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We present a study on the existence of Dirac cones in two-dimensional phononic crystals. Specifically, we
start from the phononic crystals made of rotatable regular hexagonal or triangular rods arranged in a hexagonal
lattice. The additional freedom of the rotation enables the crystals with various symmetries. The numerical and
experimental band structures manifest consistently that part of the symmetries can support Dirac cones stably,
yet the others cannot. The phenomena are explained successfully by the k · p perturbation theory combined
with symmetry analysis. Based on this theoretical framework, a systemic exploration on symmetry is further
performed, which yields a complete summary on the existence of Dirac cones. The conclusion also remains in
the other types of artificial crystals for classical waves, either scalar or vectorial ones.
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Conic dispersions, originally proposed for relativistic par-
ticles based on the Dirac equation [1], have attracted much
attention recently since the successful fabrication of graphene,
a monolayer of carbon atoms arranged in a honeycomb
lattice [2]. This unique energy dispersion leads to fantastic
phenomena in electronic transports [3]. The conic dispersion
(or Dirac cone) is not limited in atomic crystals. It has been
widely observed in two-dimensional (2D) artificial crystals
(ACs) for classical waves, such as electromagnetic (EM) waves
[4–17] and sound waves [18–21]. Recently, many intriguing
wave transport properties associated with conic dispersions
have been observed, such as one-way edge modes [4–7],
Zitterbewegung oscillations [8,9], extremal transmissions [10–
13,18], and extinction of coherent backscattering [14,15]. The
macroscopic character of the classical waves greatly facilitates
the analog study of quantum systems and even provides new
insight on the exotic Dirac materials.

Dirac cones are characterized by two indispensable fea-
tures: the double degeneracy and linear dispersion near the
degenerate point (i.e., Dirac point). Both of them depend on
the symmetry of the crystal; more specifically, for a concerned
Bloch wave vector k, they are closely related to the point group
of k [22,23], which is constituted by a part of the symmetry
operations of the crystal point group that transform k into itself
or its equivalent one k + g, with g being a reciprocal lattice
vector of the crystal. (Note that the terminology “the point
group (or symmetry) of wave vector k” does not simply refer
to the symmetry of k in reciprocal space.) Although a great
many works manifest the existence of Dirac cones in 2D ACs,
they are focused on the graphenelike structures characterized
by the C3v symmetry of the corner points in the first hexagonal
Brillouin zone (BZ). In view of the excellent tunability in
geometric and material parameters, the ACs allow varied
crystal symmetries other than the graphenelike structures.
A natural question is produced: are there any other crystal
symmetries that support Dirac cones? Particularly, can Dirac
cones occur at the center of the first BZ [24] (as a more direct
analogy to that proposed originally in relativistic quantum
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mechanics)? In addition, in many cases the vectorial property
of the EM or sound waves must be fully taken into account
[15,16], which complicates the problem remarkably. Is there
an essential difference between the scalar and vectorial wave
systems? These questions necessitate a systemic exploration
of various crystal symmetries in different types of ACs.

In this paper, we start from 2D phononic crystals (PCs)
made of a hexagonal lattice and focus on the BZ corners
[classified by inequivalent K- and K ′-points, as illustrated
in Fig. 1(a)], in which the conic dispersions have already
been repeatedly observed [18–21]. To introduce a diversity
of the crystal symmetry, the lattice is positioned with rotat-
able regular hexagonal or regular triangular epoxy rods, as
exhibited in Figs. 1(b) or 1(c). For the hexagonal ones, our
study exhibits a robust existence of Dirac cones in the BZ
corners, irrespective of the orientation of the artificial atoms.
For the triangular ones, however, it is observed that only
special orientations support Dirac cones. The experimental
results agree excellently with the numerical ones. Together
with an elegant symmetry analysis based on the group theory,
the k · p perturbation method is employed to understand
the aforementioned phenomena. Furthermore, the study is
extended to the other symmetries. It is concluded that the
parameter stable (e.g., filling ratio) Dirac cones are protected
only by the C3(v) symmetry of the k-point (realizable in the BZ
corners of hexagonal lattices positioned with proper building
blocks), whereas the parameter unstable ones can occur in
more general cases. It is worth pointing out that the theoretical
reasoning involves mostly the crystal symmetry, and thereby
similar conclusions can be directly made for the other types
of classical waves in 2D ACs, even for the complex vectorial
elastic waves.

As displayed in Fig. 2, the PC sample consists of a
hexagonal array of regular hexagonal or regular triangular
rods (of height 1.2 cm, made of epoxy that is acoustically rigid
with respect to air). The whole system is tightly sandwiched
between the laboratory table and a covering epoxy plate. The
parallel gap supports only the fundamental waveguide mode
for a wavelength (in air) down to λ = 2.4 cm, which safely
guarantees the experiment system of 2D nature. The acoustic
signal is launched from a narrow tube with diameter of 0.8 cm,
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FIG. 1. (Color online) (a) The first BZ of the hexagonal lattice,
where several points of high symmetries are marked. (b) Schematic
view for the PC consisting of regular hexagonal epoxy rods arranged
in a hexagonal lattice, where H ′ characterizes the orientation of the
rod with respect to the fixed lattice (spanned by the primitive vectors
a1 and a2). (c) Same as (b) but for regular triangular rods.

which mimics a pointlike sound source. After being reflected
by a carefully designed parabolic concave mirror, the acoustic
wave eventually approximates a plane wave. The interface
normal of the PC sample is chosen along �K direction. The
distribution of the pressure field behind the sample can be
scanned by a probe microphone of diameter �0.7 cm (B&K
Type 4187). The acoustic signals sent from the measurement
tube and received by the probe microphone are analyzed by
a multianalyzer system (B&K Type 3560B), from which both
the wave amplitude and phase can be extracted. By reference
to the case without a sample, one can obtain the transmission
and the phase accumulation across the sample, where the latter
provides the directional band structure of the PC [25].

FIG. 2. (Color online) Experimental setup (the upper panel) and
its schematic picture (the lower panel).

FIG. 3. (Color online) Band structures along �K direction for
the hexagonal PCs made of regular hexagonal epoxy rods, with the
rotation angles α = 0o (a) and α = 20o (b). The insets show the
corresponding transmission spectra near the Dirac points (denoted
by blue arrows), where the horizontal and vertical axes represent the
transmission (in decibel scale) and the normalized frequency a/λ,
respectively. (c) The angular dependence of the Dirac frequency.
Here, the black circles and red lines represent the experimental and
numerical results, respectively.

The PC system considered first consists of regular hexago-
nal epoxy rods, which are of simple shape but with the highest
spatial symmetry of the hexagonal lattice. The lattice constant
is a = 4.3 cm, and the filling ratio of rod is 0.48. Obviously,
the PC possesses C6v symmetry when the rod is orientated
felicitously by α = 0o. The K-point, however, corresponds
to the C3v symmetry since the sixfold rotation transfers it to
the inequivalent K ′-point (and vice versa). As pointed out
in both the natural graphene and ACs, the C3v symmetry
of the corner points allows the existence of Dirac cones.
This is indeed displayed in Fig. 3(a) by the numerical band
structure along the �K direction (simulated by the COMSOL
package), which exhibits linearly crossed dispersion curves
near the K-point (corresponding to |k| / |�K| = 1). To verify
it in an experiment, we have measured the directional band
structure. As a whole, the measurement agrees pretty well with
the calculation, except for a deaf band (recoiled with negative
group velocity) uncoupled with the normal incidence [26]. The
absence of the band gap has also been validated by the high
transmission (see inset) measured near the frequency of the
crossing point. From the gapless band structure, the existence
of the Dirac cone surrounding the K-point can be safely
concluded, considering the continuities of the band structure
in reciprocal space. (This is also numerically verified by the
omnidirectional band structure in Fig. 5 in the Appendix). As
the rod is rotated arbitrarily, the mirror symmetry breaks and
reduces the PC symmetry to C6 and reduces the symmetry
of the K-point to C3. For comparison, Fig. 3(b) presents
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FIG. 4. (Color online) Similar to Fig. 3, but for the PCs made
of regular triangular rods with rotation angles α = 0o (a) and
α = 30o (b), where the insets show the corresponding transmission
spectra near the Dirac point or band gap. (c) The angular dependent
frequencies for the band edges at the K-point.

similar data as in Fig. 3(a) but for α = 20o. Resembling the
case of α = 0o, the numerical and experimental results exhibit
consistently the existence of Dirac cones. In fact, our further
study states that the conic dispersion is very robust to the
rod’s orientation, as displayed in Fig. 3(c) by the weak angular
dependence of the Dirac frequency [27].

From the above study the C3 (instead of C3v) symmetry
of the K-point might be adequate for the emergence of
Dirac cones. To test this conjecture, we reduce the rotation
symmetry of the building block and investigate the PC made
of regular triangular rods (at a ratio of 0.24). Similarly, we
have also calculated and measured the band structures and
transmission spectra for various rotation angles. Figure 4(a)
provides the results for α = 0o, an orientation associated with
C3v symmetry at K-point (consistent with the PC’s symmetry).
As expected, the data exhibit conic dispersions again. It is
much different for α = 30o: as shown in Fig. 4(b), a remarkable
frequency gap appears in the band structure [28], within which
the transmission is considerably low (see inset). In this case,
although the PC has also C3v symmetry, the K-point carries
only C3 symmetry since the mirror operations of the PC cannot
transform the K-point into its equivalent ones. In fact, the
band gap remains for a general orientation accompanying
with C3 symmetry for both the PC and the K-point. This
is manifested clearly in Fig. 4(c) by the angular dependences
of the band-edge frequencies, which merge together only if
the orientation supports the C3v symmetry of the K-point.

The studies of both the hexagon- and triangle-based PCs
state that the C3v symmetry of the K-point can always support
Dirac cones, whereas it is not necessary for the C3 symmetry.

Below, together with symmetry analysis, we develop a k · p
perturbation method [29] to understand these phenomena.

The conic dispersion requires primarily the presence of
the double degeneracy, either a deterministic or accidental
one. The latter is greatly sensitive to the system parameters.
Without details presented here, our further studies show that
the aforementioned Dirac cones are robust to the filling
ratio of rods and should correspond to the deterministic
double degeneracy. For the C3v point group (of k), the 2D
irreducible representation is allowed and exactly responsible
for the double degeneracy occurring in both the PCs made
of hexagonal and triangular rods at some special orientations.
For the C3 point group, however, it can only support three, one
dimensional (1D) representations (two of which are complex),
which seems contradictory to the stable Dirac cones emerging
in the hexagon PC with an arbitrary rotation angle. This
paradox can be resolved by considering the extra double
degeneracy assisted by time-reversal (TR) symmetry. For the
hexagon PC system, in view of the C6 symmetry of the PC, the
rotation operators c2, c6, and c−1

6 can transform the K-point
into its TR counterpart, K ′-point, and vice versa; based on
Herring’s criterion [30], the pair of 1D complex representations
can always stick together into a 2D representation and give rise
to an extra double degeneracy. It is different for the triangle PC
(associated with C3(v) symmetry): there is no group element to
relate the inequivalent corner points and thus fails to contribute
an extra double degeneracy, which eventually leads to the gap
openings at K-point for the PCs with general rod orientations
[see Fig. 4(c)].

Now, we verify the linearity of the above conic dispersions
near the K-point (see details in the Appendix). The PC system
can be described by the generalized eigenproblem

H (r)ψk(r) = ω2
kκ

−1(r)ψk(r), (1)

where ψk(r) denotes the eigenstate associated with the reduced
Bloch wave vector k and eigenfrequency ωk, and the Hamil-
tonian H (r) = −∇ · [ρ−1(r)∇]. The parameters ρ(r) and κ(r)
are the periodically distributed mass density and bulk modulus,
respectively. According to the k · p perturbation method, the
Bloch eigenstate ψk(r) vicinal to the K-point can be expanded
by a pair of orthonormal eigenstates ψ1(r) and ψ2(r), degener-
ated at the K-point, i.e., ψk(r) = ei	k·r[A1ψ1(r) + A2ψ2(r)],
where 	k characterize the deviation of k from the K-point.
Substituting this linear expansion into Eq. (1), one can
establish a perturbation problem

∑
j=1,2

H ′
ijAj = 2ωK	ωAi, (2)

where H ′ = 	k · p is the linear perturbation Hamiltonian
associated with the vector operator p = −i[2ρ−1(r)∇ +
∇ρ−1(r)] and 	ω is the frequency deviation from that
of K-point ωK . The perturbation Hamiltonian H ′ can be
proved Hermitian and guarantees real eigenvalues. With fully
considering the constraints imposed by symmetries, one can
establish relationships among the elements of the p matrix
and greatly simplify the form of H ′. It is of particular interest
that for all the previously mentioned cases with deterministic
double degeneracies, the symmetry analysis leads to identical
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H ′, i.e.

H ′ = |	k| |p11|
(

cosθ −sinθ

−sinθ −cosθ

)
, (3)

where p is the azimuth angle of 	k with respect to p11. The
eigenvalues of H ′ provide directly the isotropic slopes (i.e.,
so-called Dirac velocity) 	ω/ |	k| = ± |p11| /2ωK for the
linear dispersion near the K-point, with ωK being the Dirac
frequency.

An important feature that characterizes Dirac cones is the
nonzero value (π ) of the Berry phase [3], which is expected
to be closely connected with various unusual wave transport
properties [31–33] (e.g., antilocalization to disorders). By
using the eigenvectors derived from the simplified perturbation
Hamiltonian, the Berry phase of π can be verified analyti-
cally for the aforementioned conic states (see details in the
Appendix), consistent with that found previously in 2D ACs
[4,5,14,15,19].

The aforementioned study states that, besides the well-
known C3v symmetry of the K-point in hexagonal lattices,
the C3 symmetry can also robustly support Dirac cones if
associated with the crystal symmetry of C6. Based on the
same theoretical framework, we have further investigated
the other high symmetries carrying deterministic double
degeneracies, either in the BZ center or BZ corners. In these
cases, the constraints from symmetries suppress H ′ to be zero
and exclude the possibility of Dirac cones (see technique
details in the Appendix). Our theoretical analysis has also
been extended to search Dirac cones induced by accidental
double degeneracies (referring to that at a given k-point,
the degeneracy can occur only at carefully designed system
parameters). The exploration states that such Dirac cones can
be realized in the hexagonal BZ corner with C3 symmetry or
in a more general k-point (excluding k = g/2) carrying C1 or
Cs symmetry (created by more general lattices positioned with
proper building blocks). For the latter case, interestingly, the
Dirac cones turn out to be tilted and anisotropic (see numerical
examples in the Appendix). These accidental Dirac cones also
exhibit a Berry phase of π .

Although the PCs for scalar acoustic waves are focused
here, the theoretical framework can also be straightforwardly
extended to the ACs for other types of classical waves; the
procedure in determining the existence of Dirac cones applies
well, even if the vectorial property of classical waves is
involved, as exemplified by the elastic waves in PCs (see
technique details in the Appendix). Our study states that the
presence of Dirac cones depends only on the system symmetry,
due to the same constraints exerted on the perturbation
Hamiltonian. In addition, besides the traditional 2D phononic
and photonic crystals made of infinitely long cylinders or
holes, the treatment remains valid for the 2D ACs without
translational invariance normal to the lattice plane. Particular
cases can be referred to 2D periodic arrays of artificial atoms,
interacting with planar guiding modes carried by interfaces,
cavities [11–13], and plates [21] or interacting with the
self-induced guiding modes by wave scattering or hopping.
For example, the theory can explain the Dirac cones occurring
in a 2D hexagonal array of plasmonic spheres for EM waves
[15,16], and also appearing in a 2D hexagonal array of holes
drilled on a rigid surface for spoof surface acoustic waves [20],

TABLE I. A summary on the existence of Dirac cones in various
symmetries, where G and Gk represent the point group of the PC and
the point group of k, respectively. Note that k = g/2 (particularly, k =
0, if g = 0) is excluded for the k-point carrying C1 or Cs symmetry.

G Gk k Type

C3v or C6v C3v BZ corner Deterministic
C6 C3 BZ corner Deterministic
C3 or C3v C3 BZ corner Accidental
Arbitrary C1 General k Accidental
With mirror(s) Cs Certain k Accidental

where the latter involves only scalar waves, but the former must
consider the vectorial property of EM waves. Therefore, our
theory can explain well the existing Dirac cones occurring
in various 2D classical ACs. Last, but not least, considering
certain common properties in various waves, this study could
be useful to enlighten the area of Dirac physics in 2D quantum
systems [34]. In fact, a great many 2D crystals have been
artificially fabricated, such as nanopatterned heterostructures
for 2D electron gases [35,36] and trapped ultracold atoms in
optic lattices [37,38], in which various crystal symmetries can
be easily realized. New physics phenomena and understanding
can be anticipated in the wide parameter regimes inaccessible
by natural graphene [39].

In conclusion, starting from some specific examples of
PCs, we have conducted a systemic study on the existence
of Dirac cones in 2D ACs. Now, we approach answers for the
questions raised previously: (i) besides the C3v symmetry of
the hexagonal BZ corner, linear Dirac cones can also occur
in the other symmetries, as summarized in Table I; (ii) Dirac
cones cannot occur at the BZ center; (iii) the presence of Dirac
cones depends only on the system symmetry, irrelevant to the
scalar or vectorial property of waves. As predicted, all of the
aforementioned Dirac cones share the same Berry phase of π .
This study may also shine light on the artificial structures for
matter waves, in which various crystal symmetries different
from graphene can be easily realized.

This work is supported by the National Natural Science
Foundation of China (Grants No. 11174225, No. 11004155,
No. 11374233, and No. J1210061), Open Foundation from
State Key Laboratory of Applied Optics of China, the Program
for New Century Excellent Talents (NCET-11-0398), and the
China Postdoctoral Science Special Foundation (201104491).

APPENDIX

In this appendix, we provide details to support the text.
In Sec. A., we establish a theoretical framework for scalar
acoustic waves, which effectively combines the k · p perturba-
tion method with symmetry analysis. The detailed exploration
on a variety of symmetries is provided in Sec. B., followed
with numerical verifications of various conic dispersions in
Sec. C. Exemplified by the vectorial elastic waves, extended
discussions on the other types of ACs are further presented in
Sec. D.
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A. Theoretical framework for acoustic waves in PCs

For simplicity, we consider first the acoustic waves prop-
agating in 2D PCs made of pure (isotropic) fluid ingredients.
This model can be well applied to the case described in text,
given the rigid assumption of epoxy (with respect to the air
host).

The propagation of time-harmonic acoustic waves in
inhomogeneous media can be described by

κ(r)∇ · [ρ−1(r)∇ψ(r)] + ω2ψ(r) = 0, (A1)

where ψ(r) represents the pressure field, and ρ(r) and
κ(r) denote the mass density and compression modulus,
respectively. Considering the planar periodicity of the 2D PC
in xy-plane, the acoustic wave equation can be rewritten as the
eigenproblem

Hψk(r) = ω2
kκ

−1(r)ψk(r), (A2)

where the Hamiltonian H (r) = −∇ · [ρ−1(r)∇] and ψk(r) is
the eigenstate characterized by reduced Bloch wave vector k
(in the xy plane) and eigenfrequency ωk.

1. k · p perturbation method

Suppose there is a d-fold degeneracy at k-point. According
to the k · p perturbation method [29], the Bloch state ψk′(r)
vicinal to the degenerate point can be expanded in the
(orthogonal) degenerate subspace {ψi(r)}, i.e.,

ψk′(r) = ei	k·r
d∑

j=1

Ajψj (r), (A3)

where 	k = k′ − k and {Ai} are coefficients of the linear
expansion. The orthogonality of the degenerate eigenstates is
defined by

∫
ψ∗

i (r)ψj (r)κ−1(r)d� = δij , where the integral
covers the whole primitive cell and δij is the Kronecker
delta. Substituting Eq. (A3) into Eq. (A2) and using the
orthogonality, one can reformulate the eigenproblem in the
degenerate subspace

d∑
j=1

[
ω2

kδij + 	k · pij + |	k|2 qij

]
Aj = ω2

k′Ai, (A4)

where pij = ∫
ψ∗

i (r)pψj (r)d� and qij = ∫
ψ∗

i (r)qψj (r)d�,
with the vector operator p = −i[2ρ−1(r)∇ + ∇ρ−1(r)] and
the scalar operator q = 1/ρ(r). It is easy to prove that the
operator p is Hermitian, i.e., pij = p∗

ji .
Neglecting the high-order term |	k|2qij and focusing on

the linear one, Eq. (A4) reduces to

d∑
j=1

H ′
ijAj = 2ωk	ωAi. (A5)

Here, the matrix H ′ = 	k · p is the perturbation Hamilto-
nian of the original degenerate eigenproblem, which is also
Hermitian and guarantees the eigenvalue 2ωk	ω to be real,
with 	ω = ωk′ − ωk.

2. Symmetry analysis by group theory

The Hamiltonian H (r) is invariant under certain rotations
and reflections. These symmetry operations, determined by

specific building blocks positioned in given lattices, together
form a point group G of the crystal. According to the group
theory, the property of Bloch states is closely related to the
so-called point group of the Bloch wave vector k, denoted by
Gk, which is constituted by a part of symmetry operations
of G that transform k into itself or its equivalent one k + g,
with g being a reciprocal lattice vector of the crystal [23].
Specifically, Gk coincides G at k = 0.

When a group element R ∈ Gk acts on the crystal, it means
that the coordinate variable r in all functions defined on
the crystal changes to R−1 · r. Specifically, the action of R

transforms the eigenstate ψi(r) into ORψi(r) = ψi(R−1 · r)
through a scalar function operator OR . According to the group
theory, the degenerate eigenstates form a set of basis functions
of the representation of Gk, and the transformed state can
be linearly expanded as ORψi(r) = ∑d

j=1 DR,ijψj (r), where
DR is the associated representation matrix of the element R

[23]. Now, we study the action of R on the integration pij =∫
ψ∗

i (r)pψj (r)d�. Under this action, besides the transform of
the eigenstate, all material parameters appearing in the vector
operator p are invariant due to the crystal symmetry in direct
space, and the gradient operator ∇ transforms into R−1 · ∇.
Considering that the integration itself is not a function of
coordinates and thus invariant to the action, we have

pij = R−1 ·
d∑

j=1

D∗
R,miDR,nj pmn. (A6)

This establishes the relations among the matrix elements
pij , thus simplifying the form of the perturbation Hamiltonian
H ′ = 	k · p.

B. Double degeneracies, Dirac cones, and Berry phases

To investigate the existence of Dirac cones, below we
focused on the case of the double degeneracy (d = 2) for
various symmetries. Unless specifically stated otherwise, the
point group mentioned in the following refers to Gk.

The double degeneracies can be produced automatically
by the 2D planar point groups C3v and C6v in hexagonal
lattices and C4v in square lattices, which carry 2D irreducible
representations. Without mirror symmetries, the point groups
C3, C6, and C4 do not carry 2D irreducible representations but
can still support deterministic double degeneracies: according
to Herring’s criterion [30], a pair of conjugate 1D complex
representations often stick together into a 2D complex repre-
sentation. [The exception is the C3 point group at the hexagonal
BZ corner if it is associated with C3(v) symmetry in direct
space. A specific example can be referred to the PC made of
rotated regular triangular rods, as featured by the remarkable
band gap; see Fig. 4(b) in text.]

The double degeneracies can also be realized accidentally
by a pair of 1D representations, if the crystal parameters are
tailored carefully.

1. Deterministic double degeneracies and Dirac cones

Consider first the point groups C3v and C3 at the hexagonal
BZ corners. As will be shown below, both can generate Dirac
cones.
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(i) The point group C3v includes six independent elements:
the identity, the rotations by β = ±2π/3, plus a set of
equivalent reflections. The reflections depend on the explicit
selection of coordinates, while the rotations do not. For each
rotation operation, the 2D irreducible representation can be
expressed as DR = (cosβ −sinβ

sinβ cosβ ) [23], which mathematically
equals the corresponding rotation matrix R in this case.
By substituting R and DR into Eq. (A6), the relationships
among pij can be established: p22 = −p11, p12 = p21 and

p12 = ( 0 1
−1 0) · p11. These relations state that only one vector

variable is independent; for convenience, we choose the
diagonal element p11, which is real due to the Hermiticity of p.
Accordingly, the perturbation Hamiltonian can be simplified
as

H ′ = |	k| |p11|
(

cosθ −sinθ

−sinθ −cosθ

)
, (A7)

where θ is the azimuth angle of 	k with respect to p11.
The corresponding eigenvalues 2ωK	ω = ±|	k||p11| di-
rectly provide the angular-independent slopes 	ω/|	k| =
± |p11| /2ωK for the linear dispersion near the K-point.
This explains the Dirac cones emerging in Figs. 3(a) and
4(a), where the PCs have C6v and C3v symmetries in direct
space, associated with C3v symmetry at the K-point (see
text). (In principle, the reflection should be further considered
to simplify the perturbation Hamiltonian; however, it only
specifies the orientation of p11 and offers nothing new to the
analysis of the slopes.)

(ii) The point group C3 has three independent elements
(i.e., the identity and rotations by β = ±2π/3) and support
only three 1D representations, two of which are complex
ones. According to Herring’s criterion [30], if (and only if)
the crystal has C6 symmetry in direct space, the pair of 1D
complex representations can stick together and contribute
a double degeneracy, where the representation matrix of
the rotation element turns out to be D′

R = (e
iβ 0
0 e−iβ). Note

that this representation is equivalent to that of C3v case
(i.e., DR = SD′

RS−1 with S = 1√
2
(i −i
1 1 )) and gives rise to

identical perturbation Hamiltonian in Eq. (A7). This explains
the Dirac cones emerging in Figs. 3(b) for the PC made of
rotated regular hexagonal rods.

For the point groups C3v and C3 at the hexagonal BZ
center, the symmetry analyses yield the same perturbation
Hamiltonian as in Eq. (A7). However, the sole (Hermitian)
variable p11 turns out to be zero as a consequence of real
eigenstates [40]. The zero eigenvalues of H ′ correspond to
vanishing slopes of the dispersion and exclude the possibility
of the Dirac cones.

For the point group C6v (or C6) that occurs only in the
hexagonal BZ center, it cannot support Dirac cones since the
constraints exerted by the subgroups C3v (or C3) have already
caused H ′ to be null.

It is also easy to rule out Dirac cones for the point groups
C4v and C4, which can occur in both of the BZ center
and BZ corners of the square lattices. These symmetries
possess an operation of twofold rotation, associated with
the representation matrix identical to its rotation matrix.
Substituting the matrices into Eq. (A6), it yields immediately

TABLE II. Existence of deterministic Dirac cones.

G Gk k Existence

C3v or C6v C3v BZ corner o
C6 C3 BZ corner o
C3(v) C3(v) BZ center x
C6(v) C6(v) BZ center x
C4(v) C4(v) BZ center x
C4(v) C4(v) BZ corner x

pij = 0 and H ′ = 0. This simple procedure (in excluding Dirac
cones) can also be applied to the case of point groups C6v and
C6.

As a summary, Table II provides a list for the existence of
deterministic Dirac cones in various symmetries, where “o”
and “x” represent positive and negative, respectively.

2. Accidental double degeneracies and Dirac cones

The double degeneracy can be generated accidentally by a
pair of 1D representations, where the 2D representation matrix
is simply a direct sum of the two 1D ones. In the following, we
analyze the situations successively according to the symmetry.

(i) Consider first a general k-point at arbitrary
lattices. There is no constraint of symmetry ex-
erted on the perturbation Hamiltonian H ′ = 	k · p. In
general, the eigenvalues 2ωK	ω = 1

2 [	k · (p11 + p22) ±√
|	k · (p11 − p22)|2 + 4|	k · p12|2] give rise to anisotropic

and tilted linear conic dispersions, with the tilted angle
determined by the orientation of p11 + p22. Note that k = g/2
should be excluded, as explained below. In such special
k-points (particularly, k = 0, if g = 0), the eigenstates can
always be chosen as real functions [41]. This enforces pij to be
pure imaginary and thus leads to p11 = p22 = 0, considering
the Hermiticity of the vectorial operator p. Therefore, the
eigenvalues reduce to ± |	k · p12|, which is dependent on the
orientation of 	k and strongly anisotropic. The eigenvalues
even become zero as 	k is perpendicular to p12, which leads
to a parabolic dispersion along this special orientation when
the higher order perturbation is involved.

(ii) For the point group of Cs , where the ensemble of such
k forms special line(s) in the reduced BZ, the conclusions
in (i) still hold since the mirror symmetry only specifies the
orientation of pij (accordingly, it enables the Dirac cones with
the same symmetry).

(iii) For the point group of C2(v) that occurs only at k =
g/2, the possibility of Dirac cones can be directly excluded
according to a similar reasoning in (i).

(iv) For the point groups with higher rotational sym-
metries, i.e., Cn(v) with n � 3, occurring in the BZ center
or corners of the hexagonal or square lattices, categorized
discussions are made as following. (1) Involving 1D real
representations only: in these cases, the 2D representation can
be described by the diagonal matrix associated with elements
either +1 or −1. According to Eq. (A6), we have

R · pij = pij or R · pij = −pij . (A8)
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The rotation invariance of the n-fold enforces directly pij =
0, and thus H ′ = 0. This excludes the existence of Dirac cones.
(2) Involving 1D complex presentations: this occurs only in the
C3 symmetry of the hexagonal BZ corners, where Herring’s
criterion fails to create the deterministic double degeneracy
if associated with C3(v) symmetry in direct space. For the
degeneracy created by the pair of 1D complex representations
together, linear conic dispersions should emerge since the
2D representation matrix is totally identical to that of the
deterministic case. The accidental hybridization of a 1D real
representation and a 1D complex representation can also
contribute Dirac cones: using the 2D representation matrix
DR = (1 0

0 eiβ), the perturbation Hamiltonian can be simplified
into

H ′ = |	k| |p12|
(

0 eiθ

e−iθ 0

)
, (A9)

leading to isotropic slope 	ω/ |	k| = ± |p12| /2ωK . There-
fore, conic dispersions can be generated by the accidental
double degeneracy only if the 1D complex presentation is
involved. A specific example can be referred to the 2D PCs
made of regular triangular rods, in which the filling ratio of
rods is carefully selected for a given orientation, as will be
shown in Fig. 7.

As a summary, Table III provides a list for the existence of
accidental Dirac cones in various symmetries.

3. Berry phases of the Dirac cones

The Berry phase [42], an extra phase factor emerging after
a dynamic quantum system undergoes an adiabatic loop, has
significant influence on the wave transport properties. In the
following, we derive the Berry phase for the conic state ψk,
evolving adiabatically along a k-contour surrounding the Dirac
point. The Berry phase can be evaluated by the formula

γ = i
∮ [∫

ψ∗
k∇kψkd�

]
· dk, (A10)

which requires the derivability of the eigenstate ψk with
respect to k [43]. For simplicity, we choose the integral path to

TABLE III. Existence of accidental Dirac cones.

G Gk k Existence

Arbitrary C1 General k o
With mirror(s) Cs Certain k o
C2(v), C4(v), C6(v) C2(v) k = g/2 x
C3 C3 BZ center x
C3, C3v C3 BZ corner o
C6 C3 BZ corner x
C3v C3v BZ center x
C3v , C6v C3v BZ corner x
C4v C4v BZ center/corner x
C6v C6v BZ center x

be an arbitrary small circle centered on the Dirac point. Using
the orthonormality of the degenerate eigenstates, Eq. (A10)
can be reduced to

γ = i
∫ 2π

0
dθ

∑
j=1,2

A∗
j

∂

∂θ
Aj . (A11)

Naturally, Eq. (A11) requires the derivability of the eigen-
vector with respect to the parameter θ . In the following, we
show that all of the aforementioned Dirac cones carry the same
Berry phase of π .

For the Dirac cones occurring in the hexagonal BZ
corners, either deterministically or accidentally, from the
perturbation Hamiltonian, we can analytically derive the
normalized eigenvectors for the upper and the lower Dirac
cones. Specifically, the perturbation Hamiltonian in Eq. (A7)
provides eigenvectors (A1,A2) = eiθ/2(−cosθ/2,sinθ/2) and
(A1,A2) = eiθ/2(sinθ/2,cosθ/2), and the perturbation Hamil-
tonian in Eq. (A9) provides (A1,A2) = (eiθ /

√
2,1/

√
2) and

(A1,A2) = (−eiθ /
√

2,1/
√

2). In both cases, Eq. (A11) gives
the Berry phase γ = π for each cone.

For the Dirac cones accidentally occurring at a more general
k-point associated with C1 or Cs symmetry, without tedious
derivation presented here, we have also verified the Berry
phase of π by virtue of the analytic eigenvectors.

FIG. 5. (Color online) Parameter stable Dirac cones for the hexagonal PCs made of regular triangular rods, where the special rod orientation
is chosen to enable the PC with C3v symmetry in both direct space and the K-point, as displayed in (a). The variation of the filling ratio from
0.240 (a) and 0.265 (b) shifts the normalized Dirac frequency from 0.508 to 0.499.

134302-7



LU, QIU, XU, YE, KE, AND LIU PHYSICAL REVIEW B 89, 134302 (2014)

FIG. 6. (Color online) Parameter stable Dirac cones for the hexagonal PCs made of regular hexagonal rods, where a general rod orientation
(α = 20o) is chosen to enable the PC with C6 symmetry in direct space and with C3 symmetry at the K-point, as displayed in (a). The variation
of the filling ratio from 0.480 (a) and 0.530 (b) shifts the normalized Dirac frequency from 0.492 to 0.481.

C. Numerical verifications for various Dirac cones

Here, we provide numerical verifications (simulated by
the COMSOL package) for various Dirac cones discussed in
Appendix Sec. B, as summarized in Tables II and III. For
simplicity, here we consider PCs made of rigid rods placed in
a fluid matrix, in which only the geometry of rods is involved.
In each system, two different filling ratios are employed to
illustrate the parameter stability of the Dirac cones. It should
be pointed out that the Dirac cones can emerge in various
frequencies and appear in pairs (or multipairs) in the reduced
BZ; for clarity, in each case only one Dirac cone (with the
lowest frequency) is displayed around the corresponding Dirac
point.

Figures 5–8 display the Dirac cones produced by various
symmetries, which are realized in hexagonal lattices posi-
tioned with building blocks of different shapes or orientations.
(The property of the Dirac cone produced by C1 symmetry
resembles that of Cs symmetry; thus, only the latter is
provided.) The characteristics of these Dirac cones are briefly
summarized as follows: (i) Shapes of the Dirac cones: the
Dirac cones displayed in Figs. 5–7 are isotropic (due to the
rotational symmetry of the system) and associated with conic
axes vertical to the k-plane; in contrast, the Dirac cones in
Fig. 8 are anisotropic, associated with tilted conic axes. (ii)
Parameter stability of Dirac cones: arising from deterministic

double degeneracies, the Dirac cones exhibited in Figs. 5 and
Fig. 6 are stable to the filling ratio, while those in Figs. 7 and 8,
corresponding to accidental double degeneracies, are sensitive
to the filling ratio, associated with either gap opening (Fig. 7)
or shift of the Dirac point in k-space (Fig. 8).

D. Extensions to the other types of classical waves

1. Vectorial elastic waves in 2D PCs

Here, we consider elastic waves propagating in 2D PCs.
Compared with the above acoustic systems, the most remark-
able difference lies in the vectorial property of elastic waves.
The propagation of elastic waves in inhomogeneous (isotropic)
media are governed by this equation [44]

(λ + μ)∇(∇ · u) + μ∇2u + ∇λ(∇ · u) + ∇μ × (∇ × u)

+ 2(∇μ · ∇)u = −ρω2u, (A12)

where u(r) represents the vectorial displacement field and λ(r)
and μ(r) are Lame’s constants. For elastic media with 2D
planar periodicity, the in-plane propagation of the elastic waves
can be described by the eigenproblem

H (r)uk(r) = ω2
kρ(r)uk(r), (A13)

FIG. 7. (Color online) Parameter unstable Dirac cones for the hexagonal PC made of regular triangular rods, where the special rod
orientation is chosen to enable the PC with C3v symmetry in direct space and with C3 symmetry at the K-point, as displayed in (a). The
corresponding filling ratios are 0.169 and 0.173 in (b) and (c), respectively; the former induces Dirac cones at the normalized frequency 1.371,
whereas the latter opens a band gap.
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FIG. 8. (Color online) Parameter unstable Dirac cones for the
hexagonal PC made of regular pentagonal rods, where the special
orientation is chosen to enable the PC with Cs symmetry in direct
space, as displayed in (a), and to enable a line of the k-point (marked
by dashed line) with Cs symmetry. The corresponding filling ratios are
0.484 and 0.532 in (c) and (d), which support Dirac cones at k-points
denoted by the red and blue points in the first BZ. Specifically,
the perturbation of the filling ratio changes the normalized Dirac
frequency from 1.562 to 1.630 and shifts the k-point from (0.155, 0)
to (0.186, 0).

where H = −[(λ + μ)∇∇ · +μ∇2 + ∇λ∇ · +∇μ × ∇ ×
+2∇μ · ∇] corresponds to the Hamiltonian operator
associated with Bloch eigenstate uk(r).

Again, for a d-fold degeneracy at k-point, the eigenstate
in the neighborhood uk′(r) can be expressed in the de-
generate subspace {ui(r)}, i.e., uk′ (r) = ei	k·r ∑d

j=1 Aj uj (r).
Substituting it into Eq. (A13) and using the orthogonality∫

u∗
i (r) · uj (r)ρ(r)d� = δij , the eigenproblem turns out to be

d∑
j=1

[
ω2

kδij + 	k · pij + 	k	k : qij

]
Aj = ω2

k′Ai, (A14)

where the scalar operator is qij =∫
(λ + μ)u∗

i uj + μ(u∗
i · uj )Id� and the vectorial operator

pij = −i
∫

�ij d� with

�ij = (λ + μ)(u∗
i ∇ · uj + u∗

i · ∇uj ) + 2μ(∇uj ) · u∗
i

+∇λ · u∗
i uj + u∗

i uj · ∇μ + (u∗
i · uj )∇μ.

The linear approximation in Eq. (A14) brings the following to
a perturbation problem with identical form to Eq. (A5), that
is,

∑d
j=1 H ′

ijAj = 2ωk	ωAi .
Similar to the procedure employed in Appendix Sec. A,

the perturbation Hamiltonian H ′ = 	k · p can be simplified
by symmetry analysis. The only difference from the above
scalar field case is that now the action of a group element
R transforms the vector eigenstate ui(r) into ORui(r) =
R · ui(R−1 · r), but not simply ORui(r) = ui(R−1 · r), consid-
ering the vectorial property of the displacement field. It is of
particular interest that the relations among the matrix elements
pij can be proved to be pij = R−1 · ∑d

j=1 D∗
R,miDR,nj pmn,

which is exactly the same as that of the acoustic case in
Eq. (A6). This eventually gives rise to a universal judgment on
the existence of Dirac cones for any given system symmetry,
irrespective of the type of sound fields.

2. Further discussions

So far, we have studied 2D PCs for both the acoustic
and elastic waves. Extensions can be easily made for 2D
ACs propagating with the other types of scalar and vectorial
classical waves, such as shallow water waves and EM waves.
In particular, the scalar wave theory can be straightforwardly
applied to the EM waves in traditional 2D photonic crystals,
which consist of 2D periodic arrays of infinitely long cylinders
or holes in the host media; in this case, the translational
invariance in the z direction decouples the EM waves into
TM and TE modes, both of which can be handled by a simple
mapping with the acoustic systems.

It is also noteworthy that in both discussions of acoustic and
elastic PCs, the translational invariance in the z direction is not
prerequisite. Besides the traditional 2D phononic and photonic
crystals, the treatment remains valid as well for the 2D ACs
without z invariance. Therefore, our theory can explain well
the Dirac cones occurring in various 2D classical ACs (e.g.,
the hexagonal array of plasmonic spheres [15,16], where the
vectorial property of EM waves must be considered).

[1] See, for example, J. D. Bjorken and S. D. Drell, Rel-
ativistic Quantum Mechanics (McGraw-Hill, New York,
1964).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 (2004); K. S. Novoselov, A. K. Geim, S. V. Morozov, D.
Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A.
A. Firsov, Nature (London) 438, 197 (2005).

[3] A. H. Castro-Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009) and references
therein.

[4] F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904
(2008); S. Raghu and F. D. M. Haldane, Phys. Rev. A 78, 033834
(2008).

[5] T. Ochiai and M. Onoda, Phys. Rev. B 80, 155103 (2009).
[6] Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, Phys. Rev.

Lett. 106, 093903 (2011).
[7] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.

Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013); A. B. Khanikaev, S. H.
Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G.
Shvets, Nat. Mater. 12, 233 (2013).

134302-9

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevB.80.155103
http://dx.doi.org/10.1103/PhysRevB.80.155103
http://dx.doi.org/10.1103/PhysRevB.80.155103
http://dx.doi.org/10.1103/PhysRevB.80.155103
http://dx.doi.org/10.1103/PhysRevLett.106.093903
http://dx.doi.org/10.1103/PhysRevLett.106.093903
http://dx.doi.org/10.1103/PhysRevLett.106.093903
http://dx.doi.org/10.1103/PhysRevLett.106.093903
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nmat3520


LU, QIU, XU, YE, KE, AND LIU PHYSICAL REVIEW B 89, 134302 (2014)

[8] X. Zhang, Phys. Rev. Lett. 100, 113903 (2008).
[9] Q. Liang, Y. Yan, and J. Dong, Opt. Lett. 36, 2513 (2011).

[10] R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, Phys.
Rev. A 75, 063813 (2007).

[11] S. R. Zandbergen and M. J. A. de Dood, Phys. Rev. Lett. 104,
043903 (2010).

[12] S. Bittner, B. Dietz, M. Miski-Oglu, P. Oria Iriarte, A. Richter,
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