�ab(t ′ − t ′′)�̄m(t ′′)f b

mn�n(t ′′), (17)

where β = 1/kBT . The indexes a,b run over the 3N compo-
nents of the molecular configuration vector Q.

The explicit expression of the Green’s functions �ab(t − t ′)
and Vab(t − t ′), which mediate the interaction of the hole with
the molecular vibrations and with the viscous heat bath, are
given in Ref. [21] and depend on the viscosity γ and molecular
normal modes and frequencies.

The matrix elements f 0
mn and f a

mn are defined as

f 0
mn = fmn[Q0], f a

mn = ∂

∂Qa
fmn[Q0], (18)

where Q0 is the equilibrium molecular configuration in the
absence of quantum excitations.

In Ref. [21] this QFT was used to analyze the effects
of dissipation on the quantum transport, using perturbation

theory. Indeed, in the short-time regime, it is possible to
develop Feynman diagram techniques which immediately
yield the corrections to the unitary (i.e., free) quantum prop-
agation of the excitation. The leading-perturbative correction
corresponds to simple analytical formulas. This approach was
also used to study the loss of quantum coherence induced by
the coupling of the excitation to the environment.

This relativisticlike QFT description can in principle be
used to investigate also the dynamics over long time intervals.
However, in this case, the correlation functions are dominated
by multiple scattering with the damped molecular oscillations,
and hence must be evaluated nonperturbatively, for example,
by means of a saddle-point approximation. While developing
such a scheme is, in principle, possible, it is leads to
microscopic self-consistent equations which depend on a
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large number of effective parameters and are computationally
challenging to solve. In view of these difficulties, in the next
sections we shall develop a much simpler EFT which describes
the same physics at low space-time resolution power, i.e., in
the long-distance and long-time limit. As we shall see, such
a theory turns out to be much simpler and depends only on a
few parameters and even admits analytic solutions.

V. EFT FOR DISSIPATIVE QUANTUM TRANSPORT

We are interested in constructing an EFT which describes
the same IR dynamics of the microscopic theory defined in
the previous section, at a much lower level of spatial and
temporal resolution. In particular, we focus on macromolec-
ular systems for which the quantum excitation can cover
distances which are long compared to those at which the
molecular three-dimensional structure is resolved. In Fourier
space, this implies that the corresponding coherent fields
have only soft momentum components. Consequently, the
effective interaction terms with a larger and larger number
of spatial derivatives are increasingly irrelevant. Similarly,
since thermal oscillations are damped by the coupling with
the heat bath, in order to investigate the long-time regime,
the terms with a higher number of time derivatives can be
dropped.

Let us now define the action functional of the effective
theory. We begin by analyzing the kinetic term and we first
consider the case in which the hopping of the excitations occurs
between molecular orbitals which are spatially neighboring. In
this case, the hopping matrix in the microscopic theory defined
in Eq. (16) takes the simple form

fnm(Q) =
∑

î

τnm(Q)
(
δm(n+î) + δm(n−î)

) − e0
n(Q)δnm, (19)

where the sum runs over the unit vectors î pointing to the
nearest-neighbor sites from the site m.

Due to the low spatial resolution, in the corresponding
effective theory we can replace the discrete site indexes m,n

with continuous variables x,y, i.e., to introduce continuous
complex field doublets �n(t) → �(x,t), �̄n(t) → �̄(x,t).
In the continuum limit, the matrices f 0

mn and f i
nm become

differential operators:

f 0
mn → δ(x − y)

[
ε(x) − �

2μ−1
ij (x)

2
∂i∂j

]
, (20)

f a
nm → δ(x − y)

[
εa(x) − �

2μa −1
ij (x)

2
∂i∂j

]
. (21)

Notice that μij (x) can be interpreted as a position-dependent
effective mass tensor.

With the notation defined above, the free component of the
action functional S0 is written as

S0[�̄,�] �
∫ t

0
dt ′

∫
dx�̄(x,t ′)

(
i�∂t − ε(x)

+�
2

2
μ−1

ij (x)∂i∂j

)
�(x,t ′). (22)

It immediately verifies that accounting for non-nearest-
neighbor hopping leads to higher derivative terms. According
to our power-counting scheme, such terms are irrelevant in the
IR limit and can be ignored.

Let us now analyze the interaction terms in Eq. (17). The
Green’s functions �ab(t − t ′) and Vab(t − t ′) are evaluated
explicitly in Ref. [21], where they are shown to decay
exponentially at time scales of the order of the inverse collision
rate t ∼ 1/γ . Since we are focusing on time intervals t � 1/γ ,
they can be replaced by

�ab(t − t ′) � d
(0)
ab δ(t − t ′) + d

(1)
ab i�

d

dt
δ(t − t ′) + · · · ,

(23)

Vab(t − t ′) � v
(0)
ab δ(t − t ′) + v

(1)
ab i�

d

dt
δ(t − t ′) + · · · .

Corrections to these terms are irrelevant, as they involve higher
time derivatives. The effective interaction becomes

Sint[�̄,�] � 1

4

∫
dt ′

∫
dt ′′

∫
dx

{
�̄(x,t ′)τ3

(
εa(x) − �

2

2
μa−1

ij (x)∂i∂j

)
�(x,t ′)

[(
v

(0)
ab − iv

(1)
ab

d

dt ′

)
δ(t ′ − t ′′)

]

× �̄(x,t ′′)
(

εb(x) − �
2

2
μb−1

i ′j ′ (x)∂i ′∂j ′

)
�(x,t ′′)

}
+ iMγ

β�

∫
dt ′

∫
dt ′′

∫
dx

{
�̄(x,t ′)

(
εa(x) − �

2

2
μa−1

ij (x)∂i∂j

)

× �(x,t ′)
[(

d
(0)
ab − id

(1)
ab

d

dt ′

)
δ(t ′ − t ′′)

]
�̄(x,t ′′)

(
εb(x) − �

2

2
μb−1

i ′j ′ (x)∂i ′∂j ′

)
�(x,t ′′)

}
. (24)

The combination D = 1/(βMγ ) yields the diffusion coeffi-
cient of the atoms in their surrounding heat bath.

The scalar and tensor fields ε(x),μij (x) appearing in
Eq. (22) encode the information about the conformational and
electronic structure of the molecule in the neighborhood of the
point x, while the uniform tensors v

(k)
ab and d

(k)
ab (with k = 0,1)

parametrize the fluctuation-dissipation effects arising from the
coupling of the molecule with its heat bath. It is important to
emphasize that, even though these quantities do not depend

explicitly on time, they are the result of preaveraging out
the small thermal oscillations, hence encoding dynamical
effects.

The effective action (24) does not yet define our EFT. In-
deed, so far, we have only performed a continuous formulation
of the original microscopic theory, and have taken the so-called
Ohmic-bath limit of the Caldeira-Leggett model. On the other
hand, we have not yet exploited the decoupling of UV and IR
length scales and taken the large-distance limit.
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To derive the effective couplings in the EFT, let us consider
the Fourier transform of the space-dependent scalar and tensor
parameters in Eq. (24) [in the following we focus on ε(x) for
the sake of definiteness]:

ε(p) = ε0δ(p) + δε(p). (25)

We note that ε0 is the Fourier component which corresponds
to a uniform field. We recall that the parameter fields are
assumed to vary over length scales which are much shorter than
those over which the quantum excitation’s density changes. In
Fourier space, this implies that ε(p) has only hard components,

δε(p) � 0 for |p| � 1/λ, (26)

while the field �(p) has only soft Fourier components,

�(p) � 0 for |p| ∼ 1/λ. (27)

Due to such a decoupling, all the short-distance local fluctua-
tions of the parameter fields average away:∫

dxε(x)�̄(x,t)�(x,t) � ε0

∫
dx�̄(x,t)�(x,t) (28)

since∫
dxδε(x)�̄(x,t)�(x,t)

=
∫

dp
2π

∫
dq
2π

�̄(p)δε(q)�( − (p + q),t) � 0. (29)

In addition, all coupling terms in Eq. (24) which include spatial
derivatives of the fields are irrelevant in the large-distance
limit, and hence can be neglected. Similarly, for the effective
mass tensor field, one has

μij (x) � mij . (30)

In conclusion, to lowest order in our power-counting
scheme, the path integral which represents the excitation
probability density reduces to

P (y,t |x) = −1

N

∫
D�̄D�n(y,t)n(x,0)

×e−L1+ i
�

Seff
0 [�̄,�]+ i

�
Seff

int [�̄,�], (31)

where

N �
∫

D�̄D�n(x,0)e−L1+ i
�

Seff
0 [�̄,�]e

i
�

Seff
int [�̄,�],

L1[�̄,�] =
∫

dx�̄(x,0)τ3τ+�(x,0), (32)

Seff
0 [�̄,�] =

∫ t

0
dt ′

∫
dx�̄

[
i�∂t ′ − ε0 + �

2

2
m−1

ij ∂i∂j

]
�,

(33)

Seff
int [�̄,�] =

∫ t

0
dt ′

∫
dx

[
�̄�

(
A0

v − �A1
vi∂t ′

)
�̄τ3�

+ i

D�β2
�̄�

(
A0

d − �A1
d i∂t ′

)
�̄�

]
. (34)

A0
v , A1

v , A0
d , and A1

d are real effective coupling constants. It
is important to emphasize that the couplings of low-energy
effective theories may depend in general on the heat-bath
temperature [31].

It is important to emphasize that the effective action
defined so far only describes the long-time and large-distance
dynamics of the excitations. Indeed, the short-distance and
short-time physics has been quenched by introducing the
cutoffs on the length and time scales and by neglecting the
high derivative terms in the effective action.

In general, completely neglecting the high-frequency
modes represents a very crude approximation, since the
short-distance physics does have an influence on the long-
distance dynamics. The crucial point to make is that, at a
low-resolution power, the long-distance dynamics becomes
insensitive to the details of the short-distance physics,
which can be therefore encoded by means of local effective
interactions.

These physical ideas are implemented by the renormaliza-
tion procedure. In practice, one adds to the effective action
in Eq. (31) the most general set of local effective vertices
compatible with the symmetry of the underlying microscopic
theory, and it retains only the terms among them which
display the least number of derivatives and fields (see, e.g.,
the discussion in Ref. [22]).

However, in our specific case, the renormalization proce-
dure is in fact redundant. Indeed, we observe that the effective
Lagrangian in Eq. (31) already contains all possible local
effective couplings with the least number of derivatives and
fields. Hence, to lowest order, the renormalization procedure
simply amounts to rescaling the corresponding effective
parameters A0

v , A1
v , A0

d , and A1
d .

Let us summarize what we have obtained so far. We
have shown that, in the large-distance and long-time limit,
the probability density for the quantum excitations exciton
can be formally mapped into a vacuum-to-vacuum two-
point function in a relativisticlike quantum field theory with
local four-field interactions. Note that our theory contains
an imaginary coupling constant, which breaks unitarity and
describes the dissipation generated by the coupling with the
damped molecular oscillations.

VI. EFFECTIVE STOCHASTIC DESCRIPTION

In this section we analyze the dynamics of the quantum
excitation in the asymptotic long-time regime. In this limit,
the large number of collisions with the molecular vibrations
and with the environment depletes the quantum coherence. As
a result, the emergent dynamics of the quantum excitation is
diffusive and quasiclassical.

In order to investigate the quasiclassical limit, it is conve-
nient to switch to the first-quantization formalism and repre-
sent the time-dependent probability (31) using the coordinate
representation path integral.

To this end, it is important to recall that the position
eigenstates of the EFT do not coincide with those of a
fundamental theory. Indeed, in the EFT, each point X is
indistinguishable from those which lie in a neighborhood of
the size of the probe’s resolution power λ. Most generally, the

134305-6



LONG-DISTANCE QUANTUM TRANSPORT DYNAMICS IN . . . PHYSICAL REVIEW B 89, 134305 (2014)

position eigenstates in the EFT, |R〉λ are defined as

|R〉λ ≡
∫

dX�λ(X − R)|X〉, (35)

where |X〉 denotes the position eigenstates of the microscopic
theory. The wave function �λ(X − R) is determined by the
normalization condition

λ〈R′|R〉λ =
∫

dX�λ(X − R)�∗
λ (X − R′)

= δλ(R′ − R), (36)

where δλ(R′ − R) is some smeared representation of the δ

function, of width λ. In particular, in the following, we adopt
a Gaussian smearing (in three dimensions),

δλ(R − R′) ≡
√

det m

(
1

2π Tr mλ2

)3/2

×e
− (Ri−R′

i
)mij (Rj −R′

j
)

2 Tr mλ2 . (37)

With this choice, the effective wave function �λ(X) reads

�λ(X) =
√

det m

(
1

π Tr mλ2

)3/2

e
− Ximij Xj

Tr mλ2 . (38)

Notice that this regularization choice corresponds to approx-
imating the local delocalization with a harmonic oscillator
wave function and takes into account the tensor structure of the
effective mass. However, the specific short-distance structure
of this wave function is irrelevant for the long-distance
dynamics.

Denoting with X[τ ] and Y[τ ] the paths in coordinate space
of quantum excitation described by the coherent fields φ

′
and

φ
′′
, respectively, the probability density can be written as

P (y,t |x,0) =
∫

DX
∫

DYe
i
�

∫ t

0 dτ 1
2 mij (Ẋi Ẋj −Ẏi Ẏj )

×e
i
�

(I [X,Y]+J [X,Y]). (39)

The functionals I [X,Y] and J [X,Y] originate from translating
into the first-quantized representation the field-theoretic func-
tional Sint appearing in Eq. (34). In the Appendix, we derive
them explicitly and obtain J = 0 and I = I1 + I2 + I3, with

I1 = I2 = it

β2D�

√
det m

(4 Tr mλ2π )3/2
A0

d , (40)

I3 =
√

det m

β2D�(4 Tr mπλ2)3/2

∫ t

0
dT

{
e

−mij

4 Trmλ2 (X−Y )i (X−Y )j

×
(

−i2A0
d + �A1

d

2Tr mλ2
mij (Y − X)i(Ẏ + Ẋ)j

)}
. (41)

We now perform the following change of variables in the
path integral:

R = 1
2 (X + Y), (42)

Q = X − Y. (43)

In addition, for reasons which will become clear soon, it is
convenient to introduce the following tensor combination:

�0
ij = A1

d

√
det m

16Dβ2(Tr m)5/2 λ5
√

π3
mij . (44)

Using (44), the path integral in Eq. (39) reads

P (y,t |x,0) = e
−4t

λ2 Tr �0A0
d

�2βA1
d

∫ y

x
DR

∫ 0

0
DQ

×e

∫ t

0 dT

{
i
�

mij Ṙi Q̇j +
(

4λ2 Tr �0A0
d

�2βA1
d

− i�0
ij

�
QiṘj

)
e
− mij Qj Qi

4 Tr mλ2
}
.

(45)

We now observe that, by expanding the exponent in Eq. (45)
to O(Q2) we obtain

P (y,t |x,0) =
∫ y

x
DR

∫ 0

0
DQ

×e

∫ t

0 dT

{
i
�

mij Ṙi Q̇j − �ij A0
d

�2βA1
d

Qj Qi−
i�0

ij

�
QiṘj

}
. (46)

Performing the Gaussian functional integration over Q, one
obtains (neglecting as usual any overall multiplication con-
stant)

Pcl(y,t |x,0)

=
∫ y

x
DRe− β2

4

∫ t

0 dT (mil R̈l+�0
il Ṙl)D0

ij (mjkR̈k+�0
jk Ṙk ), (47)

where we have introduced the tensor

D0
ij ≡ 1

β

(
A1

d

βA0
d

)
�0 −1

ij . (48)

We now recognize that Eq. (47) has the same structure of
the Onsager-Machlup functional integral representation [32] of
the solution of a Fokker-Planck equation with an anisotropic
viscosity tensor �0

ij and diffusion tensor D0
ij . The request that

the system should ultimately reach a thermal equilibrium with
the surrounding heat bath implies the fluctuation-dissipation
relationship

D0
ij = 1

β
�0−1

ij . (49)

This condition determines a relationship between the effective
parameters A1

d = βA0
d .

The friction tensor �0
ij has to be determined by matching

the predictions of our EFT against the quantum excitation’s,
either measured experimentally [33] or computed theoretically
using a (more) microscopic model [34]. This renormalization
procedure will be illustrated in detail in Sec. VIII.

Let us now return to the full path integral (45) in order
to determine the quantum corrections to Eq. (47). For the
sake of simplicity, in the rest of this paper we focus on the
high-friction limit, in which the dynamics is overdamped. In
addition, without loss of generality, we can assume that the
friction tensor �0

ij is diagonal. and introduce the inner product
notation

A · B ≡ g0
ijAiBj , (50)
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where g0
ij is a diagonal metric tensor defined as

�0
ij = 1

βD0
g0

ij , (51)

and D0 has the dimension of a diffusion constant.
Dropping the inertial term, the path integral (45) reduces to

P (y,t |x,0) =
∫ y

x
DR

∫ 0

0
DQe

− ∫ t

0 dT
{

Q2

�2D0β2 + iQ·Ṙ
�βD0

}

×e

∫ t

0 dT
{(

4λ2

�2D0β2 − iQ·Ṙ
�βD0

)
V (Q)+ iQ·Ṙ

�βD0

Q2

4λ2

}
, (52)

where

V (Q) = e
− Q2

4λ2 − 1 + Q2

4λ2
. (53)

The probability distribution (52) can be cast in the following
convenient form,

P (y,t |x,0) =
∫ y

x
DR e−Seff[Ṙ] (54)

where the effective “action” functional Seff is defined as

e−Seff[Ṙ] ≡
∫ 0

0
DQe

− ∫ t

0 dT
{

Q2

�2D0β2 + iQ·Ṙ
�βD0

}

×e

∫ t

0 dT
(

4λ2

�2D0β2 − iQ·Ṙ
�βD0

)
V (Q)+ iQ·Ṙ

�βD0

Q2

4λ2 . (55)

We emphasize that, at this level, no approximation has been
made on the path integral (31). Hence, Eq. (54) represents the
full real-time dynamics of the quantum excitation in our EFT,
to leading order in the momentum-frequency power-counting
scheme.

VII. COMPUTING THE QUANTUM EFFECTIVE
FUNCTIONAL

In general, the effective action Seff[Ṙ] which enters Eq. (55)
is a nonlocal functional of the path R(τ ) and such a nonlocality
reflects the quantum delocalization of the excitation’s wave
function. However, we shall now show that, in the limit of low
spatial resolution, the effective action Seff can be systematically
represented as an expansion in local functionals. In this regime,
the quantum dynamics of our EFT can be described as a
modified diffusion process.

To derive this result, we begin by recalling that in a thermal
heat bath the amplitude of quantum fluctuations are of the
order of de Broglie’s thermal wavelength

λB ≡ �

√
β

2πμ0
, (56)

where μ0 = 1
3 Tr mij is an effective mass scale for the quantum

excitation.
If the cutoff scale λ is chosen in such a way that λ � λB ,

one has

ξ = λB

λ
� 1 and

|Q|
λ

∼ ξ. (57)

Hence, ξ provides a small expansion parameter which
enables us to evaluate the effective action Seff within a
systematic perturbation theory. We note that, in order to obtain

the O(ξ 2) expression, it is sufficient to expand the exponent in
the second line of Eq. (55) to order in Q4, since all higher-order
terms lead to corrections which are of order O(ξ 4). After
discretizing the time interval t in Nt steps, the path integral
factorizes as a product of Nt moments of Gaussian distribution,
in the form∫

dQk exp

[
i
(Rk+1 − Rk)

D0
√

2πβμ0

Qk

λB

− �t

2βD0μ0π

Q2
k

λ2
B

]

×
(

1 − i(Rk+1 − Rk)Qk

4βD0
√

2πμ0β λB

Q2
k

λ2
+ �tQ2

16βD0μ0π λ2
B

Q2

λ2

)
,

(58)

where Qk ≡ Q(tk).
The incremental time interval �t ≡ t/Nt plays the role of

a regularization cutoff and is the time analog of the distance
regularization cutoff λ. We recall that, in the EFT framework,
both �t and λ are kept finite at all stages of the calculation.

The result of the Gaussian integral (58) can be written in
the form

N e
− (Rk+1−Rk )2

4D0�t e
βμ0π

16�t3
ξ 2

(
5�t(Rk+1−Rk )2−3

(Rk+1−Rk )4

4D0

)
, (59)

where N is an irrelevant constant factor. Multiplying all the
Nt terms and restoring the continuum notation, we obtain

Seff �
∫ t

0
dT

[
Ṙ2

4Db
0

− ξ 2
(
Cb

2 Ṙ2 − Cb
4 Ṙ4

)]
, (60)

where the coefficients of the correction terms order O(ξ 2) are

Cb
2 ≡ 5βμ0π

16 �t
, Cb

4 ≡ 3βμ0π

64 Db
0

. (61)

In Eqs. (60) and (61), we have added the superscript b to
emphasize that Db

0 , Cb
2 , and Cb

4 are bare effective constants.
Summarizing, up to corrections of order O( λB

λ
)4, the

exciton’s probability density can be approximated as

P (y,t |x,0) �
∫ y

x
DRe

− ∫ t

0 dT

[
1

4Db
0

Ṙ2−ξ 2
(
Cb

2 Ṙ2−Cb
4 Ṙ4

)]
. (62)

The path integral (62) describes the propagation of the quan-
tum excitation as a modified diffusion process and represents
one of the main results of this paper.

An important question is what corrections to the effective
theory are needed in order to reach an accuracy of order
ξ 4. In effective field theories this question is addressed by
including higher-order terms in the derivative expansion and
defining a power-counting rule. We emphasize that, in deriving
our long-distance expression for the path integral, we have
truncated two independent expansions: (i) We have retained
only the lowest terms in the spatial- and time-derivative
expansion of all the fields in Eqs. (23)–(30) and (ii) we have
kept only the leading-order terms in the expansion in ξ 2 of
the first-quantized path integral (52). Furthermore, unlike in
relativistic effective field theories, the cutoffs defining the time
and spatial resolutions are not directly related. Clearly, the
existence of multiple expansions and cutoffs offers several
alternatives for the power-counting schemes. A systematic
analysis of all these possibilities is quite involved and goes
beyond the scope of this paper. Here, we limit ourselves to
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note that by simply retaining the next order in Q2 in the
expansion of the function V (Q) in Eq. (53), and then truncating
the resulting effective action to order ξ 4, one may miss some
important contributions if the fields vary sufficiently rapidly in
time and space. Indeed, additional first-quantized operators at
order in ξ 4 may generated by expanding the field operators in
Eqs. (23)–(30) to include terms with a higher number of space
and time derivatives.

In Sec. IX, we present an application of this framework to
investigate hole transport in a long DNA molecule. We find
that the lowest-order analytic effective theory gives results
which are essentially indistinguishable from those obtained
from numerical simulations in a more microscopic model. This
finding suggests that, in practice, the inclusion of ξ 4 terms may
not be crucial in order to achieve an accurate description of the
long-distance, long-time physics in realistic macromolecular
systems.

Finally, we emphasize that, even though the expansion in
ξ 2 generates terms with increasing powers of �

2, the EFT
expansion is not conceptually equivalent to the semiclassical
approximation [35–38]. Indeed, the EFT approach is defined in
terms of external cutoff scales, which set the resolution power
of the theory and are chosen a priori.

VIII. SOLUTION OF THE PATH INTEGRAL AND
RENORMALIZATION

The effective theory defined in Eq. (62) explicitly depends
on the cutoff scales �t and λ and needs to be renormalized.
This can be done by introducing appropriate counterterms into

the effective action and matching the prediction of the effective
theory against experiment or more microscopic calculations, at
some time scale t∗. Through such a renormalization procedure,
the power-law dependence of the effective coefficients on the
cutoffs �t and λ is removed and is replaced by a much weaker
dependence on the renormalization scale t∗.

To implement this program, let us consider for the sake of
simplicity the simple case of isotropic diffusion (i.e., g0

ij =
δij ). The same procedure can be straightforwardly applied to
the general case of anisotropic diffusion by repeating the same
analysis component by component.

After introducing the renormalizing counterterms, the path
integral (62) is modified as follows:

P (y,t |x,0) �
∫ y

x
DRe−Seff[Ṙ]+ξ 2(Q2Ṙ2+Q4Ṙ4), (63)

where Q2 and Q4 are insofar unknown coefficients. To order
ξ 2 the renormalized expression for the effective action then
reads

S̄eff =
∫ t

0
dT

[
Ṙ2

4Dren
+ CrenṘ4

]
, (64)

where Dren and Cren are the renormalized coefficients. In the
following, we show how they can be determined up to O(ξ 2)
accuracy.

To this end, we first analytically compute the path integral
given in Eq. (63) to leading order in a perturbative expansion
in ξ 2. We obtain

P (y,t |x,0) � P0
(
y,t |x,0; Db

0

) [
1 + ξ 2

(
Cb

2 + Q2
) (

(x − y)2

t
− 6Db

0

)

− ξ 2
(
Cb

4 − Q4
) (

(x − y)4

t3
− �t − t

�t

20Db
0 (x − y)2

t2
+ �t − 2t

�t

60Db 2
0

t

)]
, (65)

where

P0
(
y,t |x,0; Db

0

) = e
−x2

4tDb
0

2
√

tDb
0π

(66)

is the unperturbed expression. To implement the renormal-
ization, we choose to match the prediction of the two lowest
moments of this distribution against the results of experiments
or microscopic simulations at some time scale t∗:

〈�R2(t∗)〉expt. ≡ 〈�R̄2(t∗)〉 = 6Drent
∗, (67)

〈�R4(t∗)〉expt. ≡ 〈�R̄4(t∗)〉 = 60D2
rent

∗2 − Crent
∗, (68)

where �R = (y − x) and

Dren = D0

[
1 + 4ξ 2D0

(
Cb

2 + Q2 − 20D0

�t

(
Cb

4 − Q4
))]

+ o(ξ 4), (69)

Cren = 1920ξ 2D4
0

(
Cb

4 − Q4
) + o(ξ 4), (70)

are the renormalized constants, which are finite combinations
of bare effective coefficients and counterterms. Their numer-
ical value is expected to run weakly with the matching time
scale t∗.

An important observation to make is that the mean-square
displacement 〈�R2(t)〉 retains its linear dependence on time
t (Einstein’s law), even when quantum corrections are taken
into account. In contrast, quantum corrections do affect the
time dependence of 〈�R4(t)〉, by introducing a linear term,
which is absent in the classical diffusion limit.

Thus, the renormalized probability density including the
leading-order quantum corrections reads

P̄ (y,t |x,0) � P0(y,t |x,0; Dren)

[
1 − Cren

(
(y − x)4

t3Dren

− 20
(y − x)2

t2
+ 60Dren

t

)]
. (71)

We emphasize that the ξ 2 expansion does not break down in
the long-time limit. This can been seen directly from expres-
sion (71), which shows that the perturbative corrections decay
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FIG. 1. (Color online) Time dependence of 〈�R2(t)〉 (left panel) and 〈�R4(t)〉 (right panel), in the microscopic model (red line) and in
our effective theory (solid black line). The dashed line in the right panel represents the prediction of a purely diffusive model (zeroth-order
contribution in ξ 2 expansion) and the black circles represent the matching point (i.e., the renormalization time scale is t∗ = 10 ps). The
predictions in the microscopic model have been obtained in a 200-base pair long molecule, by averaging over 800 different trajectories
generated using the algorithm defined in Ref. [20]. Beyond 15 fs these result become affected by finite-size effects.

faster with time than the unperturbed term. In particular, the
quantum excitation’s dynamics reduces to the (unperturbed)
classical overdamped diffusion, in the asymptotic long-time
limit, implying that the stochastic collisions contribute to
quench the quantum effects.

IX. HOLE TRANSPORT IN A LONG HOMO-DNA
MOLECULAR WIRE

For illustration purposes, in this section we apply the
effective theory developed above to investigate the dynamics of
inelastic hole propagation along a long homo-DNA molecule,
which is regarded as an infinite molecular wire. To this
end we first define a microscopic theory, then match the
corresponding effective theory at a given time scale t∗ to define
the renormalized parameters, and finally use the effective
theory to study the long-time and large-distance dynamics.

We consider a very simple discrete model for the DNA
conformational dynamics introduced in Ref. [39], in which
the molecule vibrations are effectively represented by the one-
dimensional harmonic chain

V (Q) =
N∑

n=1

κ

2
(xi − xi−1 − a0)2 . (72)

In this equation xi denotes the position of the ith base pair,
while κ = 0.85 eV/Å2 is the spring constant, and a0 = 3.4 Å
is the equilibrium distance between two neighboring bases. In
natural units (in which � = c = 1) the mass of each base pair
is M = 2.44 × 1011 eV.

The transfer integrals at the equilibrium position flm(Q0)
and its derivatives f a

lm(Q0), entering Eq. (18), have been fixed
in order to match the main features of the statistical distribution
of transfer matrix elements for a homo-base DNA, computed
microscopically in Ref. [11] from density-functional
tight-binding (DFT-TB) electronic-structure calculations

performed on a snapshot of atomistic MD trajectories.
Namely, we have set

f 0
lm = 〈tlm〉 ≡ t0(δl(m−1) + δl(m+1)) − e0δlm, (73)

f a
lm = σlm

√
βκ ≡ t ′(δl(m−1) + δl(m+1)), (74)

where 〈tlm〉 and σlm denote the average and the variance of
the distribution reported in Ref. [11], leading to

e0 = 4.5 eV, t0 = 0.03 eV, t ′ = 0.15 eV/Å.

The system’s temperature was set to T = 300 K and numerical
simulations were performed on a 200-base pair molecule.

We have studied the time evolution of the probability
density of an electronic hole, initially prepared at the center of
the molecule, using the algorithm introduced in Ref. [20],
in which the stochastic conformational dynamics of the
molecular wire is coupled to the quantum dynamics of the
electronic hole.

The formalism presented in the previous sections can be
used to define a low-resolution perturbative effective theory
for this molecular wire. In Fig. 1, we show the matching
between the numerical simulations and analytic calculations
in such an effective theory for the observables 〈�R2(t)〉 and
〈�R4(t)〉, fitted at the time scale t∗ = 10 ps (represented
by a dot on the simulation curves). We note that the two
approaches give consistent results. In particular, the inclusion
of order ξ 2 corrections is necessary to reproduce the time
evolution of the 〈R4(t)〉 moment. At times larger than 15 ps,
finite-size effects begin to affect the numerical simulations,
and the microscopic model cannot be used to investigate the
long-distance propagation.

In Table I we compare different values of the renormal-
ized coefficients Dren and Cren corresponding to different

TABLE I. Renormalized coefficient in Eqs. (69) and (70) fitted at different time scales t∗.

t∗ (ps) 1 5 7.5 10 12.5 15

Dren (Å2/ps) × 102 3.6 ± 0.2 3.0 ± 0.1 2.95 ± 0.05 2.90 ± 0.04 2.87 ± 0.04 2.85 ± 0.03
Cren (Å4/ps) × 106 −1.3 ± 0.1 −2.7 ± 0.3 − 3.1 ± 0.3 − 3.2 ± 0.4 − 3.2 ± 0.4 − 3.1 ± 0.4
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renormalization time scales t∗. We observe that the effective
parameters run only weakly with the renormalization scale t∗,
as expected.

X. SUMMARY AND CONCLUSIONS

In this paper, we used the EFT formalism to develop a
rigorous effective description of the dissipative propagation
of quantum excitations in macromolecular systems, in the
long-time and large-distance regime. The underlying RG
provides a rigorous framework to vary the degree of space and
time resolution, thereby allowing one to access the mesoscopic
regime. In particular, the spatial and time resolution powers of
the EFT are set by the length cutoff scale λ and the time scale
�t , respectively.

At low spatial resolution (i.e., for λ much larger than
de Broglie’s thermal wavelength λB) we have analytically
computed the evolution of the density of quantum excitations
by developing a perturbative expansion in the small parameter
ξ 2 = λ2

B/λ2. Our results show that, in the asymptotically
long-time, long-distance regime, the emerging dynamics of the

quantum excitation reduces to a classical diffusion process. At
intermediate times, such a diffusive dynamics is modified by
quantum corrections.

We have illustrated our formalism by applying it to
study hole propagation in a long homo-DNA molecular wire.
Comparison with numerical simulations show that, even at the
leading-order level, the effective theory yields very accurate
predictions.

This framework can be applied to tackle a variety of
problems involving quantum transport, ranging from charge
transfer in biological or organic polymers, or crystalline
organic transistors. Other potential applications involve the
investigation of long-distance exciton transfer in natural or
artificial photosynthetic complexes.
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APPENDIX: DERIVATION OF THE I AND J FUNCTIONALS IN EQ. (39)

In Sec. VI we have shown that the probability density for the quantum excitation at a given time t can be written in the
following form:

P (y,t |x,0) =
∫

DX
∫

DYe
i
�

∫ t

0 dτ 1
2 mij (Ẋi Ẋj −Ẏi Ẏj )e

i
�

(I [X,Y]+J [X,Y]), (A1)

where X[τ ] and Y[τ ] denote paths in coordinate space of quantum excitation described by the coherent fields φ′ and φ′′. In
this Appendix, we explicitly derive the functionals I [X,Y] and J [X,Y], which originate from translating into the first-quantized
formalism the field-theoretic functional Sint appearing in Eq. (34).

1. J[X,Y] functional

The functional J follows from the Hermitian term:

SJ ≡
∫

dt ′′
∫

dt ′
∫

dz
{
�̄(z,t ′)�(z,t ′)

[
A0

vδ(t ′ − t ′′) − i�A1
d

d

d(t ′ − t ′′)

]
�̄(z,t ′′)τ3�(z,t ′′)

}

=
∫

dT

∫
dτ

∫
dz

{
�̄

(
z,T + τ

2

)
�

(
z,T + τ

2

)(
A0

vδ(τ ) − i�A1
v

d

dτ
δ(τ )

)
�̄

(
z,T − τ

2

)
τ3�

(
z,T − τ

2

)}
. (A2)

After expanding the � and �̄ fields into their components φ′,φ′′, we obtain two symmetric terms, SJ = SJ1 − SJ2 , where

SJ1 =
∫

dT

∫
dτ

∫
dz

{
φ∗′

(
z,T + τ

2

)
φ′

(
z,T + τ

2

) (
A0

vδ(τ ) − i�A1
v

d

dτ
δ(τ )

)
φ′∗

(
z,T − τ

2

)
φ′

(
z,T − τ

2

)}
,

(A3)

SJ2 =
∫

dT

∫
dτ

∫
dz

{
φ∗′′

(
z,T + τ

2

)
φ′′

(
z,T + τ

2

)(
A0

vδ(τ ) − i�A1
v

d

dτ
δ(τ )

)
φ′′∗

(
z,T − τ

2

)
φ′′

(
z,T − τ

2

)}
.

In first-quantization representation, they translate into

SJ1 → J1 =
∫

dT

∫
dτ

∫
dz

[
δλ

(
z − X

(
T + τ

2

)) (
A0

vδ(τ ) − i�A1
v

d

dτ
δ(τ )

)
δλ

(
z − X

(
T − τ

2

))]
,

(A4)

SJ2 → J2 =
∫

dT

∫
dτ

∫
dz

[
δλ

(
z − Y

(
T + τ

2

))(
A0

vδ(τ ) − i�A1
v

d

dτ
δ(τ )

)
δλ

(
z − Y

(
T − τ

2

))]
,

so that SJ → J = J1 − J2.
We immediately check that the terms proportional to A1

v vanish identically, while the terms proportional to A0
d cancel out in

the difference between J1 and J2. Hence, J = 0. This result is expected; indeed, the interaction terms in the functional SJ do not
couple forward- and backward-propagating excitations, hence only contributing to the dressing of the one-body propagator.

134305-11



E. SCHNEIDER AND P. FACCIOLI PHYSICAL REVIEW B 89, 134305 (2014)

2. I[X,Y] functional

The dissipative character of the effective theory comes from the non-Hermitian term in the functional (34),

SI ≡ i

β2D�

∫
dt ′′

∫
dt ′

∫
dz

{
�̄(z,t ′)�(z,t ′)

[(
A0

d − i�A1
d

d

d(t ′ − t ′′)

)
δ(t ′ − t ′′)

]
�̄(z,t ′′)�(z,t ′′)

}

= i

β2D�

∫
dT

∫
dτ

∫
dz

{
�̄

(
z,T + τ

2

)
�

(
z,T + τ

2

) (
A0

dδ(τ ) − i�A1
d

d

dτ
δ(τ )

)
�̄

(
z,T − τ

2

)
�

(
z,T − τ

2

)}
. (A5)

After expanding the � and �̄ fields into their components we obtain

SI = SI1 + SI2 + SI3 , (A6)

where

SI1 = i

β2D�

∫
dT

∫
dτ

∫
dz

{
φ′∗

(
z,T + τ

2

)
φ′

(
z,T + τ

2

) (
A0

dδ(τ ) − i�A1
d

d

dτ
δ(τ )

)
φ′∗

(
z,T − τ

2

)
φ′

(
z,T − τ

2

)}
,

SI2 = i

β2D�

∫
dT

∫
dτ

∫
dz

{
φ′′∗

(
z,T + τ

2

)
φ′′

(
z,T + τ

2

) (
A0

dδ(τ ) − i�A1
d

d

dτ
δ(τ )

)
φ′′∗

(
z,T − τ

2

)
φ′′

(
z,T − τ

2

)}
,

SI3 = −2i

β2D�

∫
dT

∫
dτ

∫
dz

{
φ′∗

(
z,T + τ

2

)
φ′

(
z,T + τ

2

) (
A0

dδ(τ ) − i�A1
d

d

dτ
δ(τ )

)
φ′′∗

(
z,T − τ

2

)
φ′′

(
z,T − τ

2

)}
.

(A7)

Let us begin by analyzing the SI1 part. In first-quantization representation it translates as

SI1 → I1 = iA0
d

β2D�

∫ t

0
dT

∫
dzδλ(X − z)δλ(X − z)

− A1
d

β2D

∫ t

0
dT

∫
dτ

∫
dzδ(τ )

d

dτ

[
δλ

(
z − X

(
T + τ

2

))
δλ

(
z − X

(
T − τ

2

))]
(A8)

The term proportional to A1
d vanishes identically, while the term proportional to A0

d is independent of the paths and reads (setting
to d = 3 the number of spatial dimensions)

I1 = it

β2D�

√
det m

(4 Tr mλ2π )3/2
˜A0

d . (A9)

Clearly, by symmetry, we find that SI2 → I2 = I1.
Let us now consider the cross term SI3 , which couples forward- and backward-propagating paths:

SI3 = −2iA0
d

β2D�

∫
dT

∫
dz φ′∗(z,T )φ′(z,T )φ′′∗(z,T )φ′′(z,T )

+ 2A1
d

β2D

∫
dT

∫
dτ

∫
dzδ(τ )

d

dτ

[
φ′∗

(
z,T + τ

2

)
φ′

(
z,T + τ

2

)
φ′′∗

(
z,T − τ

2

)
φ′′

(
z,T − τ

2

)]
. (A10)

Translating into the first-quantization form, we have SI3 → I3, with

I3 = −2iA0
d

β2D�

∫
dT

∫
dzδλ(z − X(T ))δλ(z − Y(T ))

+ 2A1
d

β2D

∫
dT

∫
dτ

∫
dzδ(τ )

d

dτ

[
δλ

(
z − X

(
T + τ

2

))
δλ

(
z − Y

(
T − τ

2

))]
(A11)

After writing explicitly the smeared representation of the δ function and evaluating the corresponding Gaussian integrals, we find

I3 =
√

det m

β2D� (4 Tr mπλ2)3/2

∫ t

0
dT

{
e

−mij

4 Tr mλ2 (X−Y )i (X−Y )j

(
−i2A0

d + �A1
d

2 Tr mλ2
mij (Y − X)i(Ẏ + Ẋ)j

)}
. (A12)
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