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We determined the phase diagram of magnesium oxide with finite-temperature density functional theory
molecular dynamics simulations up to temperatures and pressures as relevant for the deep interior of super-Earths
and in rocky cores of giant planets such as Jupiter. The equation of state data, the Hugoniot, and a ramp
compression curve are computed and compared to earlier results from diamond anvil cell and (decaying) shock
wave experiments. In addition, the dynamical electrical conductivity and the reflectivity along the experimental
Hugoniot curve are calculated in order to characterize electronic structure changes under compression. The
structural properties of MgO are identified using pair correlation functions and self-diffusion coefficients. The
solid-solid coexistence line is calculated by comparing the free enthalpies of the B1 and the B2 phase. The free
energy of the solid phases is determined via thermodynamic relations using the ab initio simulation results and
phonon calculations in the harmonic approximation. Our results indicate that the solid B2 phase of MgO does
not occur in the interior of the Earth but may play an important role in super-Earths and in rocky planetary cores.
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I. INTRODUCTION

Magnesium oxide is a widely abundant mineral in the
Earth’s mantle. It is also expected to be a major component of
super-Earths, i.e., exoplanets with up to ten Earth masses [1–3],
and in rocky cores of giant planets such as Jupiter [4].
Compared to the pressure and temperature range in the
Earth’s mantle (the core-mantle boundary is located at about
136 GPa and 4000 K based on the preliminary reference
Earth model [5,6]), values up to 20 000 K and 10 TPa are
expected in super-Earths and rocky planetary cores [7,8].
These extreme conditions are, up to now, not fully accessible
with experiments and, thus, theoretical calculations are needed
to give predictions for the behavior of MgO at such high
pressures.

Due to its simple crystal structures (NaCl for the B1 phase
and CsCl for the B2 phase), MgO is a prototypical material
to study solid structures and solid-solid transitions. Various
ab initio calculations for MgO have been performed so far.
Especially the determination of the B1-B2 transition [9–13]
has attracted a lot of attention since these results might
have a significant impact on the physical properties and the
composition of planetary mantles.

In the Earth’s interior, only the solid B1 phase of MgO
is expected to occur. This phase is extremely stable so that
it is used as pressure medium and to calibrate pressure
measurements in diamond anvil cells (DACs) [12]. At room
temperature the stability of this phase has been measured up
to 227 GPa [14] in DACs and the melting curve between
the solid B1 structure and its molten salt was observed for
up to 52 GPa using heated DACs [15,16]. In addition the
transition to the B2 phase was predicted by various theoretical
calculations. For T = 0 K, values between 483 and 508 GPa
were derived [12,17]. The first experimental observation of
the B2 phase has been reported only recently via decaying
shock compression by McWilliams et al. [18]. Their solid-
solid transition curve is located slightly above the theoretical
predictions [9,12]. Furthermore, the transition from the solid
B2 structure to liquid MgO is accompanied by a nonmetal-to-

metal transition indicated by a rise of the reflectivity [18]. At
T = 0 K the metallization of the solid B2 phase is expected
to occur at 20.7 TPa [12]. Most recently the B2 phase was
identified in another experiment by Coppari et al. [19] using
x-ray scattering in combination with ramp compression. They
also derived a significantly higher transition pressure than
predicted theoretically.

However, substantial differences between these experimen-
tal results and two-phase simulations performed by Alfè [17]
and Boates and Bonev [10], and other theoretical calculations,
e.g., those of Strachan et al. [13], Drummond et al. [11] or
Belonoshko et al. [9] and de Koker and Stixrude [20] still
exist which have to be resolved. A precise knowledge of the
phase diagram is also necessary to determine other important
properties, such as the thermal conductivity and the viscosity at
pressures and temperatures exceeding the values at the Earth’s
core-mantle boundary [21,22] and with respect to different
solid structures [3].

The goal of the present work is to give improved results
for the B1-B2 transition curve based on ab initio simulations
in combination with phonon calculations in the harmonic
approximation. In doing so, we consider anharmonic con-
tributions to the free energy and compare with the recent
experiments [18,19]. The equation of state data are compared
with Hugoniot results and are tabulated for a large density-
temperature region (see Appendix) as relevant for the interior
of the Earth and of super-Earths. In order to identify the
experimentally observed nonmetal-to-metal transition, the re-
flectivity and the electrical conductivity of MgO are calculated
for several points along the Hugoniot curve adapted from
McWilliams et al. [18] and compared to the results of their
decaying shock experiment.

II. COMPUTATIONAL METHODOLOGY

In this section, we outline the details of the ab initio
simulations and of the other computational methods that are
used to calculate the equation of state (EOS) data, the phase
diagram, and the optical properties of MgO.
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A. Ab initio simulations

We used the plane-wave code VASP (Vienna ab initio sim-
ulation package VASP 5.2.8) [23–25] for the finite-temperature
density functional theory molecular dynamics (FT-DFT-MD)
simulations to obtain thermodynamic data. Here, FT-DFT
calculations [26–28] for the electronic structure are combined
with classical MD simulations for the ions in the system
within the Born-Oppenheimer approximation [29]. The ion
temperature was controlled by a Nosé thermostat [30], and the
temperature of the electrons was fixed by Fermi weighting the
occupation of bands using Mermin’s extension of standard
DFT [28]. For the exchange-correlation contribution, the
functional of Armiento and Mattsson in the generalized
gradient approximation (AM05-GGA) is used, which yields
improved bulk properties for solids [31,32]. In addition the
AM05 functional reproduces the density of the unit cells for
given experimental lattice constants best compared with other
functionals such as LDA [33], PBE [34], and PBEsol [35].
To reduce the numerical efforts, projected augmented wave
(PAW) pseudopotentials [36] with eight electrons for Mg
(2p63s2) and six electrons for O (2s22p4) were used.
As a result a qualitative estimation of the optical proper-
ties is possible and simultaneously the numerical effort is
minimized.

The simulations were performed using the NV T ensemble.
For given volume V and temperature T , the internal energy U

and the pressure P are calculated. A plane-wave cutoff energy
of 1000 eV for a supercell containing 64 ions in the B1 phase
and 128 ions in the B2 phase was chosen. These calculations
were performed using the Baldereschi mean value point [37] as
the sampling point in the Brillouin zone. The convergence with
respect to k-point sampling and cutoff energy was checked
using up to 3 × 3 × 3 Monkhorst-Pack grids [38] and 2000 eV
cutoff energies on snapshots to ensure the required accuracy.

The calculations started in the low temperature regime
where up to 15 000 simulation steps with 2.5–0.7 fs duration
were used. The length of the time step was chosen to resolve
the highest phonon frequencies in the system well. Thermo-
dynamic equilibrium for each simulation point was ensured,
e.g., at least the first 1000 time steps (few picoseconds) of
the simulation runs were disregarded to guarantee equilibrated
ensembles. Such converged simulation runs were also used for
the initial configuration of simulations at higher temperatures.
At sufficiently high temperatures, the solid structure melts and
the regime of a molten salt is reached. Using this technique,
the phase diagram and the EOS data presented in this work
were determined.

B. Determination of the solid-solid phase transition

Since different numbers of atoms are treated in the
respective supercells, a transformation from one structure to
another is not possible, which prevents a direct determination
of solid-solid transitions within this simulation technique.
Therefore the solid-solid B1-B2 phase transition is calculated
applying thermodynamic relations [39,40]. The location of the
phase transition in P -T space derives from the equality of the
free enthalpy of both phases GB1 = GB2, where G is defined

as

Gα (T ,P ) = Uα (T ,P ) − T Sα (T ,P ) + PVα (T ,P )

= Fα (T ,P ) + PVα (T ,P ) . (1)

Here, Sα is the entropy and Fα the free energy with α =
B1, B2. The variables of the free enthalpy Gα are temperature
T and pressure P so that we switched from the NV T ensemble
used in the FT-DFT-MD simulations to a NPT representation
by interpolating the volume V , the internal energy U and the
entropy S on a fine P -T grid. The free enthalpy is determined
on each grid point for both solid structures. By calculating the
change of the free enthalpy �G the corresponding transition
pressure Ptr follows from the condition that �G is zero for a
given temperature:

�G = GB1 − GB2

= (FB1 − FB2) + Ptr (VB1 − VB2) = 0 . (2)

Here, we start from the basic assumption that the free energy
Fα , the internal energy Uα as well as the entropy Sα consist
of ionic, electronic, and electron-phonon contributions [39]. In
this work we take into account the dominating contributions of
the ion lattice vibrations and the electronic fraction (el) [39].
The influence of electron-phonon contributions on the entropy
and the internal energy is neglected. The phonon contribution
can be decomposed into harmonic ion motions (ph) and an
anharmonic motion part (anh), which becomes important for
higher temperatures up to the region where melting occurs:

F (T ,V ) = �0 (V ) + Fph (T ,V ) + Fanh (T ,V ) + Fel (T ,V ) .

(3)

�0 (V ) represents the electronic ground-state energy. All
three contributions to the internal energy U are calculated
ab initio within the FT-DFT-MD simulations: the electronic
contribution follows from the DFT calculations, while the ion
motion is described by Newton’s equation of motion. Due to
the classical treatment of the ion motion at low temperatures,
quantum effects like the zero-point vibrational energy are
not taken into account. Furthermore, the entropy has to be
calculated separately.

C. Phonons and harmonic approximation

In simplest approximation, we only consider the electronic
ground-state energy and the harmonic motion of the ions
(phonons). The additional electronic energy due to excitations
is two orders of magnitude smaller than the contribution of
the ion motion, and the neglect of the anharmonicities is
valid for temperatures far below melting where only small
displacements of the atoms from their equilibrium lattice
positions can be assumed [39]. This leads to the quasiharmonic
approximation for which analytical results for the internal
energy Uph and the entropy Sph are known. In this case it
is only necessary to calculate the phonon frequencies ωr (k)
in dependence of the band number r (r = 1, . . . ,3N ) and k
vector of the N ions in the respective unit cell (N = 2 for both
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solid phases of MgO),

Fph (T ,V ) =
∑
k,r

1

2
�ωr (k,V )

− 1

β

∑
k,r

ln{1 − exp[−β�ωr (k,V )]}, (4)

Sph (T ,V ) = −∂Fph (T ,V )

∂T

∣∣∣∣
V

, (5)

Uph (T ,V ) = Fph (T ,V ) + T Sph (T ,V ) , (6)

Pph (T ,V ) = −∂Fph (T ,V )

∂V

∣∣∣∣
T

. (7)

Here, β = 1/kBT represents the inverse temperature. The
calculation of the phonon frequencies ωr (k,V ) in the quasi-
harmonic approximation is performed using the PHONOPY

code [41]. The forces are derived within the finite displacement
method [42,43]. PHONOPY uses VASP to calculate the forces.
Therefore a static DFT calculation at 0 K is necessary to
determine the dynamic matrix (the matrix of the second
derivatives of the interatomic potential in the harmonic
approximation). The ground-state energy �0 (V ) is taken from
the static DFT calculations as well. In a second step, the
phonon frequencies are calculated by solving the second order
differential equation of the harmonic oscillator model [39,41].
The volume dependence in Eqs. (3)–(6) is introduced by
calculating up to 20 different isochors for both solid phases.

Similar to the above mentioned procedure the convergence
was also checked for the DFT and phonon calculations at T =
0 K with respect to k-point sampling and the cutoff energy.
A cutoff energy of 1000 eV and a 2 × 2 × 2 k-point grid
were used for the VASP calculations (checked against 2000 eV
and a 5 × 5 × 5 Monkhorst-Pack grid). The thermodynamic
data of the phonon calculations were also derived using a
Monkhorst-Pack k-point grid [38], in fact, a much denser
grid of 51 × 51 × 51 (checked against a 100 × 100 × 100
k-point grid). In this way, the accuracy of the numerical
results is guaranteed to be better than 0.1%. Within these
approximations, the B1-B2 transition curve of MgO can be
calculated using the thermodynamic values determined by
PHONOPY based on Eqs. (5) and (6) and the DFT calculations
for T = 0 K. By interpolating the free enthalpy G the B1-B2
transition pressure is determined for given temperatures. In this
case, the change of the free enthalpy contains no anharmonic
contributions.

Due to the use of the quasiharmonic approximation, the
quantum zero-point vibrational energy is included, while
anharmonicities are still neglected. The treatment of the latter
contributions is described in Sec. II D.

D. Calculation of the anharmonic free energy

With the FT-DFT-MD data the calculation of the free energy
F can be performed. Compared to the free energy within the
quasiharmonic approximation the ab initio simulations include

anharmonicities in a genuine way. Inserting

∂F

∂T

∣∣∣∣
V

= F

T
+ T

∂ (F/T )

∂T

∣∣∣∣
V

(8)

into the definition of the free energy F = U + T ∂F
∂T

|V , an
equation, which can be evaluated numerically to derive the
free energy at a given temperature along isochores:

U = −T 2 ∂ (F/T )

∂T

∣∣∣∣
V

, (9)

is found. The anharmonic contributions can be separated via

Uanh = UFT-DFT-MD − Uph − �0 , (10)

and the anharmonic free energy at a temperature Tf is then
given by the following expression:

Fanh(Tf )|V = Fanh (Ti)|V
Tf

Ti

− Tf

∫ Tf

Ti

Uanh (T )

T 2

∣∣∣∣
V

dT .

(11)

The free energy at a final temperature Fanh(Tf )|V for a constant
volume V is calculated relative to the free energy at an initial
temperature Fanh (Ti). For low enough Ti , anharmonicities
can be neglected and the free energy Fanh (Ti) vanishes
there. The resulting transition curve is connected with the
coexistence curve of the harmonic approximation at Ti that
is chosen high enough to include the quantum effects from
the quasiharmonic approximation but also below the region
where anharmonicities appear. A reasonable compromise is
Ti = 3000 K.

E. Reflectivity and dynamical electrical conductivity

A detailed analysis of the B1-B2 and B2-liquid transitions
reported by McWilliams et al. [18] can be performed by calcu-
lating the reflectivity for several states along the experimental
Hugoniot curve. In addition, the nonmetal-to-metal transition
that should occur simultaneously with the B2-liquid transition
might give us new insights into the origin and the shape of
planetary magnetic fields of, e.g., hot super-Earths.

Using the Kubo-Greenwood formula [44,45], the real part
of the dynamic electrical conductivity σ (ω) can be calculated
for a number of snapshots (we have chosen 20) to determine
statistically averaged results [46–48]:

σ (ω) =
〈

2πe2

3m2ω


∑
k

NB∑
i,j=1

3∑
α=1

[f (εik)−f (εjk)]

× |〈ψjk|p̂|ψik〉|2δ(εjk−εik−�ω)

〉
. (12)

Here, 
 is the volume of the supercell, 〈ψjk|p̂|ψik〉 the
transition matrix elements over all electronic bands NB of
the Kohn-Sham orbitals multiplied by a broadening function
and the respective thermal occupation numbers f (εik) (Fermi
weighting).

With the Kramers-Kronig relation the imaginary part of the
dynamic electrical conductivity is determined. The dielectric
function is derived and the index of refraction n (ω) + ik (ω)
is evaluated. Finally the reflectivity R (ω) is calculated using
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the Fresnel formula [49]:

R (ω) = [n0 − n (ω)]2 + [k0 − k (ω)]2

[n0 + n (ω)]2 + [k0 + k (ω)]2 . (13)

Equation (12) was evaluated considering 2000 electronic
bands, a 1000 eV cutoff energy, and a 3 × 3 × 3 Monkhorst-
Pack k-point grid [38]. The accuracy of the results was
checked against cutoff energies up to 2000 eV and a 5 × 5 × 5
k-point grid. We switched to PAW-GW pseudopotentials due
to the fact that the projectors, which play a major role in
the calculation of the optical properties, were optimized for
these pseudopotentials. To ensure a sufficiently large number
of bands the number of atoms in the B2 phase was reduced to
54 atoms.

Compared to the experimental data of the decaying shock
experiment of McWilliams et al. [18] one has to keep in mind
that n0 = 1.743 (k0 = 0) represents the index of refraction of
MgO [50] at normal conditions. Additional reflections at the
MgO-vacuum boundary can be neglected due to the use of
an antireflecting coating at this surface in the experimental
setup [18].

III. RESULTS

The FT-DFT-MD simulation described in the previous
section were used to calculate accurate EOS data in the region
from 500 to 20 000 K and pressures up to 1.5 TPa, which are
relevant for the interior of the Earth and of super-Earths. The
corresponding data for the pressure and the internal energy are
given in Appendix and may be used for constructing improved
interior models for planets [3,7]. An overall survey of these
results is given in the pressure-temperature diagram, Fig. 1.
The black squares of the solid B1 phase are separated from
the green diamonds of the B2 phase by the corresponding
coexistence curve. The white area between the solid structures
and the liquid phase (red circles) represents the region where
the solid-liquid transition is expected. An exact determination
of the solid-liquid transition curve is, contrary to that of the
B1-B2 transition, not possible within our method due to the
appearance of an amorphous structure in the transition region,
see Sec. III A.

We identify the different phases by using the pair correlation
functions (see Fig. 2), i.e., we compare the averaged pair
correlation function of the different phases with the ideal
crystal structures at the same density. Furthermore, a diffusion
analysis is performed and the mean square displacement of
the ions is determined in order to distinguish the liquid phase
from the solid phases. When thermodynamic equilibrium for a
solid structure is reached (i.e., the simulation is converged) the
slope of the mean square displacement during the simulation
is close to zero and only small vibrations of the ions around
their equilibrium positions are visible. For the liquid phase, the
ions can diffuse freely through the simulation box, resulting in
a significant rise of the slope of the mean square displacement
along the simulation time by up to nine orders of magnitude.

A. Melting and solid-liquid transition

The liquid phase is reached by melting of the solid
structures. With increasing temperature the displacements

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Temperature T [K]

0

100

200

300

400

500

600

700

800

P
re

ss
ur

e
P

[G
P

a] B1-B2 Transition
This Work
(Quasi-Harmonic
Approximation)

This Work
Belonoshko et al. [9]
Boates et al. [10]

Melting
Alfè [17]
Zhang et al. [16]
Boates et al. [10]

Planets
Nettelmann et al. [8]
Valencia et al. [7]
Mao et al. [51]

liquid

FIG. 1. (Color) Phase diagram of MgO up to a pressure of
800 GPa and a temperature of 20 000 K. The B1 phase is represented
by the black squares, the B2 phase by the green diamonds, and the liq-
uid phase by red circles. B1-B2 coexistence curves; black line-present
result, blue line-Belonoshko et al. [9], and magenta line(s)-Boates
and Bonev [10]. The solid B1-liquid transition is in good agreement
with the results of Alfè [17] and with the experiments of Zhang
et al. [16]. The geotherm [51] indicates that under Earth’s interior
conditions only the B1 phase is found. In a super-Earth with, e.g.,
5 ME [7] the B2 phase may exist even in the mantle (indicated by the
kink in the red curve). For comparison, the Jupiter adiabat [8] is also
shown.

of the ions from the ideal lattice position becomes larger
and finally the ions can diffuse freely through the volume
(simulation box). Between the solid and the liquid phases, the
pair distribution function indicates an amorphous structure,
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FIG. 2. (Color online) Structure identification by means of pair
correlation functions: gMg-O (red line), gMg-Mg (green line), gO-O (black
line). The vertical black dashed lines in the upper two panels mark
the ion positions of an ideal MgO crystal in the B1 structure (top)
or the B2 structure (middle). The peaks in the top (middle) diagram
agree with the ion positions in an ideal B1 (B2) MgO crystal. The
bottom diagram shows the behavior of a dense liquid or, as in this
case, a molten salt.
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which is neither solid nor liquid (represented by the white
area in Fig. 1). This artificial amorphous structure results from
the finite-sized supercell; the periodic boundary conditions
lead to a hysteresis effect and an overheated solid is reached
which instantaneously melts at temperatures above the true
melting temperature. When refreezing the liquid phase, an
undercooled liquid is reached and the melting temperature is
underestimated. The latter feature was not observed in our
simulations due to the fact that refreezing always leads to an
amorphous solid structure and the original crystal structure
was not recovered.

Experimental measurements of the solid-liquid transition
curve from heated DACs [15,16] lead to results, which agree
well [16] with our estimates for that region. Our predictions for
the solid-liquid transition region are also in good agreement
with the more adequate two-phase simulation results of
Alfè [17] and those of Boates and Bonev [10]. For the melting
of the B2 phase, the simulation lead at higher pressures to a
region close to the results of Boates and Bonev [10]. Other
suggestions for the B2-liquid transition based on estimates
for the Clausius-Clapeyron slope dP/dT = �S/�V at the
triple point give a rough impression and can be found in
literature [9,13] (see Fig. 1).

B. B1-B2 transition curve

In Fig. 1, the different theoretical curves for the B1-B2
transition are shown. The dashed light blue line is obtained
within the quasiharmonic approximation [Eq. (2) without
anharmonicities]. The black curve represents the results
combining FT-DFT-MD simulations with phonon calculations
as described in Sec. II D.

At T = 0 K, the resulting transition pressure of 483 GPa
is close to other theoretical results of Belonoshko et al. [9],
Oganov et al. [12], Alfè [17], and Boates and Bonev [10]. The
quasiharmonic approximation leads to a good estimation for
the B1-B2 transition at low temperatures and the agreement
with the results of the quasiharmonic approximation of
Belonoshko et al. [9] with the calculation of the phonon-based
free energy by integrating over the phonon density of states
(DOS) is obvious. With increasing temperature the anharmonic
ion motion plays a more important role. It leads to higher
transition pressures at higher temperatures compared with the
harmonic approximation.

The calculated transition curve is in good agreement with
other theoretical results, e.g., that of Belonoshko et al. [9] who
derived the transition line, in addition to the quasiharmonic
approximation mentioned above, from two-phase simulations
and the Z method. Similar results were provided by Oganov
et al. [12] who determined the transition by integrating
the Clausius-Clapeyron slope with an initial value for the
transition pressure for T = 0 K that was also calculated. The
difference to the recently published two-phase simulations
of Boates and Bonev [10] increases with temperature. An
explanation for this disagreement might be the sampling of
the Brillouin zone: they used only the � point which leads to
slightly different P and U values as our detailed convergence
checks have shown.
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FIG. 3. (Color online) Hugoniot curve (top) and ramp compres-
sion path (bottom). Black lines represent the results of the present
work. (a) Hugoniot curve (top). For densities up to 5.5 g/cm3

very good agreement with shock wave experiments of Marsh (red
circles [52]), Vassiliou et al. (blue diamonds [54]) and Svendsen
et al. (green squares [53]) is obtained. The kink at 6.25 g/cm3 is due
to phase transition from B1 to B2. (b) Ramp compression experiment
of Coppari et al. [19] (bottom). The red data points and their fit agree
nicely with our theoretical predictions.

C. Hugoniot curve and ramp compression

Shock-wave experiments are used to probe extreme states
of matter. The Hugoniot curve represents all thermodynamic
states (U,P,ρ) that can be reached for given initial conditions
of density, temperature, and pressure (U0,P0,ρ0). Based on
the FT-DFT-MD simulation data the Hugoniot curve can be
calculated evaluating the Hugoniot equation,

U − U0 = 1

2
(P + P0)

(
1

ρ0
− 1

ρ

)
. (14)

The results shown in Figs. 3 and 4 are in very good agreement
with the experiments of Marsh [52], Svendsen et al. [53]
and Vassiliou et al. [54] for the B1 phase (Fig. 3 for ρ0 =
3.58 g/cm3 and room temperature). Our data indicate a density
jump from 6.25 g/cm3 to 6.5 g/cm3 when the B1-B2 transition
is reached along the Hugoniot.

The first experimental observation of the solid B2 phase and
of the B2-liquid transition in MgO was derived from decaying
shock experiments [18]. Through time-resolved measurements
of the emission, the velocity as well as the reflectivity of
the shock front, the properties of the compressed MgO target
were determined. In this way measurements up to 1.4 TPa and
50 000 K were performed, see Figs. 3 (top) and 4 up to 20 000 K
and 800 GPa. Good agreement with earlier shock data for the
B1 phase is visible in the lower part of the McWilliams et al.
results but large differences between our calculated Hugoniot
curve and their results for the B2 phase have to be stated.
Between 11 000 and 14 000 K, the calculated Hugoniot curve
runs right through the coexistence region between the solid B2
and the liquid phase and, due to the lack of data points in this
region, only a rough estimate is possible. For temperatures
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FIG. 4. (Color) Phase diagram of MgO up to a pressure of
800 GPa and a temperature of 20 000 K. The purple line is the
calculated Hugoniot curve across the whole phase diagram. The
extension of the Hugoniot curve (dashed purple line) runs right
through the coexistence region between solid B2 phase and liquid
MgO. The results of McWilliams et al. [18] are indicated by blue
triangles. At lower temperatures, the orange curve represents our
theoretical ramp compression curve calculated by two subsequent
shock compressions followed by an isentrope (see the two kinks). The
transition determined by Coppari et al. [19] is the purple diamond.

above 14 000 K, our theoretical prediction for the Hugoniot
curve is again close to the measurements of the decaying shock
experiments of the liquid phase. The disagreement with the
experimental results in the B2 phase is still under investigation.

Based on our theoretical results, we predict that the
Hugoniot follows the coexistence curve between the solid
B2 and the liquid phases from about 440 to 600 GPa. For
the clarification of this disagreement, further more detailed
theoretical analyses and experimental data are necessary.

To investigate the transition curve at lower temperatures
than the Hugoniot curve, one can use the ramp compression
technique, i.e., compressing the system almost isentropically.
This can be achieved by performing reverberating shock
wave experiments or, in case of laser-driven compression,
by pulse shaping. For instance, the experimental path can be
approximated by a second shock that starts from the principal
Hugoniot curve and subsequent by an isentrope, see Fig. 4.
The path of the real ramp compression experiment of Coppari
et al. [19] is presented in Figs. 3 (bottom) and 4. The ramp com-
pression curve is constructed by combining a second shock,
starting at 30 GPa and 700 K on the principle Hugoniot curve,
with an isentropic compression starting at 300 GPa and 2700 K,
see Ref. [19]. The structure of the B2 phase was observed using
x-ray scattering. They located the B1-B2 transition at 600 GPa
and 3900 K, which is significantly higher than our calculation.
A possible explanation is the appearance of an amorphous
structure between 420 and 600 GPa (hysteresis) that could have
been observed in this experiment. Nevertheless, the calculated
ramp compression curve following [19] (see Fig. 4, orange
curve) is in very good agreement with the experimental point of
Coppari et al. [19].
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FIG. 5. (Color online) The different curves represent the elec-
trical conductivity σ (ω) along the measured Hugoniot curve of
McWilliams et al. [18]. With increasing temperature and pressure the
smearing due to ionization processes increases. The plateau, which
can be identified in the curves at about 55 eV, are due to the ionization
of the 2p electrons of Mg.

D. Reflectivity and electrical conductivity

For six points along the experimental Hugoniot curve of
McWilliams et al. [18], EOS points from our simulations were
used and the real part of the dynamic electrical conductivity
σ (ω) was calculated dependent on the photon energy, see
Fig. 5. For increasing photon energy, the electrical conductivity
rises due to the various inter atomic transitions and ionization
processes of Mg and O. The transitions of both elements
overlap, which leads to the first broad peak at about 20 eV.
For higher energies, the peak decreases until at about 50 eV
all electrons of the 3s shell of the Mg atom are ionized and the
first electrons of the 2p shell ionize. Higher photon energies
are not treated correctly in this pseudopotential formalism and
are thus omitted.

Notice that our evaluation of the Kubo-Greenwood for-
mula, Eq. (12), gives just a qualitative explanation of the
behavior of the dynamic conductivity because the GGA-AM05
functional underestimates the electronic band gap and thus
leads to increased values for the electrical conductivity σ (ω).
Furthermore, a better treatment of unoccupied bands, e.g.,
within the GW formalism or with other exchange correlation
functionals, is needed for more accurate results (see Sec. II E).
However, this is beyond the scope of the current work.

The reflectivity R calculated from the electrical conduc-
tivity using Eq. (13) is slightly higher than the measured
reflectivity of McWilliams et al. [18], see Fig. 6, which is
due to the overestimated electrical conductivity.
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FIG. 6. (Color online) The red curve represents the calculated
reflectivity R, which is compared to the Drude fit from McWilliams
et al. [18] (black line). For the points in the liquid phase, a
semiconductor model [55,56] according to Eq. (15) is applied to
correct for the band-gap problem of the DFT calculations (light blue
points, the resulting shift is indicated by arrows).
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The wide band gap for the solid phase leads to a reflectivity
close to zero. In the liquid phase, the reflectivity is higher and
increases further with increasing pressure and temperature; the
difference between the experimental data and the calculated
values using the GGA-AM05 functional are substantial. There-
fore we apply a simple liquid semiconductor model [55,56]
to empirically correct the underestimated band gaps derived
from DFT and to give more realistic estimates for the electrical
conductivity and reflectivity in the liquid phase,

σ = σ0 exp

[
−Eg (ρ)

2kBT
+ X

]
, (15)

with the quantity X,

X = −E
exp
g (ρ0) − EDFT

g (ρ0)

2kBT
= const. (16)

Here, E
exp
g (ρ0) = 7.83 eV is taken from Ref. [57] and a static

DFT calculation for the same density ρ0 yields EDFT
g (ρ0) =

4.83 eV. The corrected conductivity along the liquid branch of
the Hugoniot curve results in higher reflectivities and a much
better agreement with the experimental data is obtained, see
Fig. 6.

A more precise analysis would require improved DFT cal-
culations for the reflectivity using, e.g., the hybrid functional
of Heyd et al. [58] which are much more challenging with
respect to computer capacity and thus remain subject of future
work; for instance, see [59].

IV. CONCLUSION

We performed extensive ab initio calculations for MgO
using FT-DFT-MD simulations in order to derive accurate
EOS data up to extreme pressures and temperatures as
expected in the mantle of super-Earths and in cores of giant
planets. Our data are in very good agreement with shock
wave experiments (Hugoniot data and ramp compression), see
Fig. 3. Furthermore, we determined the high-pressure phase
diagram of MgO via basic thermodynamic relations (Gibbs
free energy), by calculating the pair distribution functions and
performing a diffusion analysis for the solid (B1 and B2) and
liquid phases.

Compared with previous work we considered anharmonic
contributions in both solid phases so that a consistent
prediction for the B1-B2 transition can be given. For low
temperatures, our result is in good agreement with earlier
theoretical findings based on the quasiharmonic approxima-
tion [9]. For higher temperatures, the anharmonic contributions
are essential, see Fig. 1. Our prediction for the B1-B2 transition
line differs from that of Boates and Bonev [10]. They used
the � point for sampling the Brillouin zone while in this
work higher k-point sets were taken into account, leading to
well-converged results. Furthermore, their phase diagram is
based on only few points, which in fact, enables a qualitative
but rough estimate for the slope for the coexistence lines.

Recent experiments reported higher pressures for the B1-B2
transition. The differences between these new experimental
results and the theoretical predictions have to be clarified
in future work. For instance, the experiment of Coppari
et al. [19] might have probed an amorphous phase between
420–600 GPa. The difference to the results of McWilliams

et al. [18] is still enigmatic but the inclusion of anharmonicities
leads to a slightly better agreement with these experiments.
The estimated region for melting agrees well with the different
theoretical and experimental predictions but further analysis is
necessary. Especially accurate Hugoniot points up to extreme
pressure would be helpful, see Fig. 3.

The results for the dynamic electrical conductivity indicate
that a complex ionization behavior occurs in the crystal
structures and in the liquid at high pressures. More accurate
results require DFT calculations using a hybrid exchange-
correlation functional, e.g., that of Heyd et al. [58,60,61],
which is computationally much more demanding and beyond
the scope of the present work. Instead, we applied a simple
semiconductor model [55] that corrects the DFT band gaps
and leads to reasonable agreement with the reflectivities
in the high-pressure liquid. The increase in the reflectivity
with pressure (and temperature) indicates the occurrence of
a nonmetal-to-metal transition. This effect might have an
impact on the interior and the magnetic field properties of
hot super-Earths.

Furthermore, the structural changes along the solid-solid
transition will affect heat transport from the planetary core to
the outer layers, especially due to different viscosities in these
phases. This may also be important for the question whether or
not plate tectonics is relevant for super-Earths [3,62]. Finally,
to improve interior models for super-Earths, other compounds
like SiO2, MgSiO3, FeO, and FeS have to be treated as well,
and especially their mixtures [10].
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APPENDIX: EQUATION OF STATE

The EOS data derived from the FT-DFT-MD simulations
is presented in Table I. As mentioned in Sec. III the different
phases were identified using averaged pair correlation function
to distinguish the solid phases and the diffusion analysis to
characterize the liquid phase.

TABLE I. Equation of state data for MgO up to 20 000 K and
pressures up to 1.5 TPa.

ρ (g/cm3) T (K) P (GPa) u (kJ/g) Phase

3.550 500 3.236 − 25.560 B1
3.884 500 19.951 − 25.366 B1
5.076 500 121.169 − 21.879 B1
5.983 500 243.681 − 16.751 B1
6.500 500 332.971 − 13.021 B1
7.120 500 457.495 − 7.786 B1
8.000 500 581.542 − 0.030 B2
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TABLE I. (Continued.)

ρ (g/cm3) T (K) P (GPa) u (kJ/g) Phase

8.600 500 732.333 5.623 B2
8.800 500 786.852 7.614 B2

3.550 1000 6.754 −24.944 B1
3.884 1000 23.880 −24.734 B1
5.076 1000 124.570 −21.247 B1
5.983 1000 247.325 −16.12 B1
7.120 1000 462.744 −7.192 B1
8.000 1000 587.263 0.587 B2
8.600 1000 738.300 6.239 B2
8.800 1000 792.939 8.238 B2

3.550 2000 12.921 −23.715 B1
3.884 2000 29.895 −23.491 B1
5.076 2000 132.005 −19.958 B1
5.983 2000 254.618 −14.801 B1
7.500 2000 486.412 −2.493 B2
8.000 2000 598.645 1.826 B2
8.600 2000 750.028 7.477 B2
8.800 2000 805.145 9.486 B2

3.000 3000 0.524 −22.057 B1
3.550 3000 19.019 −22.485 B1
3.884 3000 36.305 −22.243 B1
5.076 3000 137.475 −18.737 B1
5.983 3000 262.006 −13.630 B1
6.500 3000 350.417 −9.899 B1
6.750 3000 398.89 −7.898 B1
7.500 3000 497.834 −1.253 B2
8.000 3000 610.159 3.069 B2
8.600 3000 761.461 8.720 B2
8.800 3000 816.956 10.713 B2

3.550 4000 24.829 −21.219 B1
3.884 4000 42.790 −20.996 B1
4.511 4000 87.900 −19.658 B1
5.076 4000 144.534 −17.495 B1
5.983 4000 268.254 −12.372 B1
6.750 4000 406.857 −6.649 B1
7.500 4000 508.86 −0.014 B2
8.000 4000 621.382 4.309 B2
8.600 4000 773.395 9.965 B2
8.800 4000 828.585 11.961 B2

3.000 5000 22.432 −17.464 liquid
3.550 5000 30.956 −19.885 B1
3.884 5000 48.451 −19.731 B1
4.511 5000 95.020 −18.394 B1
5.076 5000 150.708 −16.215 B1
5.513 5000 206.228 −13.994 B1
5.983 5000 275.818 −11.099 B1
6.250 5000 321.313 −9.241 B1
6.500 5000 364.940 −7.369 B1
6.750 5000 414.744 −5.374 B1
7.500 5000 519.694 1.229 B2
8.000 5000 632.655 5.558 B2
8.600 5000 785.700 11.215 B2
8.800 5000 840.721 13.210 B2
10.000 5000 1215.624 26.184 B2
11.000 5000 1587.492 38.233 B2

3.550 6000 37.631 −18.435 B1
3.884 6000 54.911 −18.348 B1

TABLE I. (Continued.)

ρ (g/cm3) T (K) P (GPa) u (kJ/g) Phase

4.511 6000 101.037 − 17.064 B1
5.076 6000 157.875 − 14.92 B1
5.513 6000 213.434 − 12.694 B1
5.983 6000 283.326 − 9.792 B1
6.250 6000 327.574 − 7.950 B1
6.500 6000 372.979 − 6.116 B1
7.000 6000 429.477 − 1.471 B2
7.500 6000 530.583 2.468 B2
8.000 6000 643.900 6.801 B2
8.600 6000 797.408 12.462 B2
8.800 6000 852.734 14.456 B2

3.550 7000 58.216 − 13.927 liquid
4.511 7000 107.552 − 15.655 B1
6.250 7000 334.236 − 6.652 B1

3.000 8000 36.511 − 12.704 liquid
3.550 8000 64.282 − 12.235 liquid
3.884 8000 85.238 − 11.734 liquid
4.511 8000 115.799 − 14.111 B1
5.076 8000 172.624 − 12.172 B1
5.513 8000 227.772 − 9.979 B1
5.983 8000 296.799 − 7.120 B1
6.250 8000 343.049 − 5.289 B1
6.762 8000 406.459 − 0.648 B2
7.000 8000 450.325 1.068 B2
7.263 8000 502.238 3.091 B2
7.500 8000 551.673 5.006 B2
8.000 8000 666.869 9.330 B2
8.600 8000 820.566 14.994 B2
8.800 8000 876.318 16.979 B2

5.076 9000 181.055 − 10.604 B1
5.513 9000 236.132 − 8.480 B1
5.983 9000 304.750 − 5.725 B1
6.499 9000 371.954 − 1.089 B2
6.762 9000 417.921 0.693 B2
7.000 9000 460.902 2.387 B2

3.550 10 000 76.097 − 8.875 liquid
3.884 10 000 98.860 − 8.213 liquid
4.511 10 000 152.712 − 6.298 liquid
5.076 10 000 214.429 − 3.875 liquid
5.513 10 000 243.645 − 6.884 B1
5.983 10 000 314.087 − 4.201 B1
6.499 10 000 382.385 0.33 B2
6.762 10 000 428.500 2.095 B2
7.000 10 000 471.407 3.747 B2
7.263 10 000 524.487 5.766 B2
7.500 10 000 573.969 7.652 B2
7.763 10 000 634.725 9.886 B2
8.000 10 000 690.299 11.949 B2
8.600 10 000 844.597 17.576 B2
8.800 10 000 900.317 19.563 B2
10.000 10 000 1280.928 32.517 B2
11.000 10 000 1656.101 44.571 B2
5.999 11 000 354.293 3.24 liquid
5.513 11 000 253.386 − 5.104 B1
6.499 11 000 394.352 1.846 B2
6.762 11 000 439.543 3.554 B2
7.263 11 000 536.250 7.180 B2
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TABLE I. (Continued.)

ρ (g/cm3) T (K) P (GPa) u (kJ/g) Phase

3.550 12 000 85.467 − 5.848 liquid
3.884 12 000 110.516 − 4.966 liquid
5.076 12 000 230.927 − 0.507 liquid
5.513 12 000 289.654 2.001 liquid
5.983 12 000 360.000 4.636 liquid
5.999 12 000 365.664 5.199 liquid
7.000 12 000 495.767 6.719 B2
7.263 12 000 547.867 8.659 B2
7.500 12 000 597.519 10.514 B2
7.763 12 000 657.558 12.694 B2
8.000 12 000 714.206 14.848 B2
8.600 12 000 869.705 20.309 B2

5.999 13 000 376.731 7.205 liquid
6.250 13 000 416.574 8.525 liquid
6.499 13 000 464.910 10.700 liquid
7.263 13 000 560.130 10.242 B2
7.500 13 000 610.393 12.034 B2

3.550 14 000 95.531 − 2.722 liquid
3.884 14 000 122.115 − 1.670 liquid
5.076 14 000 248.416 3.287 liquid
5.983 14 000 380.145 8.340 liquid
6.499 14 000 476.803 12.699 liquid
6.762 14 000 526.096 14.492 liquid

TABLE I. (Continued.)

ρ (g/cm3) T (K) P (GPa) u (kJ/g) Phase

7.000 14 000 576.631 16.484 liquid
7.120 14 000 601.222 17.166 liquid
7.763 14 000 684.244 15.812 B2
8.000 14 000 740.152 17.815 B2
8.600 14 000 896.370 23.270 B2

3.550 16 000 106.030 0.667 liquid
3.884 16 000 134.544 1.711 liquid
5.076 16 000 263.800 6.646 liquid
5.983 16 000 401.422 12.272 liquid
6.499 16 000 498.251 16.521 liquid
6.762 16 000 550.359 18.546 liquid
7.000 16 000 599.647 20.480 liquid
7.263 16 000 659.139 22.693 liquid
7.500 16 000 714.822 24.940 liquid
8.600 16 000 923.810 26.535 B2
8.999 16 000 1038.641 30.363 B2
10.000 16 000 1363.492 41.004 B2
11.000 16 000 1741.790 52.876 B2

7.500 18 000 735.891 28.332 liquid

7.000 20 000 646.105 28.227 liquid
7.500 20 000 761.318 32.534 liquid
8.000 20 000 892.850 37.719 liquid
8.600 20 000 1065.248 44.100 liquid
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[13] A. Strachan, T. Çağin, and W. A. Goddard, III, Phys. Rev. B 60,

15084 (1999).
[14] T. S. Duffy, R. J. Hemley, and H.-k. Mao, Phys. Rev. Lett. 74,

1371 (1995).
[15] A. Zerr and R. Boehler, Nature 371, 506 (1994).
[16] L. Zhang and Y. Fei, Geophys. Res. Lett. 35, L13302 (2008).
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[42] D. Alfè, Comput. Phys. Commun. 180, 2622 (2009).
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