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The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of
classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a
part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment,
is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it
is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found
promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular
dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial,
especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored
noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet
efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the
exactly solvable case of a harmonic oscillator coupled to a Debye bath.
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I. INTRODUCTION

Nanoscale devices and materials are becoming increasingly
important in the development of novel technologies. In many
of the application areas of these new nanotechnologies, the
materials and devices are part of a driven system in which
understanding their nonequilibrium properties is of utmost
importance. Of particular interest in many applications is
understanding the thermal conductivity of materials (i.e.,
molecular junctions [1,2], nanotubes [3–7], nanorods [8],
nanowires [9], semiconductors [10]) and the heat transport
within nanodevices [11–13]. Other applications in which
the nonequilibrium properties of materials are of interest
include (a) the bulk energy dissipation in crystals due to
an excited point defect [14] or crack propagation [15]; (b)
interfacial chemical reactions between adsorbed molecules
and the surface that generate excess energy which is dissipated
into the surface [16,17]; (c) surfaces interacting with energetic
lasers [18], atomic/ionic [19,20] or molecular beams [21] when
substantial energy is released along the particles trajectory into
the surface; (d) in tribology, where two surfaces shear upon
each other with bonds between them forming and breaking
that results in consuming and releasing a considerable amount
of energy [22–24]; and (e) molecules which are driven by a
heat gradient [25].

Over the years, molecular dynamics (MD) simulations have
proven to be a powerful and yet simple tool for investigating
the vibrational energy dissipation of atoms. There are several
thermostats that can be used in MD simulations, which have
been described in great detail in [26] to sample a canonical
distribution of the system at a given volume and temperature:
Andersen [27], Nosé [28,29], Hoover [30], Langevin [31], and
other stochastic thermostats [32]. However, these methods can
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only enable the modeling systems of interest in thermodynamic
equilibrium corresponding to the given volume, temperature,
and number of particles.

At the same time, these equilibrium thermostats are increas-
ingly being applied to simulations studying nonequilibrium
processes including tribology [33,34], energy dissipation [35],
crack propagation [15], heat transport [7,36–40], and irra-
diation [41]. In some instances [15,33,41], the equilibrium
thermostats are applied to all atoms of the system in order
to impose a specific temperature, while in other studies
[7,34–40], the Nosé [28], Hoover [30], or Berendsen [42]
thermostats were used to thermostat only certain regions of the
systems, although, strictly speaking, they were only proven to
work if applied to the whole system (and additionally the
Berendsen thermostat is not truly canonical). When these
equilibrium thermostats are applied to nonequilibrium MD
simulations, they introduce artifacts into the resulting trajec-
tories in these simulations. For example, in nanotribology MD
simulations, the most commonly used method to thermostat
the system is by applying a Langevin thermostat only in the
direction perpendicular to the shear plane of the system [43],
but this method has limitations at high shear rates [43] which
are required to study friction of low viscosity fluids [44].

An exact and elegant solution to this problem is provided by
the generalized Langevin equation (GLE) [45]. Under rather
general assumptions concerning the classical Hamiltonian of
the open system and its interaction with its surroundings,
assumed to be harmonic, one arrives at non-Markovian
dynamics of the open system with multivariate Gaussian
distributed random force and the memory kernel that is shown
to be exactly proportional to the random force autocorrelation
function [46]. Although the GLE has been around for a
while (see Ref. [46] and references therein), its application
to interesting simulated systems has only recently become
realized. Ceriotti and collaborators [47–49] have utilized the
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GLE approach to develop an efficient equilibrium thermostat
for improving the convergence during the advanced sampling
of the degrees of freedom (DOFs) within a system. Others have
used a similar approach to generate quantum heat baths that
can be utilized in MD simulations of both equilibrium [50,51]
and out-of-equilibrium systems [52,53].

In this paper, we present a very efficient algorithm which
enables one to solve the GLE numerically taking into account
both of its fundamental features, namely, its non-Markovian
character and the colored noise. Moreover, the proposed
algorithm allows one to solve a realistic GLE with the noise
and the memory kernel entering the memory term, which can
be calculated from a realistic Hamiltonian of the entire system
consisting of both the open system and the environment. The
aim in developing this method is so that we will be able to
apply it to MD simulations of driven systems that are out
of equilibrium and therefore provide a fundamentally sound
nonequilibrium thermostat.

The remainder of the paper will present in Sec. II the
underlying mathematical development of the GLE equations
and the algorithm itself, while the example of a harmonic
oscillator coupled to a harmonic bath on which we have tested
the algorithm is given in Sec. III. Finally, conclusions are
presented in Sec. IV.

II. GLE FOR SOLIDS

Let us start by considering a solid divided into two regions:
the open system, hereafter referred to simply as the system,
consisting of a finite, possibly small, portion of the solid, and
the rest of the solid, hereafter the bath, which is assumed
to be large enough to be faithfully described in terms of its
thermodynamic properties, e.g., its temperature T .

A. Equations of motion for a system coupled to the bath

Let us consider a system-bath interaction modeled by the
classical Lagrangian L ≡ Lsys + Lbath + Lint, where

Lsys (r,ṙ) =
∑
iα

1

2
miṙ

2
iα − V (r) , (1)

Lbath (u,u̇) =
∑
lγ

1

2
μlu̇

2
lγ − 1

2

∑
lγ

∑
l′γ ′

√
μlμl′ulγ Dlγ,l′γ ′ul′γ ′ ,

(2)

Lint (r,u) = −
∑
lγ

μlflγ (r) ulγ . (3)

Here, index i = 1, . . . ,N labels the system atoms, their masses
being mi . The positions of the system atoms are given by
vectors ri = (riα) with the Greek index α indicating the
appropriate Cartesian components, i.e., riα gives the Cartesian
component α of the position of atom i.Lsys is the Lagrangian of
the system with potential energy V (r), and the vector r collects
the Cartesian components of all the positions of the system
atoms. Similarly, the vector ṙ collects the velocities of all
the system atoms. The Lagrangian Lbath describes a harmonic
bath and the index l = 1, . . . ,L labels the bath atoms, their
masses being μl . The displacements of the bath atoms from

their equilibrium positions are given by vectors ul = (ulγ ),
with the Greek index γ indicating the appropriate Cartesian
components. The vector u collects the Cartesian components
of all the displacements of the bath atoms. Similarly, the
vector u̇ collects all the velocities of the bath atoms. As the
bath is described in the harmonic approximation, the potential
energy of the bath is quadratic in the atomic displacements,
the matrix D = (Dlγ,l′γ ′ ) being the dynamic matrix of the bath.
The system-bath interaction defined in Lint has been chosen to
be linear in u in order to have Lbath + Lint harmonic in the bath
DOFs. Note, however, that the dependence of the interaction
term on the system DOFs (via flγ (r)) remains arbitrary.

From the Lagrangian equations (1)–(3), the following
equations of motion (EOMs) for the system and bath DOFs
are derived:

mir̈iα = −∂V (r)

∂riα

−
∑
lγ

μlgiα,lγ (r) ulγ , (4)

μlülγ = −
∑
l′γ ′

√
μlμl′Dlγ,l′γ ′ul′γ ′ − μlflγ (r) , (5)

where giα,lγ (r) = ∂f lγ (r) /∂riα . Equation (5) can be solved
analytically [46] to give

ulγ (t ; r) =
∑
l′γ ′

√
μl′

μl

[
�̇lγ,l′γ ′(t)ul′γ ′(−∞)

+�lγ,l′γ ′(t)u̇l′γ ′(−∞)

−
∫ t

−∞
�lγ,l′γ ′ (t − t ′)fl′γ ′(r(t ′))dt ′

]
, (6)

where ulγ (−∞) and u̇lγ (−∞) are the initial positions and
velocities of the bath atoms, which, at variance with Ref. [46],
are set at t → −∞ for numerical convenience (see Sec. II D).
In Eq. (6), we have made use of the resolvent

�lγ,l′γ ′(t − t ′) =
∑

λ

v
(λ)
lγ v

(λ)
l′γ ′

ωλ

sin (ωλ(t − t ′)), (7)

where the bath normal modes v(λ) = (v(λ)
lγ ) and frequencies ωλ

are defined via the usual vibration eigenproblem:∑
l′γ ′

Dlγ,l′γ ′v
(λ)
l′γ ′ = ω2

λv
(λ)
lγ . (8)

By first substituting Eq. (6) into (4) and then performing an
integration by parts [46], the following EOMs for the system
are found:

mir̈iα = −∂V̄ (r)

∂riα

−
∫ t

−∞

∑
i ′α′

Kiα,i ′α′ (t,t ′; r)ṙi ′α′ (t ′)dt ′

+ ηiα (t ; r) . (9)

There are three terms in the right-hand side. The first term is
a conservative force from the effective potential energy of the
system defined as

V̄ (r) = V (r) − 1

2

∑
lγ

∑
l′γ ′

√
μlμl′flγ (r) 	lγ,l′γ ′ (0) fl′γ ′ (r) ,

(10)

134303-2



GENERALIZED LANGEVIN EQUATION: AN EFFICIENT . . . PHYSICAL REVIEW B 89, 134303 (2014)

which includes a polaronic correction [the second term in
Eq. (10)] as the equilibrium positions of the bath atoms are
modified by the linear system-bath interaction defined in
Eq. (3). The second term in Eq. (9) describes the friction
forces acting on the atoms in the system; this term depends
on the whole trajectory of system atoms prior to the current
time t , i.e., this term explicitly contains memory effects. The
corresponding memory kernel is given by

Kiα,i ′α′(t,t ′; r) =
∑
lγ

∑
l′γ ′

√
μlμl′giα,lγ (r(t))

×	lγ,l′γ ′(t − t ′)gi ′α′,l′γ ′(r(t ′)). (11)

Finally, the last term in the right-hand side of Eq. (9) describes
the stochastic (and hence nonconservative) forces given by

ηiα (t ; r) = −
∑
lγ

∑
l′γ ′

√
μlμl′giα,lγ (r (t) )

× (
�̇lγ,l′γ ′ (t)ul′γ ′(−∞) + �lγ,l′γ ′(t)u̇l′γ ′(−∞)

)
.

(12)

Both the memory kernel and the dissipative forces are (causal)
functionals of the open system atomic trajectories r (t). The
bath polarization matrix used in Eqs. (10) and (11) is defined
as the integral of the resolvent [Eq. (7)], so that

	lγ,l′γ ′(t − t ′) =
∑

λ

v
(λ)
lγ v

(λ)
l′γ ′

ω2
λ

cos (ωλ(t − t ′)). (13)

For an infinite bath possessing a continuum phonon spectrum,
the polarization matrix decays to zero in the limit of t − t ′ →
∞. Note that since t > t ′ in Eq. (11), the polarization matrix
can be defined just for t − t ′ � 0. To define its Fourier
transform (FT)

	lγ,l′γ ′ (ω) =
∫ ∞

−∞
	lγ,l′γ ′ (s) e−iωsds, (14)

where s = t − t ′, it is convenient to extend the definition of the
polarization matrix also to the negative times t − t ′ < 0. In that
respect, various choices are possible. One possibility is that the
polarization matrix is defined by Eq. (13) for all times and is
therefore an even function of time decaying to zero at the |t −
t ′| → ∞ limit. Another possibility is to impose the causality
condition on the polarization matrix by requiring that it is
equal to zero for t − t ′ < 0, i.e., one can introduce the causal
polarization matrix 	̃lγ,l′γ ′(t − t ′) = θ (t − t ′)	lγ,l′γ ′(t − t ′),
where θ (t) is the Heaviside step function. In that case, the
real and imaginary parts of the polarization matrix 	̃lγ,l′γ ′ (ω)
satisfy the Kramers-Kronig relationships. This choice has an
advantage as the corresponding memory kernel will be also
causal. Hence, the upper limit in the time integral in the GLE
[Eq. (9)] can be extended to infinity which facilitates using the
FT when required. We shall use a tilde hereafter to indicate
causal quantities.

The polarization matrix and the memory kernel satisfy the
obvious symmetry identities:

	lγ,l′γ ′(t − t ′) = 	l′γ ′,lγ (t − t ′), (15)

Kiα,i ′α′ (t,t ′; r) = Ki ′α′,iα(t ′,t ; r). (16)

As it follows from Eq. (13), to calculate the exact memory
kernel, the bath vibration eigenproblem (8) must be solved
first as the bath dynamics is encoded in its polarization matrix
	lγ,l′γ ′(t − t ′); the latter is the central factor in both the
memory kernel and the polaronic correction in Eq. (10).

The system-bath coupling has three important effects: (i) it
modifies the equilibrium configuration of the system atoms
due to the polaronic correction in Eq. (10) (the polaronic
effect); (ii) the memory term is responsible for the system
energy dissipation (i.e., friction) by draining energy from the
system; (iii) finally, atoms of the system experience stochastic
forces (12) due to the last term in Eq. (9) which on average
bring energy into the system. The last two effects are better
understood by looking at the time derivative of the system
energy:

d

dt

(
1

2

∑
iα

mi ṙ
2
iα + V̄ (r)

)

= −
∫ t

−∞

∑
iα

∑
i ′α′

ṙiα(t)Kiα,i ′α′ (t,t ′; r)ṙi ′α′(t ′)dt ′

+
∑
iα

ṙiα(t)ηiα(t ; r), (17)

which depends on two apparently uncorrelated contributions:
the first one describes the energy drain, while the second one
describes the work on the system atoms by the random forces.

The dissipative forces defined in Eq. (12) depend on a large
number of unknown initial positions ulγ (−∞) and velocities
u̇lγ (−∞) of the bath atoms. Given that the bath is assumed to
be much larger than the system (in fact, macroscopically large),
and hence the number of bath DOFs is infinite, it is impossible
to specify all of them explicitly and, hence, a statistical
approach is in order to describe the bath [45]. Assuming the
bath (described by the combined Lagrangian Lbath + Lint) is in
thermodynamic equilibrium at temperature T , the stochastic
forces ηiα (t ; r) can be treated as random variables. Indeed, it
has been demonstrated in Ref. [46] that from this assumption
the dissipative forces are well described by a multidimensional
Gaussian stochastic process with correlation functions

〈ηiα (t ; r)〉 = 0, (18)

〈ηiα(t ; r)ηi ′α′(t ′; r)〉 = kBT Kiα,i ′α′(t,t ′; r). (19)

The last equation (19) is equivalent to the (second) fluctuation-
dissipation theorem [45]. As a consequence, Eq. (9) becomes
a stochastic integrodifferential equation for the system DOFs,
which is in essence what the GLE actually is: it describes
dynamics of a (classical) open system which interacts and ex-
changes energy with its environment (i.e., the bath), however,
the bath DOFs are not explicitly present in the formulation.
In particular, if 〈ηiα(t ; r)ηi ′α′ (t ′; r)〉 ∝ δ(t − t ′), the dissipative
forces provide a multidimensional Wiener process (or white
noise), while in the general case, the dissipative forces are said
to give a colored noise.

We also note here that in the case of the white noise the
GLE goes over into the ordinary Langevin dynamics. Indeed,
assuming that the memory kernel decays with time much faster
than the characteristic change in the velocities of the system
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atoms, the velocity ṙi ′α′ (t) can be taken out of the integral;
the integral of the memory kernel then becomes the friction
constant �iα,i ′α′ (r (t) ) multiplying the velocity in the EOMs
as in an ordinary Langevin equation. This transformation is
formally obtained by writing the memory kernel as

Kiα,i ′α′ (t,t ′; r) = 2�iα,i ′α′(r(t))δ(t − t ′) (20)

with the friction constant possibly depending on the positions
of system atoms in a nontrivial way. In this case, the GLE
reduces to the Langevin equation

mir̈iα = − ∂V̄

∂riα

−
∑
i ′α′

�iα,i ′α′ (r) ṙi ′α′ + ηiα (t ; r) (21)

with the white noise ηiα(t ; r) thanks to the (second) fluctuation-
dissipation theorem (19):

〈ηiα(t ; r)ηi ′α′ (t ′; r)〉 = 2kBT �iα,i ′α′ (r (t))δ(t − t ′).

Nontrivial numerical issues must be faced when solving the
GLE, namely, (i) the integral containing the memory kernel
computed at time t is a functional of the system history (i.e.,
atomic trajectories at all previous times t ′ < t); (ii) the colored
noise has to be properly generated, on-the-fly when possible.
Approximations can be introduced to avoid the calculation
of the integral containing the memory kernel at each time
step [51,53,54]. Although in practice they narrow the scope
of the GLE, the analytic on-the-fly colored noise generation
is possible in just a very few cases [55], and in some cases
the noise can not be generated a priori for the duration of the
whole simulation [56–58].

In the following section, we shall present a convenient
alternative which, at the price of introducing some auxiliary
DOFs, yields a simple and general algorithm to (i) generate the
Gaussian stochastic forces on-the-fly using well-established
algorithms for Wiener stochastic processes, (ii) model non-
stationary correlations, when the memory kernel has the
exact structure given by Eq. (11) and hence are not definite
positive [54] and can depend on both t and t ′ separately, not
just on their difference, and (iii) avoid the explicit calculation
of the integral containing the memory kernel so to circumvent
this formidable computation bottleneck.

B. Mapping the GLE onto complex Langevin dynamics
in an extended phase space

Our goal is to generate on-the-fly a stochastic process
associated with a nontrivial colored noise such as in Eqs. (18)
and (19). We shall now show that the GLE equations (9) can
be solved in an appropriately extended phase by introducing
auxiliary DOFs which satisfy stochastic equations of the
Langevin type (i.e., without the integral of the memory kernel
and with the white noise). We shall demonstrate that, by
choosing appropriately the dynamics of the auxiliary DOFs
(i.e., their EOMs), it is possible to provide an approximate,
yet converging, mapping to the original GLE. This strategy is
convenient because there are efficient numerical approaches
to integrate Langevin equations with the white noise [59].
According to this strategy, after the MD trajectories have been
simulated in the extended phase space, the GLE evolution is
obtained by tracing out the auxiliary DOFs. Our approach has
been inspired by a similar, yet more efficiency led, algorithm

devised by Ceriotti et al. [47–49] to provide a GLE thermostat.
The major difference between the two approaches is that
we are constrained by the specific form of the noise and
the memory kernel derived from the actual dynamics of the
realistic system and bath which interact with each other,
where the compound system is a solid, while in Refs. [47–49]
the authors were mostly preoccupied with the efficient, yet
unphysical, thermalization of the system. In addition, our
scheme leads to a rather natural interpretation of the auxiliary
DOFs as effective collective modes of the bath.

Let us introduce 2(K + 1) real auxiliary DOFs s
(k)
1 (t) and

s
(k)
2 (t) (where k = 0,1,2, . . . ,K) which satisfy the following

EOMs:

ṡ
(k)
1 = −s

(k)
1 /τk + ωks

(k)
2 + Ak(t) + Bkξ

(k)
1 , (22)

ṡ
(k)
2 = −s

(k)
2 /τk − ωks

(k)
1 + Bkξ

(k)
2 . (23)

Here, a number of parameters have been introduced: τk sets the
relaxation time for a pair of auxiliary DOFs, ωk provides the
coupling between a pair of auxiliary DOFs s

(k)
1 and s

(k)
2 , and

finally ξ
(k)
1 (t) and ξ

(k)
2 (t) are independent Wiener stochastic

processes with correlation functions〈
ξ

(k)
1 (t)

〉 = 〈
ξ

(k)
2 (t)

〉 = 0,〈
ξ

(k)
1 (t)ξ (k′)

1 (t ′)
〉 = 〈

ξ
(k)
2 (t)ξ (k′)

2 (t ′)
〉 = δkk′δ(t − t ′), (24)〈

ξ
(k)
1 (t)ξ (k′)

2 (t ′)
〉 = 0.

The function Ak(t) and the parameter Bk for each k will be
determined later on. The idea is to emulate the collective
dynamics of the realistic bath by appropriately setting the
free parameters in the definition of Ak (t) and Bk . More
explicitly, we shall approximate the displacements ulγ (t) as
a linear combination of the auxiliary DOFs. This is not
a straightforward change of coordinates, as the number of
auxiliary DOFs, namely 2 (K + 1) , will be always kept much
smaller than the number of the bath DOFs, i.e., K 
 L. The
goal is to achieve a satisfactory approximation of the bath
dynamics through a minimum of possible number of auxiliary
DOFs.

Since the EOMs of the system atoms (4) contain the
contribution from the bath in a form of the linear combination
of the bath atoms displacements with the prefactor μlgiα,lγ (r),
we introduce the auxiliary DOFs into the EOMs (4) for the
system (i.e., physical) DOFs linearly as well:

mir̈iα = − ∂V̄

∂riα

+
∑
lγ

μlgiα,lγ (r)

(∑
k

θ
(k)
lγ s

(k)
1

)
, (25)

where we introduced some yet unknown rectangular matrix
θ

(k)
lγ . We have also included the polaronic correction to the

potential [see Eq. (10)] to match Eq. (9). Note that only s
(k)
1 (t)

enter the dynamics of the physical DOFs; the reason for this
will become apparent later.

We shall now find the appropriate forms for the parameters
θ

(k)
lγ and Bk and the functions Ak(t) which would map the

auxiliary dynamics given by Eqs. (22), (23), and (25) onto the
real dynamics of the physical variables given by the GLE (9).
To this end, we first notice that the Langevin dynamics of the

134303-4



GENERALIZED LANGEVIN EQUATION: AN EFFICIENT . . . PHYSICAL REVIEW B 89, 134303 (2014)

auxiliary DOFs given by Eqs. (22) and (23) possess a natural
complex structure which is revealed by defining the complex
DOF s(k) = s

(k)
1 + is

(k)
2 , satisfying the EOM

ṡ(k) = −
(

1

τk

+ iωk

)
s(k) − Ak(t) + Bkξ

(k),

where ξ (k) = ξ
(k)
1 + iξ

(k)
2 is now a complex Wiener stochastic

process. The above equation has the following solution
(vanishing at t = −∞):

s(k)(t) = −
∫ t

−∞
dt ′
[
Ak(t ′) − Bkξ

(k)(t ′)
]

× exp

[
−
(

1

τk

+ iωk

)
(t − t ′)

]
dt ′.

Substituting the real part of the solution s
(k)
1 (t) = Re[s(k)(t)]

back into Eq. (25), we obtain

mir̈iα = − ∂V̄

∂riα

+
∑
lγ

μlgiα,lγ (r)
∑

k

θ
(k)
lγ

×
∫ t

−∞
Ak(t ′)φk(t − t ′)dt ′ + ηiα(t), (26)

where

ηiα(t) =
∑
lγ

μlgiα,lγ (r)
∑

k

θ
(k)
lγ Bkχk(t), (27)

and, for the sake of notation, we have also introduced

φk(t) = e−|t |/τk cos (ωkt) (28)

and

χk(t) =
∫ t

−∞
e−(t−t ′)/τk

[
ξ

(k)
1 (t ′) cos (ωk(t − t ′))

+ ξ
(k)
2 (t ′) sin (ωk(t − t ′))

]
dt ′. (29)

Since the force ηiα is related directly to the Wiener stochastic
processes and hence must be the only one responsible for the
stochastic forces in Eq. (9), the second term in the right-hand
side of Eq. (26) must then have exactly the same form as the
memory term in the GLE (9). This is only possible with the
following choice of the function Ak(t):

Ak(t) =
∑
lγ

ϑ
(k)
lγ

[∑
iα

giα,lγ (r (t))ṙiα(t)

]

with some additional parameters ϑ
(k)
lγ . This choice leads to the

memory kernel having the same structure as in Eq. (11), but
with the polarization matrix

	lγ,l′γ ′(t − t ′) =
√

μl

μl′

∑
k

θ
(k)
lγ ϑ

(k)
l′γ ′φk(t − t ′).

Since the polarization matrix must be symmetric [see Eq. (15)],
one has to choose ϑ

(k)
l′γ ′ = ζkμl′θ

(k)
l′γ ′ . The proportionality

constant ζk can be chosen arbitrarily; it is convenient to
choose it such that ζk does not depend on k. We shall denote
the proportionality constant by μ̄ which can be thought of
as the mass of the auxiliary DOFs (see below) and, hence,
ϑ

(k)
l′γ ′ = μ̄μl′θ

(k)
l′γ ′ . Finally, we set θ

(k)
lγ = c

(k)
lγ /

√
μ̄μl , where

c
(k)
lγ are new parameters. These definitions finally bring the

polarization matrix into the form

	lγ,l′γ ′(t − t ′) =
∑

k

c
(k)
lγ c

(k)
l′γ ′e

−(t−t ′)/τk cos (ωk(t − t ′)) (30)

and the original EOMs for the physical DOFs [Eq. (25)] can
now be written as

mir̈iα = − ∂V̄

∂riα

+
∑
lγ

√
μl

μ̄
giα,lγ (r)

∑
k

c
(k)
lγ s

(k)
1 , (31)

which when compared with Eq. (4) yield

ul,γ =⇒ 1√
μlμ̄

∑
k

c
(k)
lγ s

(k)
1 , (32)

that is, new variables provide an approximate linear represen-
tation for the actual displacements of the bath atoms.

We now need to make sure that the stochastic force (27)
satisfies Eqs. (18) and (19) which is necessary for the dynamics
of the auxiliary DOFs to mimic correctly that of the actual bath
DOFs. Using the definitions (24) for the Wiener stochastic
processes, Eq. (18) follows immediately. To check the (second)
fluctuation-dissipation theorem [Eq. (19)], we first note that
from the properties of the Wiener stochastic processes ξ

(k)
1 (t)

and ξ
(k)
2 (t), it follows that the correlation function of the

auxiliary function (29),

〈χk(t)χk′(t ′)〉= δkk′e−(t−t ′)/τk cos (ωk(t − t ′))
∫ min(t,t ′)

−∞
e2x/τk dx

= δkk′
τk

2
φk(t − t ′),

depends only on the absolute value of the time difference
|t − t ′| via φk(t − t ′) defined by Eq. (28). This in turn results
in the following correlation function of the noise (27):

〈ηiα(t)ηi ′α′ (t ′)〉 =
∑
lγ

∑
l′γ ′

√
μlμl′giα,lγ (r (t))

×
[

1

μ̄

∑
k

τkB
2
k

2
c

(k)
lγ c

(k)
l′γ ′φk(t − t ′)

]
× gi ′α′,l′γ ′(r(t ′)).

To satisfy the (second) fluctuation-dissipation theorem (19),
one has to choose Bk = √

2kBT μ̄/τk which would make the
correlation function above to be exactly equal to the kBT times
the memory kernel (11) with the polarization matrix given by
expression (30). Therefore, as both the functions Ak(t) and
the constants Bk are determined, we can now fully define the
EOMs for the auxiliary DOFs (22) and (23) as

ṡ
(k)
1 = −s

(k)
1 /τk +ωks

(k)
2 −

∑
lγ

√
μ̄μlc

(k)
lγ

∑
iα

gia,lγ (r (t))ṙiα(t)

+
√

2kBT μ̄

τk

ξ
(k)
1 , (33)

ṡ
(k)
2 = −s

(k)
2 /τk − ωks

(k)
1 +

√
2kBT μ̄

τk

ξ
(k)
2 . (34)
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Equations (31), (33), and (34) together define a set of complex Langevin equations

mir̈iα = − ∂V̄

∂riα

+
∑
lγ

∑
k

√
μl

μ̄
giα,lγ (r) c

(k)
lγ s

(k)
1 ,

ṡ
(k)
1 = − s

(k)
1

τk

+ ωks
(k)
2 −

∑
iα

∑
lγ

√
μlμ̄giα,lγ (r) c

(k)
lγ ṙiα +

√
2kBT μ̄

τk

ξ
(k)
1 , (35)

ṡ
(k)
2 = − s

(k)
2

τk

− ωks
(k)
1 +

√
2kBT μ̄

τk

ξ
(k)
2 ,

which defines the required mapping: the introduction of a finite
number of auxiliary DOFs (s(k)

1 and s
(k)
2 ), as discussed above,

allows one to obtain the EOMs for the physical variables that
are the same as the exact GLE (9), provided that the polariza-
tion matrix (13) is replaced by that shown in expression (30).

The polarization matrix entering the memory kernel and
defined in Eq. (30) is formally different from the GLE coun-
terpart defined in Eq. (13). In practice, by properly choosing
the values of the parameters ωk , τk , and c

(k)
lγ , one can ensure

that the matrix (30) yields a satisfactory approximation of the
original one. As the mass μ̄ does not appear in Eq. (30), it can
be freely adjusted to improve the efficiency of the algorithm.
In principle, this approximation is not trivial as we would
like to represent the bath dynamics through a much smaller
set of auxiliary DOFs, as K 
 L. However, the agreement
is expected to improve as K is increased as more fitting
parameters for the polarization matrix will become available.

Instead of a straightforward fit of the free parameters to
ensure that Eqs. (30) and (13) agree as much as possible
in the time domain, we prefer a scheme which takes full
advantage of the functional form of the bath polarization
matrix. In fact, we find that it is more convenient to ensure that
the two polarization matrices agree in the frequency domain.
Assuming that the polarization matrix (30) is defined as an
even function of its time argument (see the discussion at the
end of Sec. II A), this method is facilitated by the fact that the
FT of the polarization matrix

	lγ,l′γ ′(ω)

=
∑

k

c
(k)
lγ c

(k)
l′γ ′

[
τk

1 + (ω − ωk)2τ 2
k

+ τk

1 + (ω + ωk)2τ 2
k

]
(36)

is real and proportional to the weighted sum of 2(K + 1)
Lorentzians centered at ω = ±ωk and with full width at half
maximum 2/τk . Therefore, after computing independently the
polarization matrix using the bath eigenvectors [Eq. (13)],
one chooses the fitting parameters ωk , τk , and c

(k)
lγ (where

k = 0,1, . . . ,K) in Eq. (30) to provide a good fit for it in the
frequency space. Once the appropriate set of the parameters is
selected, the dynamics of the physical and auxiliary DOFs is
fully defined and should represent the dynamics of our system
surrounded by the realistic bath.

We also note that simple generalization of the above
scheme exists which allows one constructing a mapping
whereby the noise correlation function of the GLE is no longer
proportional to the memory kernel [50,60,61], i.e., could be a

different function also decaying with time. This point is briefly
addressed in Appendix D.

C. Fokker-Planck equation and equilibrium properties

In this section, we start the derivation of our numerical algo-
rithm for solving the stochastic differential equations (31)–(34)
with the white noise. The idea of the method is based on
establishing a Fokker-Planck (FP) equation which is equivalent
to our equations (see, e.g., Refs. [62,63]) and it is similar
to the algorithm proposed by Ceriotti et al. [64]. The FP
equation is rewritten in the Liouville form which then allows
one constructing the required numerical algorithm. In this
section, we focus on the functional form of the FP equation
itself, while the integration algorithm will be discussed in
the next section. In this way, we can (i) demonstrate that the
Langevin dynamics defined by our EOMs for the extended
set (i.e., physical and auxiliary) of DOFs can describe the
thermalization of the actual system to the correct equilibrium
Maxwell-Boltzmann distribution and (ii) devise an efficient
algorithm to integrate our equations. As the general idea of
this derivation is well known, only the final results will be
stated here with some details given in Appendix A.

The FP equation corresponding to Eqs. (31)–(34) is a
deterministic EOM for the probability density function (PDF)
P (r,p,s1,s2,t), where the vectors s1 and s2 collect all auxiliary
DOFs s

(k)
1 and s

(k)
2 , and the vector p collects the Cartesian

components of all the momenta of the system atoms. The PDF
satisfies the appropriate FP equation which we shall write in a
form reminiscent of the Liouville equation [65,66]

Ṗ (r,p,s1,s2,t) = −L̂FPP (r,p,s1,s2,t)

= −(L̂cons + L̂diss)P (r,p,s1,s2,t) , (37)

where we have split the FP Liouvillian operator L̂FP into its
conservative L̂cons and dissipative L̂diss parts (see Appendix A
for some details of the derivation). (The minus sign is conven-
tionally used to stress that the L̂FP is a positive-semidefinite
operator.)

Based on the Liouville theorem in the extended phase
space, the conservative part of the Liouvillian can be written
as [65,66]

L̂cons =
∑
iα

(
ṙiα

∂

∂riα

+ ṗiα

∂

∂piα

)

+
∑

k

(
ṡ

(k)
1

∂

∂s
(k)
1

+ ṡ
(k)
2

∂

∂s
(k)
2

)
, (38)
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where the dynamics associated with this part of the Liouvillian
is given by the following EOMs:

ṙiα = piα

mi

, (39)

ṗiα = − ∂V̄

∂riα

+
∑
lγ

∑
k

√
μl

μ̄
giα,lγ (r) c

(k)
lγ s

(k)
1 , (40)

ṡ
(k)
1 = ωks

(k)
2 −

∑
lγ

√
μ̄μlc

(k)
lγ

∑
iα

gia,lγ (r)
piα(t)

mi

, (41)

ṡ
(k)
2 = −ωks

(k)
1 . (42)

These EOMs correspond to the conservative part of the
dynamics. Indeed, their dynamics conserves the pseudoenergy

εps (r,p,s1,s2) =
∑
iα

p2
iα

2mi

+ V̄ (r)

+ 1

2μ̄

∑
k

[(
s

(k)
1

)2 + (
s

(k)
2

)2]
(43)

as, by using the EOMs of the conservative dynamics written
above, it is easily verified that ε̇ps = 0. Remarkably, this
pseudoenergy consists of two terms, the first being the total
energy of the physical system and the second one just
“harmonically” depending on the auxiliary DOFs and their
masses μ̄.

The remaining dissipative part of the FP operator

L̂diss = −
∑

k

1

τk

[
∂

∂s
(k)
1

(
s

(k)
1 + kBT μ̄

∂

∂s
(k)
1

)

+ ∂

∂s
(k)
2

(
s

(k)
2 + kBT μ̄

∂

∂s
(k)
2

)]
(44)

describes K + 1 pairs of noninteracting FP processes in the
phase space of the auxiliary DOFs which are equivalent to the
Langevin dynamics governed by the EOMs [62,63]

ṡ
(k)
1 = −s

(k)
1 /τk +

√
2kBT μ̄/τkξ

(k)
1 ,

(45)
ṡ

(k)
2 = −s

(k)
2 /τk +

√
2kBT μ̄/τkξ

(k)
2 .

Note that combining the right-hand sides of Eqs. (39)–(42)
and (45) gives the corresponding right-hand sides of the full
EOMs (35), as required.

As a result of the mapping from the complex Langevin
equations (35) to the correspondent FP equation (37), it is now
straightforward to verify that

P (eq) (r,p,s1,s2) ∝ exp(−εps/kBT ) (46)

is a stationary solution of Eq. (37) since L̂consP
(eq) = 0 and

L̂dissP
(eq) = 0 hold separately and hence also L̂FPP

(eq) = 0.
In addition, it can also be proven that Eq. (46) corresponds
to the equilibrium PDF, i.e., the solution of the FP equa-
tion (37) always converges to P (eq) (r,p,s1,s2) at t → ∞ (see
Appendix B).

Finally, as stated at the beginning of Sec. II B, the
physical dynamics defined by the solution of Eq. (9) is
obtained by tracing the auxiliary DOFs out of the solution of

Eqs. (31)–(34). Accordingly, the physical equilibrium PDF is
obtained by tracing out the auxiliary DOFs from Eq. (46):

P (eq) (r,p) ≡
∫ ∏

k

ds
(k)
1 ds

(k)
2 P (eq) (r,p,s1,s2)

∝ exp

[
− 1

kBT

(∑
iα

p2
iα

2mi

+ V̄ (r)

)]
,

which is indeed the expected Maxwell-Boltzmann distribution
(see also discussion in Ref. [46]).

D. Integration algorithm

Equation (37) can be formally integrated for one time step
�t to give

P (r,p,s1,s2,t + �t) = e−�tL̂FPP (r,p,s1,s2,t) ,

which can then be approximated using the second-order
(symmetrized) Trotter expansion of the FP propagator [67]

e−�tL̂FP = e− �t
2 L̂disse−�tL̂conse− �t

2 L̂diss + O(�t3). (47)

Although Eq. (47) gives a second-order approximation
for the exact FP propagator, P (eq) (r,p,s1,s2) is still a
stationary solution of the approximate dynamics since
L̂consP

(eq) (r,p,s1,s2) = 0 and L̂dissP
(eq) (r,p,s1,s2) = 0 hold

separately.
To approximate the action of e−�tLcons , one can split the

conservative part of the Liouvillian into two contributions [66]

L̂r,s1 = −
∑
iα

piα

mi

∂

∂riα

−
∑

k

(
ωks

(k)
2 −

∑
iα

∑
lγ

√
μlμ̄

mi

giα,lγ (r) c
(k)
lγ piα

)
∂

∂s
(k)
1

and

L̂p,s2 =
∑
iα

⎛⎝ ∂V̄

∂riα

−
∑
lγ

∑
k

√
μl

μ̄
giα,lγ (r) c

(k)
lγ s

(k)
1

⎞⎠ ∂

∂piα

+
∑

k

ωks
(k)
1

∂

∂s
(k)
2

and then use again the second-order Trotter decomposition to
obtain

e−�tL̂cons = e− �t
2 L̂p,s2 e−�tL̂r,s1 e− �t

2 L̂p,s2 + O(�t3). (48)

Combining both decompositions, the following approximation
for the time-step propagation of the whole Liouvillian is finally
obtained [67]:

e−�tL̂FP = e− �t
2 L̂disse− �t

2 L̂p,s2 e−�tL̂r,s1 e− �t
2 L̂p,s2 e− �t

2 L̂diss

+O(�t3). (49)

Each factor in Eq. (49) (to be read from right to left)
corresponds to a single step in building up the action of
e−�tL̂FP on P (r,p,s1,s2,t), i.e., all of them in succession
(from right to left) correspond to one time-step propagation
of the MD algorithm. The first and last steps are given by
e− �t

2 L̂diss which account for the integration of the dissipative
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part of the dynamics related to auxiliary DOFs [Eq. (45)].
These equations describe K + 1 pairs of simple noninter-
acting Langevin equations corresponding to the FP equation
Ṗ (s1,s2,t) = −L̂dissP (s1,s2,t). To integrate Eq. (45), we then
use a variant of a well-known algorithm by Ermak and
Buckholz [59,68]

s(k)
x (t) ← aks

(k)
x (t) + bkξ

(k)
x (t) , (50)

where x = 1,2 and ak = e−�t/2τk , bk =
√

kBT μ̄(1 − a2
k ),

while ξ
(k)
1 (t) and ξ

(k)
2 (t) comprise K + 1 pairs of un-

correlated Wiener stochastic processes with correlation
functions 〈ξ (k)

1,2 (t)〉 = 0, 〈ξ (k)
x (t) ξ (k′)

x (t ′)〉 = δkk′δ(t − t ′), and

〈ξ (k)
1 (t) ξ

(k′)
2 (t ′)〉 = 0. Note that Eq. (50) reduces to

s(k)
x (t) ←

√
kBT μ̄ξ (k)

x (t)

in the strong friction limit τk → 0.
For the conservative part of the dynamics [Eqs. (39)–(42)],

one can then work out a generalization of the velocity-Verlet
algorithm [65,66]. In particular, the action of the operator
e−�tL̂p,s2 /2 is equivalent to the following step in the propagation
algorithm [66]:

piα ← piα +
⎛⎝−∂V̄ (r)

∂riα

+
∑
lγ

∑
k

√
μl

μ̄
giα,lγ (r) c

(k)
lγ s

(k)
1

⎞⎠ �t

2

(51)

and

s
(k)
2 ← s

(k)
2 − ωks

(k)
1

�t

2
. (52)

These equations can also formally be obtained by integrating
over the same time Eqs. (40) and (42). Similarly, from the
action of the operator e−�tL̂r,s1 , one obtains the following set
of equations for the propagation dynamics [66]:

riα ← riα + piα

mi

�t (53)

and

s
(k)
1 ← s

(k)
1 +

(
ωks

(k)
2 −

∑
iα

∑
lγ

√
μlμ̄

mi

giα,lγ (r) c
(k)
lγ piα

)
�t .

(54)

Note that, in the limiting case of giα,lγ (r) = 0, the equations
above factorize into two independent velocity-Verlet steps for
the physical and auxiliary DOFs.

Finally, combining Eqs. (50) and (51)–(54), the following
algorithm for one time-step �t integration is found:

s(k)
x ← aks

(k)
x + bkξ

(k)
x , x = 1,2

piα ← piα +
⎛⎝−∂V̄ (r)

∂riα

+
∑
lγ

∑
k

√
μl

μ̄
giα,lγ (r) c

(k)
lγ s

(k)
1

⎞⎠ �t

2
,

s
(k)
2 ← s

(k)
2 − ωks

(k)
1

�t

2
,

riα ← riα + piα

mi

�t,

s
(k)
1 ← s

(k)
1 +

⎛⎝ωks
(k)
2 −

∑
iα

∑
lγ

√
μlμ̄

mi

giα,lγ (r) c
(k)
lγ piα

⎞⎠�t,

piα ← piα +
⎛⎝−∂V̄ (r)

∂riα

+
∑
lγ

∑
k

√
μl

μ̄
giα,lγ (r) c

(k)
lγ s

(k)
1

⎞⎠ �t

2
,

s
(k)
2 ← s

(k)
2 − ωks

(k)
1

�t

2
,

s(k)
x ← aks

(k)
x + bkξ

(k)
x , x = 1,2. (55)

It is essential that the equations above are executed in the
given order [67], as the accuracy and domain of applicability
of the algorithm depend strongly on the ordering [69,70].
By iterating over the single time-step propagation defined by
Eq. (55), it is possible to efficiently integrate our original set of
Eqs. (31)–(34). Performing such simulations W times, one ob-
tains W trajectories (rw(t),pw(t),sw

1 (t),sw
2 (t)) in the extended

phase space w = 1, . . . ,W . The evolution of any physical
observable A (r,p,t) is then retrieved by taking the ensemble
average

〈A〉 (t) ≡ 1

W

∑
w

A (rw,pw,t) . (56)

As the observable A does not depend of the auxiliary DOFs,
while the trajectories do, in the ensemble average defined
above the auxiliary DOFs are effectively traced out.

We finally note that the propagation algorithm used in
this work [67] provides very accurate numerical averages of
velocity depending functions, e.g., the velocity autocorrelation
function studied in Secs. III B and III D. However, even more
accurate algorithms can be used if configurational averages
need to be evaluated [70].

III. A SINGLE HARMONIC IMPURITY IN A DEBYE BATH

The main objective of this paper is to demonstrate an
efficient numerical algorithm for solving the GLE defined in
Eq. (9) with generic memory kernel and stochastic forces
corresponding to a colored noise. To this end, we need a
simple, yet realistic, model of the bath dynamics for which
an analytic expression for the memory kernel is available.
This requirement is indeed crucial for a convincing validation
of the algorithm introduced in Sec. II D. Therefore, we assume
the bath to be a crystalline solid with the lattice vectors l.

A. Debye bath

For the sake of simplicity, we carry out the calculation
for a three-dimensional (3D) cubic lattice, although the
following ideas can be applied to nonorthogonal lattices and
low-dimensional solids as well. In addition, we assume there
is a single atom of mass μ̄ in the unit cell. Then, the vibration
eigenproblem (8) is solved analytically yielding eigenvectors
v

(λq)
lγ = δλγ eiq·l/

√
Nl , where q is a vector in the Brillouin zone

(BZ), Nl the total number of q vectors, and e(λ)
γ = (δλγ ) are the

three Cartesian vectors for the three acoustic branches labeled
by λ.
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To provide an analytical expression for the memory kernel,
it is convenient to consider a Debye model in which the
vibration frequencies depend linearly on the modulus of the
corresponding Brillouin vector, i.e., ωq = c |q|. In this case,
the bath polarization matrix in Eq. (13) reads as

	lγ,l′γ ′(t − t ′) = δγ γ ′
1

Nl

∑
q

eiq·(l−l′)

ω2
q

cos (ωq(t − t ′)). (57)

In the thermodynamic limit, the sum in Eq. (57) can be replaced
by an integral over a sphere of radius qD = ωD/c, where ωD

is the Debye frequency, and then

	lγ,l′γ ′(t − t ′)

= δγ γ ′
vc

(2π )3

∫ qD

0
cos (cq(t − t ′))q2dq

×
∫ π

0

eiq|l−l′ | cos θ

c2q2
2π sin θ dθ = δγ γ ′	l−l′ (t − t ′) (58)

with the reduced bath polarization matrix defined as

	l−l′ (t − t ′)

= vc

4π2c2|l − l′|
[

Si

(
ωD

(
|t − t ′| + |l − l′|

c

))
− Si

(
ωD

(
|t − t ′| − |l − l′|

c

))]
. (59)

In Eq. (59), the function Si(x) = ∫ x

0
sin(x ′)

x ′ dx ′ is the integral
sine function and vc is the volume of the unit cell. The reduced
polarization matrix 	l−l′ (t − t ′) demonstrates an oscillating
character eventually decaying to zero at the limit of |t − t ′| →
∞ as is shown in Fig. 1. This is the kind of behavior which
can be approximated by the expansion type of Eq. (30) by
an appropriate choice of the free parameters. In particular, for
l = l′, the bath polarization matrix does not depend on the
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FIG. 1. (Color online) The polarization matrix of Eq. (59) as a
function of time t for three values of L = |l − l′|. We used ωD = v =
1 and vc = 4π 2.

lattice vectors and is given by

	lγ,lγ (t − t ′) = vc

2πc3

sin (ωD(t − t ′))
π (t − t ′)

(60)

= 3π

ω3
D

sin (ωD(t − t ′))
π (t − t ′)

.

In Eq. (60), we have made use of the identity ω3
Dvc =

6π2c3. Note that the polarization matrix decays to zero when
|t − t ′| → ∞ and is an even function of its time argument, as
required by Eq. (13). By substituting Eq. (60) into Eq. (11),
the following memory kernel for the Debye model is finally
obtained:

Kiα,i ′α′ (t,t ′; r) = μ̄
∑

lγ

giα,lγ (r(t))
3π

ω3
D

×
[

sin (ωD(t − t ′))
π (t − t ′)

]
gi ′α′,lγ (r(t ′)). (61)

Without compromising the validation of the algorithm,
we can still devise an interesting test case (see Sec. III B)
by confining our attention to a model containing one atom
moving along a single Cartesian coordinate (say z) near the
zero lattice site l = 0. Assuming the atom-bath interaction to
be short ranged, only the nearest-neighbor interactions must
be included. Finally, to simplify the model even further, we can
adopt an approximation giα,lγ (r) = g0δl0δαzδγ z in Eq. (61) to
obtain

Kzz(t,t
′; r) = 3π

ω3
D

μ̄g2
0

sin (ωD(t − t ′))
π (t − t ′)

. (62)

Hereafter, we will refer to any bath whose memory kernel can
be expressed as in Eq. (62) as a Debye bath. Note that in our
actual calculations described below, the factor g0 is a constant
and does not depend on the atom position.

In the following, we assume that one atomic impurity is
coupled to the Debye bath. We also assume that, in the limit
of vanishingly small coupling with the bath, this impurity
can be modeled as a DOF with mass μ̄ subject to the
harmonic potential V (z) = μ̄ω̄2

0z
2/2. Within the same model

and according to the polaronic effect defined in Eq. (10),
the coupling to the Debye bath causes a softening of this
harmonic potential. In particular, by substituting Eq. (60) and
flγ (r) = giα,lγ (r) z = g0δl0δαzδγ zz into Eq. (10), one can write

V̄ (r) = V (r) − 1

2

(
3μ̄g2

0

ω2
D

)
z2 = 1

2
μ̄ω̄2

pz2, (63)

where ω̄p is the effective harmonic frequency of the impurity.
As the coupling exceeds the critical value g0 = ωDω̄0/

√
3,

ω̄p becomes negative leading to an artificial mechanical
instability (the impurity “falls down” into the bath) [71].
However, in the next section we shall see that, even before
this critical value is hit, the very distinction between bath
and impurity is lost, as seen, e.g., in the FT of the velocity
autocorrelation function (see Fig. 2). In particular, for such a
strong system-bath coupling, the linear model used in Eq. (3)
might no longer be applicable and a nonlinear generalization
should be considered [71].
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FIG. 2. (Color online) FT of the velocity autocorrelation function
�vv (ω) of Eq. (79), from GLE dynamics with a Debye bath [see
Eq. (66)] for different system-bath coupling strengths. The natural
frequency of the system is ω̄0 = 0.8ωD and the coupling g0 = γ ω̄2

0.
The contributions from the delta functions in Eq. (79) are represented
by vertical spikes.

Finally, we consider the limiting case of a Langevin
dynamics with memory kernel as in Eq. (20). This case can be
formally considered by noticing that in the limit of ωD → ∞,
the function in the square brackets in the right-hand side of
Eq. (61) tends to the delta function, so that one can write

Kzz(t,t
′) = 2�zzδ(t − t ′), (64)

where

�zz ≡ 3π

2

μ̄

ω3
D

g2
0 . (65)

As a characteristic “memory time” for the memory kernel in
Eq. (62), one may choose the time π/2ωD when the memory
kernel drops to zero. Therefore, for times t 
 π/2ωD , the
Debye bath “bears no memory.” In the limit of ωD → ∞, this
characteristic time becomes vanishing small, as expected.

B. Analytic solution

To test the integration algorithm explained in Sec. II D,
we consider the following simple model in which a harmonic
oscillator is coupled to a Debye bath:

μ̄r̈ = −μ̄ω̄2
pr −

∫ ∞

−∞
K̃zz(t − t ′)ṙ(t ′)dt ′ + η1(t), (66)

where the causal memory kernel K̃zz(t − t ′) = θ (t −
t ′)Kzz(t − t ′) has been employed, Kzz(t − t ′) is defined in
Eq. (62), and ω̄p is the frequency of the harmonic oscillator
reduced from its natural frequency ω̄0 by the polaronic effect
[see Eq. (63)]. The FT of the memory kernel Kzz(t − t ′) is
calculated easily as

Kzz(ω) = 3πμ̄g2
0

ω3
D

χD(ω) = 2�zzχD(ω), (67)

where the characteristic function χD (ω) is defined so that
χD(ω) = 1 when ω ∈ [−ωD,ωD] and zero otherwise, and
�zz has been defined in Eq. (65). The FT of the causal

memory kernel K̃zz (ω) = K̃1 (ω) + iK̃2 (ω) is calculated first
by noticing that Kzz (ω) = 2 Re[K̃zz(ω)] ≡ 2K̃1 (ω) and then
using the Kramers-Kronig relation to calculate its imaginary
part K̃2 (ω). By introducing the bath “self-energy”

�(ω) = i

μ̄
K̃zz(ω) = �1(ω) + i�2(ω), (68)

one obtains for it on the upper side of the real ω axis

�(ω) = �zz

πμ̄

[
ln

∣∣∣∣ω − ωD

ω + ωD

∣∣∣∣+ iπχD(ω)

]
(69)

so that �2 (ω) = (�zz/μ̄) χD (ω), while the expression

�(ω) = �zz

πμ̄
ln

(
ω − ωD

ω + ωD

)
(70)

is valid in the whole complex plane (a branch cut on the real
axis over the interval [−ωD,ωD] is assumed). For |ω| > ωD ,
the imaginary part for the self-energy is zero: �2 (ω) = 0. Note
that in the Markovian limit ωD → ∞, the self-energy becomes
� (ω) = i�zz/μ̄, as expected from Eqs. (64) and (68).

The FT of the solution of Eq. (66) reads as

r(ω) = r̄(ω) + 1

μ̄

η1(ω)

ω̄2
p − ω2 + ω�(ω)

(71)
= r̄(ω) + G(ω)η1(ω),

where r̄ (ω) is a solution of the homogeneous equation[
ω̄2

p − ω2 + ω�(ω)
]
r̄(ω) = 0 (72)

and G(ω) is the FT of the Green’s function satisfying the
equation [

ω̄2
p − ω2 + ω�(ω)

]
G(ω) = 1. (73)

Equation (73) corresponds to the FT of Eq. (66) in which the
noise η1(t) has been replaced by the Dirac delta function δ(t).

To compute r̄ (ω), we use an exponential ansatz r(t) ∼ eiω̄t ,
where ω̄ is a real frequency satisfying the equation

ω̄2
p − ω̄2 + ω̄�(ω̄) = 0. (74)

If such a solution exists, it yields persistent oscillations which
can not be neglected as a transient phenomena. It can easily
be seen that if ω̄ is a root of this equation, then −ω̄ is also a
root, i.e., the roots come in pairs ±ω̄. In addition, real roots of
Eq. (74) are possible only if |ω̄| > ωD , i.e., when �2(ω̄) = 0.
Since the exponential solutions can be written in terms of delta
functions in the Fourier space, we can finally write

r(ω) =
∑

j

[Cjδ(ω − ω̄j ) + C∗
j δ(ω + ω̄j )] + G(ω)η1(ω),

(75)

where ±ω̄j are the roots of Eq. (74) and the arbitrary constants
Cj and C∗

j are chosen to satisfy the initial conditions of the
problem. In the time domain we obtain by taking the inverse
FT of the expression in Eq. (75)

r(t) = 2
∑

j

Re[Cje
iω̄j t ] +

∫ ∞

−∞
G(t − t ′)η1(t ′)dt ′.

Note that the solution of the homogeneous problem r̄(t) =
2
∑

j Re[Cje
iω̄j t ] indeed describes persistent (i.e., undamped)
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oscillations of the system. By graphical and numerical meth-
ods, one can find that there is just one pair of roots ±ω̄1 which
satisfy the constraint |ω̄1| > ωD for such a Debye bath, i.e.,
there may only be one term in the sum over j :

r(t) = 2C1 cos(ω̄1t) +
∫ ∞

−∞
G(t − t ′)η1(t ′)dt ′. (76)

Persistent oscillations also appear in the velocity autocor-
relation function. From Eq. (66), one obtains the equation
satisfied by the FT of the velocity v (t) = ṙ (t), namely,[

ω̄2
p − ω2 + ω�(ω)

]
v(ω) = iω

μ̄
η1(ω)

and then the equation satisfied by its square modulus∣∣ω̄2
p − ω2 + ω�(ω)

∣∣2|v(ω)|2 = ω2

μ̄2
|η1(ω)|2. (77)

By using the results reported in Appendix C [in particular,
Eq. (C4)], one can see that Eq. (77) provides a relation between
the FT of the velocity autocorrelation function �vv (ω) and the
FT of the noise autocorrelation function �η1η1 (ω), such that∣∣ω̄2

p − ω2 + ω�(ω)
∣∣2�vv(ω) = ω2

μ̄2
�η1η1 (ω). (78)

From Eq. (19), stating the (second) fluctuation-dissipation
theorem, we also know that �η1η1 (ω) = kBT Kzz (ω) =
2μ̄kBT �2 (ω). Hence, the solution of Eq. (78) can be written
as

�vv(ω) = W1[δ(ω − ω̄1) + δ(ω + ω̄1)]

+
(

kBT

μ̄

)
2ω2�2(ω)[

ω̄2
p − ω2 + ω�1(ω)

]2 + ω2�2
2(ω)

,

(79)

where, as in Eq. (76), a homogeneous term must also be
included. Note that the frequency of the persistent oscillation in
Eq. (79) is the same as in Eq. (76) containing the real solutions
±ω̄1 of Eq. (74). To determine the (real) constant W1, we note
that the equipartition theorem requires that

lim
t ′→t

〈v(t)v(t ′)〉 = kBT

μ̄
,

which yields the required condition for W1:∫ +∞

−∞
�vv (ω) dω

= 2W1 +
(

kBT

μ̄

)
×
∫ ωD

−ωD

2ω2�2 (ω) dω[
ω̄2

p − ω2 + ω�1(ω)
]2 + ω2�2

2 (ω)
= kBT

μ̄

(80)

since for frequencies outside of the interval (−ωD,ωD), the
self-energy is real [i.e., �2(ω) = 0].

In Fig. 2, we plot the FT of the velocity autocorrelation
function from the GLE dynamics defined in Eq. (79), having
set ω̄0 = 0.8ωD and g0 = γ ω̄2

0. For a very weak coupling, i.e.,
γ = 0.1, �vv (ω) presents two symmetric resonances centered

TABLE I. Effective harmonic frequency ω̄p , renormalized har-
monic frequency ω̄res, persistent oscillation frequency ω̄1, and weight
W1 (see text) for several values of the dimensionless system-bath
coupling γ = g0/ω̄

2
0.

γ 0.0 0.1 0.2 0.3 0.4 0.5

ω̄p/ωD 0.8 0.7923 0.7687 0.7276 0.6659 0.5769
ω̄res/ωD 0.8 0.7990 0.7958 0.7891 0.7751 0.7419
ω̄1/ωD n/a 1.0000 1.0000 1.0004 1.0064 1.0218
W1/

(
kBT

μ̄

)
n/a 0.0000 0.0000 0.0071 0.0593 0.1205

at ω = ±ω̄res ≈ ±ω̄0 inside the interval ω ∈ (−ωD,ωD) [see
Table I for accurate numerical values of ω̄res obtained by
minimizing

∣∣ω̄2
p − ω2 + ω�1(ω)

∣∣ for ω ∈ (−ωD,ωD)]. The
resonance frequency ω̄res decreases as the coupling increases
as a consequence of the polaronic correction discussed above.
As the coupling gets stronger, the two resonances broaden and
they lose their spectral weight as the integral

∫ +ωD

−ωD
�vv (ω) dω

decreases. At the same time, the complementary spectral
contribution from the delta functions outside the interval
ω ∈ (−ωD,ωD), i.e., the value of W1, increases, as well as the
frequency of the persistent oscillation ω̄1 > ωD [see Table I
for accurate numerical values obtained by solving Eq. (74)
with respect to ω̄ with the constraint ω̄ > ωD].

As discussed in the previous section, a mechanical instabil-
ity due the polaronic effect is predicted for g0 > ωDω̄0/

√
3, or

γ > 0.7217 for our choice of the parameters. Note, however,
that for any given value of 0 < γ < 0.7217, ω̄res > ω̄p, i.e.,
the resonance in �vv (ω) is blue-shifted with respect to the
effective harmonic frequency of the impurity (see Table I). This
blue-shift is an analog of the so-called Lamb shift of quantum
optics [72] and does not appear in ordinary, i.e., Markovian,
Langevin dynamics [71] for which �1(ω) = 0 [see Eq. (81)
and the discussion after Eq. (70)].

In practice, the blue-shift caused by the real part of the
bath “self-energy” �1(ω) results in a slower convergence of
ω̄res to zero as γ approaches the critical value for mechanical
instability. In other words, the interaction with the bath
counteracts the polaronic effect so that, e.g., for γ = 0.5,
the renormalized harmonic frequency, ω̄res in Table I, is still
noticeably larger than ω̄p. Hence, although the analog of the
Lamb shift does not prevent an artificial mechanical instability
for γ > 0.7217, within our GLE framework the softening
caused by the linear approximation defined in Eq. (3) does
not seem as severe as previously reported for ordinary, i.e.,
Markovian, Langevin dynamics [71].

In the Markovian limit ωD → ∞, Eq. (79) simplifies to

�vv(ω) =
(

kBT

μ̄

)
2μ̄ω2�zz

μ̄2
(
ω̄2

p − ω2
)2 + ω2�2

zz

. (81)

Note there are no solutions of Eq. (74) in this case as
�2 = �zz/μ̄ �= 0 everywhere on the whole real axis and
therefore there are no real solutions of Eq. (74), i.e., persistent
oscillations do not exist in the Markovian limit. Taking the
inverse FT from the �vv (ω) in this case (the integration
is most easily performed in the complex plane) and after
some tedious computations, one can work out analytically the
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velocity autocorrelation function in the time domain as

〈v(t)v(t ′)〉 = kBT

μ̄

{[
cos(

√
D(t − t ′)) − σ√

D
sin(

√
D|t − t ′|)]e−σ |t−t ′| if �zz < 2μ̄ω̄p,[

cosh(
√−D(t − t ′)) − σ√−D

sinh(
√−D|t − t ′|)]e−σ |t−t ′| if �zz � 2μ̄ω̄p,

(82)

where D = ω̄2
p − (�zz/2μ̄)2 and σ = �zz/2μ̄. Note that the

equipartition theorem is satisfied in both cases as 〈v2(t)〉 =
kBT /μ̄. In the overdamped limit, when �zz 
 μ̄ω̄p, the well-
known Brownian motion result is also correctly retrieved:

〈v(t)v(t ′)〉 �
(

kBT

μ̄

)
e−�zz|t−t ′|/μ̄.

C. Approximation of the memory kernel

To perform MD simulations of GLE (66), we map the GLE
into a set of complex Langevin equations [see Eq. (55)] by
introducing K + 1 pairs of auxiliary DOFs s

(k)
1 and s

(k)
2 , where

k = 0,1,2, . . . ,K . For this complex Langevin dynamics to
provide a faithful approximation to the actual GLE dynamics,
we have to make sure that our model of the polarization matrix
in Eq. (30) faithfully approximates the actual polarization
matrix (60). In other words, we want the two functions of
time to be approximately equal:

3π

ω3
D

sin ((ωD(t − t ′))
π (t − t ′)

≈
K∑

k=0

c2
ke

−|t−t ′ |/τk cos (ωk(t − t ′)).

(83)

The nature of this approximation is better appreciated by
comparing the FT of both sides:

3π

ω3
D

χD(ω)

≈
K∑

k=0

c2
k

[
τk

1 + (ω − ωk)2τ 2
k

+ τk

1 + (ω + ωk)2τ 2
k

]
. (84)

As can be seen from Eq. (84), the characteristic function χD(ω)
is approximated as a weighted sum of at most K + 1 pairs of
independent Lorentzian distributions centered symmetrically
about ω = ±ωk and with the width at half-height equal to
2/τk . In practice, a least-squares regression [64] can be used
to find an optimal set of parameters τk , ωk , and ck to provide
the best approximation. Here, we prefer a more transparent
analytic approximation which has the advantage to converge
as K → ∞ (see Sec. III).

In our method, the characteristic frequencies in Eqs. (83)
and (84) are chosen as ωk = k (ωD/K) where k =
0,1,2, . . . ,K . In this way, Eq. (84) can be written as

3π

ω3
D

χD(ω) ≈
K∑

k=1

c2
k

[
τk

1 + (ω − ωk)2τ 2
k

+ τk

1 + (ω + ωk)2τ 2
k

]

+ c2
0

2τ0

1 + ω2τ 2
0

, (85)

where in the right-hand side of Eq. (85) we have discriminated
between the cases k �= 0 and = 0 in the original summation.
Note that in the last case, the pair of Lorentzian is degenerate,

i.e., they coincide. Equation (85) gives a weighted expansion
of the FT of the polarization matrix in terms of equally spaced
(over the frequency interval ω ∈ [−ωD,ωD]) Lorentzians. To
have a uniform expansion, we also require the Lorentzians to
have the same width, i.e., τk = τ , and to be equally weighted,
i.e., ck = c for k > 1 and c0 = c/

√
2.

Finally, to fix the parameters c and τ , we require that (i)
the left- and right-hand sides of Eq. (83) are strictly equal
for t = t ′; (ii) the left- and right-hand sides of Eq. (85) are
strictly equal for ω = 0. In practice, these two conditions
correspond to the short- and long-time behaviors of the bath
polarization matrix, respectively. It is easy to see that these
requirements are satisfied by choosing τ = λ(2K + 1)/2ωD

and c = √
6/(2K + 1)/ωD , where the dimensionless constant

λ is determined self-consistently from

λ = π

(
1 + 2

K∑
k=1

1

1 + k2λ2
(
1 + 1

2K

)2

)−1

.

It is worth noting that, after fixing K , in the Markovian
limit ωD → ∞ we have that τ → 0, i.e., the characteristic
time of the polarization matrix over which it is greater than
zero is tending to zero, i.e., the polarization matrix “bears no
memory” as explained at the end of Sec. III A.

D. Numerical results

In this section, we present the results of our MD simulations
of the GLE equation (66) describing a single harmonic
oscillator embedded in the Debye bath. Using the general
theory described in Secs. II B–II D, K + 1 pairs of the auxiliary
DOFs are introduced with the parameters as explained in
Sec. III C, which allow a mapping of the GLE onto a set of
white-noise Langevin-type equations.

In Fig. 3, we show the velocity autocorrelation function
obtained by numerically evaluating the GLE dynamics of
the harmonic oscillator. The purpose of these simulations is
to demonstrate the convergence of the numerical algorithm
based on the mapping we developed. The accuracy of our MD
simulations is verified by comparing the computed correlation
function with the exact result obtained by the inverse FT of
Eq. (79); we can also compare our correlation function with
the exact prediction of Eq. (82) in the simple Markovian limit.

In Fig. 3(a), we show results for a weak system-bath
coupling, when γ = g0/ω̄

2
0 = 0.1. As the exact velocity

correlation function is obtained from the inverse FT of �vv (ω)
in Eq. (79), it is worth recalling that, in the case of γ = 0.1
the function �vv (ω) presents two very strong resonances
in the interval ω ∈ [−ωD,ωD] (see Fig. 2). In addition, the
weight W1 of the persistent oscillations at ω = ω̄1 ≈ ωD is
negligible in this case (see Table I). For all these reasons, it is
justified to approximate the FT of the velocity autocorrelation
function with the second term in Eq. (79). This is the same
expression as in Eq. (81) obtained in the Markovian limit,
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FIG. 3. (Color online) Comparison of the (rescaled) velocity
autocorrelation functions from the numerical simulation of Eq. (66)
(solid colored curves) with the exact results from the inverse FT
of Eq. (79) (black dotted curve), and the Markovian limit (green
dashed curve) defined in Eq. (82). In the Markovian limit instead
of the bare frequency ω̄p , we used the renormalized frequency ω̄res

reported in Table I. The integer parameter K sets the accuracy of
the numerical approximation (see Sec. III C). Panels report results for
different system-bath coupling: (a) weak coupling, γ = g0/ω̄

2
0 = 0.1;

(b) intermediate coupling, γ = 0.3; (c) strong coupling, γ = 0.5.

but with the renormalized harmonic frequency ω̄res (for its
numerical value, see Table I) instead of the natural one ω̄0.
In fact, using this renormalized Markovian limit yields a very

good agreement with the exact results. At the same time, the
approximate GLE integration algorithm presented in Sec. II D
with a limited number of auxiliary DOFs (K < 50), which has
been supplemented by the analytic fitting procedure described
in Sec. III C, gives a very good agreement with the exact result
as well.

In Fig. 3(b), we show results for an intermediate system-
bath coupling of γ = 0.3. In this case, the two symmetric
resonances of �vv(ω) in the interval ω ∈ [−ωD,ωD] are rather
broadened (see Fig. 2). As a consequence, by using Eq. (81)
with the appropriate ω̄res (see Table I), we no longer obtain
a good agreement with the exact velocity autocorrelation
function. On the other hand, our approximate GLE numerical
integration still gives an excellent agreement with the exact
result, provided the number of auxiliary DOFs is large enough,
i.e., K ∼ 100.

Finally, in Fig. 3(c), we show results for a strong system-
bath coupling, i.e., for γ = 0.5. In this case, �vv(ω) does not
show any resonant features within the interval ω ∈ [−ωD,ωD]
(see Fig. 2) and the weight of the persistent oscillations
W1/( kBT

μ̄
) ≈ 12% is non-negligible (see Table I). As a conse-

quence, the renormalized Markovian limit completely fails in
the asymptotic limit, i.e., it does not give persistent oscillations
at all. On the other hand, our approximate GLE numerical
integration still provides a convergent approximation when a
sufficient number of auxiliary DOFs is selected.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have devised a very general integration
scheme for conducting GLE dynamics on realistic systems.
This scheme considers two parts of the simulated system:
the environment and the real system. The first step of our
algorithm is to calculate the polarization matrix [see Eq. (14)],
which does not need to be positive definite [54]. In principle,
in order to do this, one has to conduct a separate simulation to
determine the vibration frequencies of the environment alone,
i.e., uncoupled from the real system. Then, the auxiliary DOFs
required by our integration scheme are determined, e.g., using
an analytic approach, as described in Sec. III C. Finally, these
auxiliary DOFs are propagated via our integration scheme,
which we have outlined in Sec. II D. Our solution bears
many similarities to the algorithm previously presented by
Ceriotti et al. [47–49] which provides an optimal thermostat for
equilibrium MD simulations. However, the integration scheme
presented in this paper conforms to the physical response of the
bath by taking proper consideration of its characteristic time
scales and is, in principle, better suited for out-of-equilibrium
MD simulations.

We have demonstrated the convergence of our approximate
GLE integration algorithm for the nontrivial case of a single
harmonic oscillator embedded in a Debye bath. In doing so,
we have used a simplified representation of the polarization
matrix. In this system, we observed convergence to the exact
velocity autocorrelation function even in the strong system-
bath coupling limit, i.e., when there are no resonant features
in the FT of the velocity autocorrelation function �vv (ω) and
the weight of the persistent oscillations is not negligible. The
reason for such a good agreement, which occurs regardless of
the strength of the system-bath coupling, can be traced back to
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the specific functional form of the memory kernel in Eq. (11).
There, the dependence on the system-bath coupling through
the terms giα,lγ (r) appears factorized. Hence, one has to fit
only the polarization matrix of the bath, which in fact does not
depend on the system-bath coupling strength.

Regarding the rate of convergence, it is important to note
that the aim of this work is not to optimize the numerical
performance of the fitting algorithm. However, our analytical
approach yields a more transparent demonstration of the
algorithm convergence for the selected test case. For more
realistic systems, we expect a smaller number of auxiliary
DOFs would be needed to achieve convergence by numerically
fitting the polarization matrix in Eq. (30) to the exact one in
Eq. (60), e.g., by the least-squares regression.
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APPENDIX A: DERIVATION OF THE
FOKKER-PLANCK EQUATION

It is known [62,63,73] that the system of stochastic
differential equations

Ẋa = ha(X,t) +
∑

b

Gab(X,t)ξb(t) (A1)

for the stochastic variables X = {Xa(t)}, with ξa(t) being the
Wiener processes defined by

〈ξa(t)〉 = 0 , 〈ξa(t)ξa′(t ′)〉 = δaa′δ(t − t ′),

is equivalent to the following Fokker-Planck equation for the
probability distribution function P (X,t):

∂P

∂t
(X,t) = −

∑
a

∂

∂Xa

[
(ha(X,t)P (X,t))

− 1

2

∑
b

∂

∂Xb

(Dab(X,t)P (X,t))
]
, (A2)

where Dab (X,t) = ∑
c Gac (X,t) Gcb (X,t).

In our case, the set X is formed by the stochastic variables
{riα,piα,s

(k)
1 ,s

(k)
2 }. The quantities ha (X,t) are given in the

right-hand sides of Eq. (35), excluding the terms containing
the noise, i.e.,

hriα
= piα

mi

,

hpiα
= − ∂V̄

∂riα

+
∑
lγ

√
μl

μ̄
giα,lγ (r)

∑
k

c
(k)
lγ s

(k)
1 ,

h
s

(k)
1

= −s
(k)
1 /τk + ωks

(k)
2 +

∑
lγ

√
μ̄μlc

(k)
lγ

∑
iα

gia,lγ (r(t))
piα

mi

,

h
s

(k)
2

= −s
(k)
2 /τk − ωks

(k)
1 ,

while the only nonzero coefficients of Gab are G
s

(k)
1 ,s

(k)
1

=
G

s
(k)
2 ,s

(k)
2

= √
2kBT μ̄/τk . Since in our case the matrices

Gab (X,t) are constant and diagonal, the matrix D
(2)
ab (X,t)

is diagonal as well with the only nonzero elements being
D

(2)

s
(k)
1 ,s

(k)
1

= D
(2)

s
(k)
2 ,s

(k)
2

= 2kBT μ̄/τk . Substitution of these matri-

ces into Eq. (A2) yields the equations reported in Sec. II C.

APPENDIX B: EQUILIBRIUM SOLUTION
OF THE FOKKER-PLANCK EQUATION

In this Appendix, we show that P (eq) (r,p,s1,s2) defined in
Eq. (46) is an equilibrium PDF, i.e., that

P (eq) (r,p,s1,s2) = lim
t→∞ P (r,p,s1,s2,t)

under the hypothesis that L̂consP
(eq) = 0 and L̂dissP

(eq) = 0
hold separately (see Sec. II C). To this end, we proceed by
constructing an appropriate Lyapunov functional [74]. Let us
take

L[P (r,p,s1,s2)] =
∫

[P (r,p,s1,s2) − P (eq)]2

P (eq)(r,p,s1,s2)
dv,

where dv = dr dp ds1ds2, as a candidate functional
and show that (i) L[P (r,p,s1,s2)] � L[P (eq)(r,p,s1,s2)]
and (ii) d

dt
L [P (r,p,s1,s2,t)] < 0 if P (r,p,s1,s2,t) �=

P (eq) (r,p,s1,s2).
We first note that

L [P (r,p,s1,s2)] =
∥∥∥∥∥P (r,p,s1,s2) − P (eq)√

P (eq) (r,p,s1,s2)

∥∥∥∥∥
2

, (B1)

i.e., the candidate Lyapunov functional corresponds to the
square of the Euclidean distance between the two (square
integrable) functions P (r,p,s1,s2) /

√
P (eq) (r,p,s1,s2) and√

P (eq) (r,p,s1,s2). Hence, property (i) follows from the
properties of the Euclidean norm. In particular,

L[P (r,p,s1,s2)] = 0 ⇔ P (r,p,s1,s2) = P (eq).

At this point, we can also define the neighborhood of
P (eq)(r,p,s1,s2) with radius ε as the set of all the PDFs
P (r,p,s1,s2) such that L [P (r,p,s1,s2)] < ε. Therefore, prov-
ing property (ii) is the same as proving that the FP dynamics in
Eq. (37) maps a PDF in the neighborhood of P (eq) (r,p,s1,s2)
with radius ε to a PDF in the neighborhood of P (eq) (r,p,s1,s2)
of radius ε′, with ε′ < ε. In other words, by proving property
(ii) we want to show that the FP dynamics in Eq. (37) provides
a contraction and that P (eq) (r,p,s1,s2) is the fixed point of this
contraction.

Therefore, in the next step, we note that

L[etL̂consP (r,p,s1,s2)] = L[P (r,p,s1,s2)]

as L̂cons

√
P (eq) (r,p,s1,s2) = 0. In fact, etL̂cons is an isometry,

i.e., ‖etL̂cons�(r,p,s1,s2)‖ = ‖�(r,p,s1,s2)‖ for any square
integrable � (r,p,s1,s2), which leaves the equilibrium solution
invariant. One can think of this isometry as a rotation of
the space of � (r,p,s1,s2) centered at �(eq) (r,p,s1,s2) =√

P (eq) (r,p,s1,s2). Hence, if we define

�(r,p,s1,s2,t) = etL̂consP (r,p,s1,s2,t)√
P (eq)(r,p,s1,s2)

, (B2)

we can also rewrite Eq. (B1) as

L[P (r,p,s1,s2,t)] = ‖�(r,p,s1,s2,t) − �(eq)‖2.
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By taking the time derivative of Eq. (B2), we first find that

�̇(r,p,s1,s2,t)

= etL̂cons [L̂consP (r,p,s1,s2,t)] + etL̂cons Ṗ (r,p,s1,s2,t)√
P (eq)(r,p,s1,s2)

and then, by using Eq. (37), that

�̇(r,p,s1,s2,t) = −etL̂consL̂dissP (r,p,s1,s2,t)√
P (eq)(r,p,s1,s2)

. (B3)

Hence, one can use Eq. (B2) to write P (r,p,s1,s2,t) as a
function of � (r,p,s1,s2,t), i.e.,

P (r,p,s1,s2,t) = e−tL̂cons [
√

P (eq)�(r,p,s1,s2,t)]

=
√

P (eq)e−tL̂cons�(r,p,s1,s2,t),

and substitute into Eq. (B3) to obtain

�̇ = −etL̂cons L̂diss[
√

P (eq)e−tL̂cons�]√
P (eq)

. (B4)

Due to the peculiar functional form of P (eq) (r,p,s1,s2), one
can also derive the following equation:

L̂diss[
√

P (eq)e−tL̂cons�(r,p,s1,s2,t)]

=
√

P (eq)Ĥdisse
−tL̂cons� (r,p,s1,s2,t) , (B5)

where

Ĥdiss = 2kBT μ̄
∑

k

{
−1

2

[
∂2

∂
(
s

(k)
1

)2 + ∂2

∂
(
s

(k)
2

)2

]

+ 1

2(2kBT μ̄)2

[(
s

(k)
1

)2 + (
s

(k)
2

)2]− 1

(2kBT μ̄)

}
.

(B6)

An effective EOM for � (r,p,s1,s2,t) is eventually found by
substituting Eq. (B5) into (B4):

�̇ = −etL̂cons [
√

P (eq)Ĥdisse
−tL̂cons�]√

P (eq)

= −etL̂consĤdisse
−tL̂cons�. (B7)

Note that the effective Hamiltonian defined in Eq. (B6) de-
scribes a collection of 2(K + 1) independent two-dimensional
quantum harmonic oscillators and its spectrum can be easily
computed. In particular, the “energy” of the ground state ε0
turns out to be exactly zero.

By using Eq. (B7), one can compute the time derivative of
L [P (r,p,s1,s2,t)] as

d

dt
L[P (r,p,s1,s2,t)] = −〈e−tL̂cons�|Ĥdiss|e−tL̂cons�〉,

(B8)

where we have employed the usual inner product of the
square integrable functions. Finally, because of the variational
inequality, we have that

〈e−tL̂cons�|Ĥdiss|e−tL̂cons�〉 � ε0 = 0 (B9)

and, by substituting Eq. (B9) into (B8), we find that

d

dt
L[P (r,p,s1,s2,t)] � 0, (B10)

which proves property (ii). In particular,

d

dt
L [P (r,p,s1,s2,t)] = 0 ⇔ P (r,p,s1,s2,t) = P (eq)

as the equality in Eq. (B9) holds just for the (nondegenerate)
ground state of Ĥdiss, i.e., � (r,p,s1,s2) = �(eq) (r,p,s1,s2) =√

P (eq) (r,p,s1,s2). This also proves the uniqueness of the
equilibrium solution under the hypothesis assumed in Sec. II C.

APPENDIX C: AUTOCORRELATION FUNCTIONS

Let x (t) be a dynamic observable, e.g., an atomic velocity,
defined in the time interval t ∈ [−T/2,T /2]. Assuming the
dynamics to be ergodic, one can substitute an ensemble average
with a time average and then compute the autocorrelation
function of x (t) as follows [59]:

〈x(t)x(t ′)〉 = lim
T →∞

1

T

∫ +∞

−∞
χT (t + s)x(t + s)

×χT (t ′ + s)x(t ′ + s)ds, (C1)

where the characteristic function χT (t) is defined so that
χT (t) = 1 when t ∈ [−T/2,T /2] and zero otherwise. The FT
of
〈
x (t) x

(
t ′
)〉

is taken as

�xx (ω) =
∫ +∞

−∞
e−iωt 〈x (t) x (0)〉 dt, (C2)

where we have further assumed that the dynamics reaches a
stationary (i.e., time-translation-invariant) state.

By substituting Eq. (C1) into (C2), one obtains a relation
between the FT of the autocorrelation function of x (t) and the
modulus square of the FT of x (t):

�xx(ω) = lim
T →∞

1

T

∣∣∣∣∫ +∞

−∞
e−iωtχT (t)x(t)dt

∣∣∣∣2
= lim

T →∞
1

T

∣∣∣∣∫ T/2

−T/2
e−iωtx (t) dt

∣∣∣∣2 . (C3)

Finally, Eq. (C3) tells us that, given any two dynamic
observables, say x (t) and y (t), the following equation holds:

�xx(ω)

�yy (ω)
=
∣∣∣∣∣
∫ +∞
−∞ e−iωtx (t) dt∫ +∞
−∞ e−iωty (t) dt

∣∣∣∣∣
2

(C4)

whenever x (t) and y (t) are defined over the same time interval.
In practice, Eq. (C3) is also the starting point of a very efficient
numerical algorithm to compute an autocorrelation function by
means of the fast Fourier transform (FFT) [59].

APPENDIX D: GLE NOT CONSTRAINED BY
THE FLUCTUATION-DISSIPATION THEOREM

The mapping scheme proposed in Sec. II B was based on an
assumption that the (second) fluctuation-dissipation theorem
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[Eq. (19)] must hold, whereby the correlation function of the
colored noise is exactly proportional to the memory kernel
in the GLE (9). We shall briefly state here a simple gener-
alization of the method which allows one going beyond this
assumption.

The equations given in the following establish a complex
Langevin dynamics that is equivalent to a GLE (9) in which
the correlation function of the stochastic forces is a decaying
function of the time difference |t − t ′|, but it is no longer
required to be proportional to the memory kernel. In this
new scheme, Eqs. (33) and (34) for the auxiliary DOFs are
modified as follows:

ṡ
(k)
1 = −s

(k)
1 /τk + ωks

(k)
2 −

∑
lγ

√
μ̄μlc

(k)
lγ

×
∑
iα

gia,lγ (r(t))ṙiα(t) +
√

2kBT μ̄Q (ωk)

τk

ξ
(k)
1 (D1)

and

ṡ
(k)
2 = −s

(k)
2 /τk − ωks

(k)
1 +

√
2kBT μ̄Q (ωk)

τk

ξ
(k)
2 . (D2)

A calculation similar to that performed in Sec. II B yields the
same expression (30) for the polarization matrix,, while the
correlation of the stochastic forces changes to

〈ηiα(t)ηi ′α′ (t ′)〉
= kBT

∑
lγ

∑
l′γ ′

√
μlμl′giα,lγ (r(t))

×
[∑

k

Q (ωk) c
(k)
lγ c

(k)
l′γ ′φk(t − t ′)

]
gi ′α′,l′γ ′(r(t ′)).

By appropriately choosing the frequency weight function
Q(ω), one can simulate a GLE dynamics with a colored noise
which is no longer proportional to the memory kernel.
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D. Dundas, Phys. Rev. B 85, 245444 (2012).
[53] R. Biele, C. Tim, and R. D’Agosta, arXiv:1203.3785.
[54] A. D. Baczewski and S. D. Bond, J. Chem. Phys. 139, 044107

(2013).
[55] J. Luczka, Chaos 15, 026107 (2005).
[56] O. Rice, Bell Systems Tech. J. 23, 282 (1944).
[57] K. Y. R. Billah and M. Shinozuka, Phys. Rev. A 42, 7492 (1990).
[58] R. Mannella and V. Palleschi, Phys. Rev. A 46, 8028 (1992).
[59] M. Allen and D. Tildesley, Computer Simulation of Liquids

(Clarendon, Oxford, 1989).
[60] M. Ceriotti, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 103,

030603 (2009).

[61] M. Ceriotti and M. Parrinello, Procedia Computer Science 1,
1607 (2010).

[62] D. T. Gillespie, Am. J. Phys. 64, 225 (1996).
[63] D. T. Gillespie, Am. J. Phys. 64, 1246 (1996).
[64] M. Ceriotti, G. Bussi, and M. Parrinello, J. Chem. Theor.

Comput. 6, 1170 (2010).
[65] M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys.

97, 1990 (1992).
[66] D. Donnelly and E. Rogers, Am. J. Phys. 73, 938 (2005).
[67] G. Bussi and M. Parrinello, Phys. Rev. E 75, 056707 (2007).
[68] D. L. Ermak and H. Buckholz, J. Comput. Phys. 35, 169

(1980).
[69] B. Leimkuhler and C. Matthews, Appl. Math. Res. eXpress

2013, 34 (2013).
[70] B. Leimkuhler and C. Matthews, J. Chem. Phys. 138, 174102

(2013).
[71] M. Evstigneev and P. Reimann, Phys. Rev. B 82, 224303 (2010).
[72] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2002).
[73] H. Risken, The Fokker-Planck Equation: Methods of Solutions

and Applications, 2nd ed. (Springer, Berlin, 1996).
[74] V. Arnold, Ordinary Differential Equations, 3rd ed. (Springer,

Berlin, 2006).

134303-17

http://dx.doi.org/10.1103/PhysRevB.78.094304
http://dx.doi.org/10.1103/PhysRevB.78.094304
http://dx.doi.org/10.1103/PhysRevB.78.094304
http://dx.doi.org/10.1103/PhysRevB.78.094304
http://dx.doi.org/10.1103/PhysRevLett.102.020601
http://dx.doi.org/10.1103/PhysRevLett.102.020601
http://dx.doi.org/10.1103/PhysRevLett.102.020601
http://dx.doi.org/10.1103/PhysRevLett.102.020601
http://dx.doi.org/10.1063/1.3556661
http://dx.doi.org/10.1063/1.3556661
http://dx.doi.org/10.1063/1.3556661
http://dx.doi.org/10.1063/1.3556661
http://dx.doi.org/10.1063/1.3518369
http://dx.doi.org/10.1063/1.3518369
http://dx.doi.org/10.1063/1.3518369
http://dx.doi.org/10.1063/1.3518369
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1007/s10955-011-0193-z
http://dx.doi.org/10.1007/s10955-011-0193-z
http://dx.doi.org/10.1007/s10955-011-0193-z
http://dx.doi.org/10.1007/s10955-011-0193-z
http://dx.doi.org/10.1103/PhysRevB.85.245444
http://dx.doi.org/10.1103/PhysRevB.85.245444
http://dx.doi.org/10.1103/PhysRevB.85.245444
http://dx.doi.org/10.1103/PhysRevB.85.245444
http://arxiv.org/abs/arXiv:1203.3785
http://dx.doi.org/10.1063/1.4815917
http://dx.doi.org/10.1063/1.4815917
http://dx.doi.org/10.1063/1.4815917
http://dx.doi.org/10.1063/1.4815917
http://dx.doi.org/10.1063/1.1860471
http://dx.doi.org/10.1063/1.1860471
http://dx.doi.org/10.1063/1.1860471
http://dx.doi.org/10.1063/1.1860471
http://dx.doi.org/10.1002/j.1538-7305.1944.tb00874.x
http://dx.doi.org/10.1002/j.1538-7305.1944.tb00874.x
http://dx.doi.org/10.1002/j.1538-7305.1944.tb00874.x
http://dx.doi.org/10.1002/j.1538-7305.1944.tb00874.x
http://dx.doi.org/10.1103/PhysRevA.42.7492
http://dx.doi.org/10.1103/PhysRevA.42.7492
http://dx.doi.org/10.1103/PhysRevA.42.7492
http://dx.doi.org/10.1103/PhysRevA.42.7492
http://dx.doi.org/10.1103/PhysRevA.46.8028
http://dx.doi.org/10.1103/PhysRevA.46.8028
http://dx.doi.org/10.1103/PhysRevA.46.8028
http://dx.doi.org/10.1103/PhysRevA.46.8028
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1016/j.procs.2010.04.180
http://dx.doi.org/10.1016/j.procs.2010.04.180
http://dx.doi.org/10.1016/j.procs.2010.04.180
http://dx.doi.org/10.1016/j.procs.2010.04.180
http://dx.doi.org/10.1119/1.18210
http://dx.doi.org/10.1119/1.18210
http://dx.doi.org/10.1119/1.18210
http://dx.doi.org/10.1119/1.18210
http://dx.doi.org/10.1119/1.18387
http://dx.doi.org/10.1119/1.18387
http://dx.doi.org/10.1119/1.18387
http://dx.doi.org/10.1119/1.18387
http://dx.doi.org/10.1021/ct900563s
http://dx.doi.org/10.1021/ct900563s
http://dx.doi.org/10.1021/ct900563s
http://dx.doi.org/10.1021/ct900563s
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1119/1.2034523
http://dx.doi.org/10.1119/1.2034523
http://dx.doi.org/10.1119/1.2034523
http://dx.doi.org/10.1119/1.2034523
http://dx.doi.org/10.1103/PhysRevE.75.056707
http://dx.doi.org/10.1103/PhysRevE.75.056707
http://dx.doi.org/10.1103/PhysRevE.75.056707
http://dx.doi.org/10.1103/PhysRevE.75.056707
http://dx.doi.org/10.1016/0021-9991(80)90084-4
http://dx.doi.org/10.1016/0021-9991(80)90084-4
http://dx.doi.org/10.1016/0021-9991(80)90084-4
http://dx.doi.org/10.1016/0021-9991(80)90084-4
http://dx.doi.org/10.1063/1.4802990
http://dx.doi.org/10.1063/1.4802990
http://dx.doi.org/10.1063/1.4802990
http://dx.doi.org/10.1063/1.4802990
http://dx.doi.org/10.1103/PhysRevB.82.224303
http://dx.doi.org/10.1103/PhysRevB.82.224303
http://dx.doi.org/10.1103/PhysRevB.82.224303
http://dx.doi.org/10.1103/PhysRevB.82.224303



