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Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin
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It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn
adopts a complex χ -phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional
theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn
implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are
not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using
a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials
stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural
trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in
Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic
repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP)
is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within
BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are
fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely,
α, β, γ , δ, and ε-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the
five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn,
the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ -, δ-, and ε-Mn that are found by DFT. A BOP
expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model
with the exception of the elastic shear constants, which require further moments. The current TB model, however,
predicts values of the shear moduli and the vacancy formation energies that are approximately a factor of 2 too
small, so that a future more realistic model for MD simulations will require these properties to be included from
the outset in the fitting database.
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I. INTRODUCTION

In contrast to the other group VII elements, 4d Tc and
5d Re, which adopt nonmagnetic hexagonally close-packed
(hcp) ground-state structures, at room temperature 3d Mn has a
paramagnetic ground state which has a complex 58-atom cubic
unit cell with 4 inequivalent atomic sites [1]. This structure,
termed α-Mn, is isomorphic with the χ phase of alloys
such as Fe36Cr12Mo10 and the binary Sc5Re24, and below a
Néel temperature of TN = 95 K has been found to exhibit
complex noncollinear antiferromagnetic ordering [2,3]. The
reason for the anomalous stability of the χ phase for Mn has
commonly been attributed to the presence of magnetism [4].
With increasing temperature, up to a melting temperature of
1517 K, a further three phases are stabilized: complex 20-atom
β-Mn, fcc γ -Mn, and bcc δ-Mn [5]. Relatively little is known
of the interplay between these competing structure types
particularly at higher temperatures, and in comparison to other
3d metals there is a scarcity of data and theoretical models
for Mn. Additionally, a better understanding of elemental Mn
would be useful to model Fe-Mn alloys, the phase diagram
of which is complicated by the effects of magnetism in
both Fe and Mn [6,7]. High-Mn steels have been found to
exhibit extraordinary strength and ductility [8,9] on account of
twinning-induced plasticity (TWIP) [10] and transformation-
induced plasticity (TRIP) [11], the presence of which have
been shown to depend sensitively on the intrinsic stacking fault
energy of the material [12]. Zero-temperature DFT calcula-
tions for Fe-Mn predict values of the stacking fault energy of

the wrong sign [13] indicating that local magnetic fluctuations
play a critical role in phase stabilization in Fe-Mn alloys by
stabilizing fcc over hcp at high temperatures, just as Hasegawa
and Pettifor found in the Fe phase diagram [14]. One approach
to investigate temperature-dependent phase transformations is
to use interatomic potentials to drive large-scale atomistic sim-
ulations. This paper provides an explanation for the anomalous
stability of the χ phase in 3d Mn due to core orthogonality
effects and details a magnetic bond-order potential (BOP)
which models the relative structural stabilities of the five
primary phases of elemental Mn, namely, α, β, γ , δ, and
ε, at T = 0 K. However, the current TB model predicts shear
elastic moduli and vacancy formation energies that are a factor
of 2 too small, so that future work will include these properties
in the original fitting data base in order to improve the BOP
model so that it may be used to simulate the magnetic and
lattice fluctuations at T �= 0 K using MD.

Interatomic potentials should describe cohesion and, where
present, magnetism sufficiently well to reproduce reliable
energies, atomic forces, structural properties, elastic constants,
thermal properties, defect behavior, and surface characteris-
tics. Two interatomic potentials that have been used widely
in the past to model nonmagnetic metallic systems are the
embedded-atom method (EAM) [15] and the Finnis-Sinclair
potential [16]. These are comprised of two functions: a simple
repulsive pair potential and an attractive embedding function
both of which depend on the atomic positions and the local
atomic charge densities. In a Finnis-Sinclair potential, the
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embedding term is proportional to the square root of the
local charge densities. However, the local atomic charge
densities are spherically averaged and for this reason both
EAM and Finnis-Sinclair potentials neglect the directional
character of the covalent d bonds found in transition metals.
Additionally, they lack explicit valence dependence which can
further restrict their transferability. Lee and Baskes refined
the EAM model to produce the more transferable modified
embedded-atom method (MEAM) [17–19] which includes
some directional bonding character by considering the atomic
charge density as a sum of angularly dependent partial charge
densities but which still does not explicitly include magnetism
or consider the electronic structure.

Only two semiempirical potentials for Mn could be found
in the literature. For use in simulations of surface alloying
and mixing at an Mn/Fe(001) interface, Torelli et al. [20]
parametrized a MEAM model to reproduce a number of
properties of α-Mn. However, they gave no indication of
the transferability of the model to other structure types. Kim
et al. [21] parametrized a MEAM model for pure Mn, the
14 independent parameters of which were fitted to reproduce
DFT relative stabilities of α-, β-, γ -, δ-, and ε-Mn at T = 0 K
(taken from Refs. [22,23]), elastic constants of α-Mn and the
vacancy formation energy of α-Mn.

One general issue with classical interatomic potentials,
that also applies to the parametrizations discussed above, is
that they fail to describe explicitly the effects of magnetism,
a quantum mechanical effect, on the formation of chemical
bonds. Given the crucial importance of magnetic fluctuations
to the properties of transition metals and their alloys, such as
temperature-dependent phase stabilities, elastic constants, and
defect energies, if the temperature-dependent phase stabilities
of magnetic Mn and Fe-Mn are to be investigated, then a
potential that explicitly considers magnetism is required. Some
EAM-type interatomic potentials for transition metals which
do include an explicit treatment of magnetism have been
developed. For example, Ackland et al. [24] described the
total energy per atom as a sum of the up- and down-spin band
energies and an additional exchange term, where the band
energies were calculated within the second-moment approx-
imation to the tight-binding model by a Finnis-Sinclair–type
expression. Dudarev and Derlet [25] extended this approach
further using an energy derived from the Stoner theory of
magnetism [26] and mean field Ginzburg-Landau theory. In
both cases, the potentials were fitted for use with ferritic Fe and
capture volume-dependent changes in the magnetic moments
in this particular structure type. The lack of information about
the shape of the density of states (DOS) near the Fermi level
means that they are unable to describe the subtle structural
dependence of the magnetic energy and therefore lack the
physical basis for modeling phase transformations. Indeed it
has been shown that fourth-, fifth-, sixth-, and higher-moment
contributions to the local DOS are important for modeling
defect energies as well as the phase diagram of iron [27].

The tight-binding (TB) approximation provides a step
between ab initio density functional theory and interatomic
potentials [28]. It is less computationally expensive than
DFT, allowing the simulation of thousands of atoms, and
yet provides a transparent, intuitive physical description
of bonding in solids. The tight-binding approximation can

be derived directly as a second-order expansion of DFT
with respect to charge and magnetic fluctuations [27,29,30].
The DFT approach for solving for the eigenfunctions and
eigenvalues of a Hamiltonian is followed within TB except
that the Hamiltonian is simplified, being composed of distance-
dependent Slater-Koster–type bond and overlap integrals [31].
These can be obtained by projecting DFT wave functions
onto basis sets of atomiclike orbitals [32–34] which can then
be optimized and, if required, orthogonalized such that the
overlap integrals are zero. The calculation of total energies
within TB also requires repulsive, and often embedding,
functions which can be parametrized from DFT total energies
and forces. The Stoner model of itinerant magnetism extends
the TB approximation to magnetic materials and it has been
shown to work well for 3d transition metals [35,36].

Mehl et al. [37] developed a nonorthogonal TB model for
Mn, but its scope was restricted to nonmagnetic structures.
Alternatively, Süss and Krey [38] used an orthogonal TB
model with a Hubbard-type exchange Hamiltonian to model
antiferromagnetic α-Mn and fcc γ -Mn. They were unable to
obtain magnetic moments consistent with experiment unless
they used a different value of the Hubbard-U parameter for
each of these two structure types nor did they provide a com-
parison of the predicted relative stabilities. Additionally, they
attempted to calculate an antiferromagnetic α-Mn structure
with noncollinearly ordered magnetic moments but this failed
to converge self-consistently with respect to the energy and
the spin polarization. More recently, McEniry et al. developed
an orthogonal d-valent magnetic TB model which was used
to study a number of nonmagnetic phases [34]. The model
predicts an α-Mn ground state but it fails to reproduce the
correct relative stabilities of a number of the other phases and
it severely underestimates the nonmagnetic fcc-hcp energy
difference. The results presented in Fig. 5 of Ref. [34] are for
unrelaxed structures, but having tested the model further we
find that, first, the nonmagnetic and antiferromagnetic α-Mn
structures do not undergo correct relaxation of their internal
coordinates for atomic volumes greater than ∼11 Å3/atom,
and, second, that the β- and δ-Mn phases exhibit mechanical
instability, with a negative C ′ for ferrimagnetic β-Mn and a
negative C44 for antiferromagnetic δ-Mn.

Bond-order potentials (BOPs) are a class of real space,
order (N ), interatomic potentials based on the TB description
for the binding energy including magnetism. BOPs retain
the quantum mechanical character of the TB model and
explicitly include the valence dependence of bond formation
and, as a result, account for charge transfer and magnetism
in a physically transparent way [27,39,40]. Furthermore, the
angular characteristic of bonding is retained within the BOP
formalism and a Hellmann-Feynman–type term is used to
evaluate atomic forces. This numerical BOP formalism [41]
was applied by Mrovec et al. [42] to provide an accurate
description of the electronic and magnetic structure of Fe
at 0 K that reproduces the behavior of lattice defects such
as dislocations, which induce changes in bond lengths,
bond angles, and local magnetic moments. However, in
the numerical BOP formalism, for low-moment expansions,
the Hellmann-Feynman forces [43] can only be calculated
approximately. In contrast, the recently developed analytic
BOP [27] formalism gives the binding energy and forces for
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a collection of atoms as analytic functions of the moments of
the local DOS. Because the force expressions are analytic, they
can be evaluated accurately and rapidly, and thus analytic BOP
is well suited to performing large-scale dynamic simulations
as has been demonstrated for nonmagnetic W [44]. Drautz
and Pettifor [40] showed that analytic BOP theory with six
moments was able to predict the different ferromagnetic
moments of the bcc, fcc, and hcp phases of 3d Fe and, more
recently, Ford et al. [45] developed a nine-moment magnetic
analytic BOP for Fe capable of reproducing the behavior of the
local magnetic moments in defect structures. Seiser et al. [46]
further extended analytic BOP theory to ensure that the BOP
DOS does not include any unphysical negative regions.

This paper is organized as follows. In Sec. II, details of the
various stable allotropes of elemental Mn and their magnetic
configurations are given. In Sec. III, TB and BOP theory are
discussed and the parameters for the TB and BOP model are
presented. In Sec. IV, the computational details of the TB,
BOP, and reference DFT calculations are given. In Sec. V A,
we investigate the anomalous stability of the χ phase in Mn
and in Secs. V B–V E, we examine the results of the new TB
and BOP models at T = 0 K. In Sec. VI, we conclude.

II. MANGANESE

Manganese has complex structural and magnetic properties.
Under ambient conditions, the most stable Mn allotrope,
α-Mn, has a complex cubic structure with a 58-atom unit cell
(with 29 atoms in the primitive unit cell). From the perspective
of developing models for Mn, further complexity is added
by the most stable allotropes being very closely spaced in
energy at their equilibrium volumes. In contrast to Fe where, at
0 K, the magnetic energy stabilizing the ferromagnetic (FM)
bcc structure over nonmagnetic (NM) bcc is ∼500 meV/atom,
in Mn the magnetic energy stabilizing the antiferromagnetic
(AFM) α-Mn structure over NM α-Mn was found in recent
DFT calculations [22] to be around 40 meV/atom with a
number of magnetic and nonmagnetic structures all lying
within just 70 meV of the ground state.

A. α-Mn

The room-temperature ground-state structure for Mn, para-
magnetic α-Mn [1], has a 58-atom cubic unit cell (Structure
Report symbol A12, Pearson symbol cI58, space group
T 3

d − I 4̄3m) which is comprised of four crystallographically
inequivalent sites I, II, III, and IV, with relative population
2:8:24:24. (We will see later in Sec. II A that below a Néel
temperature of 95 K, a slight tetragonal distortion splits both
sites III and IV into two further subgroups.) These sites are
surrounded by coordination polyhedra with 16, 16, 13, and 12
atoms, respectively. These local coordination polyhedra are
illustrated in Fig. 1. Each site I atom [Fig. 1(a)] is surrounded
by a Z16 Frank-Kasper coordination polyhedron [47,48]
comprised of 12 Mn IV atoms arranged as four triangles on the
faces of a tetrahedron formed by 4 Mn II atoms. A shorthand
description [I:II:III:IV], giving the relative population of sites
I, II, III, and IV atoms in each local coordination polyhedron,
can be adopted and the coordination polyhedra around site
I atoms can therefore be denoted as [0:4:0:12]. The second

nearest-neighbor shell of the Mn I atoms consists of 24 Mn III
atoms. The 8 site II Mn atoms [Fig. 1(b)] are also surrounded
by Z16 coordination polyhedra comprised of atoms [1:0:6:9].
The site III atoms [Fig. 1(c)] are surrounded by Z13 coor-
dination polyhedra (which are not Frank-Kasper polyhedra
because they contain a nontriangular face) comprised of atoms
[0:2:7:4]. The site IV atoms [Fig. 1(d)] are surrounded by
Z12 coordination polyhedra [1:3:5:3]. Although the α-Mn
structure is not strictly a topologically close-packed (TCP)
phase because it contains Z13 polyhedra, χ -phase structures
such as α-Mn are often considered analogous to TCP phases
because they share some of the same features, namely, that they
can be represented by stacking local coordination polyhedra
of different radii, typically with larger atoms occupying the
highest coordination sites and smaller atoms occupying lower
coordination sites. A number of χ -phase binary alloys are
formed between group VII 4d Tc and 5d Re with transition
elements to their left in the periodic table, such as Nb0.25Tc0.75,
Zr0.14Tc0.86, Ta0.25Re0.75, and Hf0.14Re0.86 [4]. In these binary
structures, the 16-fold coordinated sites are typically found
to contain the larger atoms of the minority alloying elements
while the 12- and 13-fold coordinated sites typically contain
the smaller Tc or Re atoms. One common interpretation of the
α-Mn structure is that atoms at the different sites behave as
if of different sizes [49] with the sites I and II atoms, which
occupy the higher coordination sites, able, as we will see, to
support large magnetic moments and the sites III and IV atoms,
which occupy lower coordination sites, able to support only
small magnetic moments. In this way, α-Mn has been termed
a self-intermetallic compound [50] by analogy with common
intermetallic χ -phase structures. Thus, it has been generally
thought that the presence of magnetism allows elemental Mn
to behave like a binary χ -phase compound which is stabilized
by the atomic-size difference between the constituent atoms
for favorable electron-per-atom ratios of band filling, and it
is this behavior that drives the stability of the χ phase over
hcp in contrast to elemental Tc and Re. Importantly, however,
we will find in Sec. V A that DFT predicts that α-Mn is still
the most stable phase even when it is nonmagnetic, so that
magnetism is not the critical factor in stabilizing this complex
crystal structure.

α-Mn also takes a complex magnetic ground state. Analysis
of neutron diffraction data [3,50] has found that it is not only
antiferromagnetic, as is expected for a 3d element in the middle
of the transition-metal series (see Fig. 8.1 of Ref. [4]), but also
that it has magnetic moments that are aligned noncollinearly.
In particular, below a Néel temperature of TN = 95 K [2,3],
noncollinear AFM α-Mn has large magnetic moments at sites I
and II, with moments on each Mn I atom approximately
antiparallel to both those of its Mn II nearest neighbors and its
closest Mn I neighbors, and much smaller, but canted, moments
at sites III and IV. The phase transition below the Néel temper-
ature has also been found to be coupled to a slight tetragonal
distortion which splits the site III and IV atoms into two further
subgroups, leading to a total of six inequivalent sites [50,51].

In DFT calculations, Hobbs et al. [22] managed to converge
noncollinear AFM solutions but these only became more
stable than the collinear AFM ground-state structure at atomic
volumes expanded above 13 Å3/atom, ∼18% above the
calculated equilibrium volume of collinear AFM α-Mn of
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(a) Site I, 2 atoms in cubic unit cell,
Z16 coordination polyhedron

(b) Site II, 8 atoms in cubic unit cell,
Z16 coordination polyhedron

(c) Site III, 24 atoms in cubic unit cell,
Z13 coordination polyhedron

(d) Site IV, 24 atoms in cubic unit cell,
Z12 coordination polyhedron

FIG. 1. (Color online) Illustration of the relaxed local coordination polyhedra that surround each of the four inequivalent atoms in α-Mn.
Atoms at each site are indicated by spheres of the following size and color; site I: large, dark red; site II: large, pale yellow; site III: small, dark
blue; site IV: small, white. The atomic coordinates plotted are taken from the DFT-calculated equilibrium volume of AFM α-Mn and the DFT
magnetic moments are illustrated with green arrows. For comparison, the magnetic moments from TB (red arrows) and 14-moment BOP (blue
arrows) calculations, using the DFT-relaxed internal coordinates, are also included.

11.08 Å3/atom. This was attributed to the overbinding of
the GGA which results in an equilibrium volume 7% smaller
than that observed experimentally. They concluded that the
onset of noncollinear antiferromagnetism was driven by the
frustration of the AFM exchange interaction of the 12-fold
coordinated Mn IV atoms that are arranged in triangular
motifs on the faces of the Z16 coordination polyhedra which
surround the Mn I atoms. Above 13 Å3/atom, the Mn IV
magnetic moments grew larger and, within each triangular
motif, ordered roughly 120◦ to each other, similar to the
arrangement of nearest-neighbor spins in the Néel phase of
a frustrated triangular antiferromagnet. The resultant coupling
drove the Mn III moments to rotate out of collinearity with
the Mn I and Mn II atoms, and a very minor canting of the
Mn II spins. Below 13 Å3/atom, the local moments on the
Mn IV atoms collapsed completely, which was sufficient to
reduce the frustration and hence stabilize the collinear AFM
magnetic structure. At atomic volumes �14 Å3/atom, it was
also shown that the increased frustration in the collinear AFM

α-Mn structure could be stabilized, not by the canting of spins,
but by a structural distortion.

DFT investigations into collinear AFM α-Mn struc-
tures [52–54] have not all agreed on the size and alignment of
the magnetic moments at each of the Mn sites. However, recent
consensus [22], in agreement with experimental findings,
indicates the presence, first, of large moments on each Mn I
atom that are oriented antiparallel to slightly smaller moments
on its Mn II nearest neighbors, and, second, significantly
smaller moments on sites III and IV. In the case of site IV
atoms, the magnetic moments are virtually zero. A crystal
can reduce the kinetic energy cost of magnetic ordering by
undergoing a lattice expansion [55] which leads to a reduction
of the bandwidth. Hence, crystals with a decreased packing
density, such as the site I and II atoms which are surrounded
by Z16 polyhedra, are able to support larger local magnetic
moments, while those with an increased packing density, such
as the site III and IV atoms which are surrounded by the more
closely packed Z13 and Z12 polyhedra, will have a broader
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d band and, as a result, smaller local magnetic moments. For
the 12 coordinated site IV atoms, this increased local packing
density completely quenches magnetism.

As DFT calculations [22] find only collinear AFM α-Mn to
be stable around the equilibrium volume, noncollinear AFM
α-Mn has not been studied in this paper.

B. β-Mn

At elevated temperatures, other allotropes of Mn are stable.
β-Mn is stable between 1000–1368 K and has a 20-atom
cubic unit cell with A13 (cP 20, P 4132 − O6) symmetry [56]
consisting of two inequivalent sites I (8 atoms) and II (12
atoms). The structure is more closely packed around the site I
atoms which are surrounded by distorted icosahedra comprised
of three Mn I and nine Mn II atoms. The site II atoms are
surrounded by Frank-Kasper Z14 polyhedra comprised of six
Mn I and eight Mn II atoms. Most examples of the A13
structural symmetry occur as binary alloys, e.g., Fe2Re3 and
Mg3Ru2 [57].

Between 1000–1368 K, β-Mn is paramagnetic and although
it remains paramagnetic down to very low temperatures, it has
been shown to exhibit strong spin fluctuations [58,59] and
NMR data [60] have been interpreted as showing that the site
I atoms are approximately NM but that the site II atoms carry
small paramagnetic moments. β-Mn has been considered as
a spin liquid, on account of structural frustration leading to
a quenching of magnetism [61], but addition of a range of
dopants has been found to drive a transition from the spin-
liquid state to a spin-glass structure [60,62]. Consistent with
the experimentally observed spin-liquid behavior, DFT calcu-
lations [23] have predicted that at equilibrium volume, a NM
structure and an almost ferrimagnetic (FiM) structure (with site
I moments almost zero) are energetically degenerate. However,
at expanded volumes FiM structures [23,52] and even a
noncollinear magnetic structure [54] have been predicted.

C. γ -Mn

Face-centered-cubic γ -Mn is stable between 1368–
1406 K. γ -Mn can be quenched to room temperature
transforming via a magnetically induced transition [63] to a
tetragonally distorted face-centered-tetragonal (A5) structure
below a Néel temperature of TN = 500 K [64,65]. With the
addition of 5% Cu, this reverts back to the fcc structure.
Type-1 AFM ordering, which consists of successive z planes
ferromagnetically polarized with alternating signs from one
plane to the next, has been found to be the lowest-energy
magnetic configuration of the fcc structure. From experimental
data extrapolated to 0 K, magnetic moments of 2.1μB have
been reported for such a structure [66].

D. δ-Mn

Body-centered-cubic δ-Mn is stable between 1406–1517 K.
DFT calculations have predicted magnetic ordering to be type-
2 AFM (AFM2) with a transition to a type-1 AFM structure
at atomic volumes greater than 14 Å3/atom [23]. In type-2
AFM ordering, spins within a given [111] plane are parallel
and spins on neighboring [111] planes are antiparallel. The
melting temperature of Mn is 1517 K.

E. ε-Mn

Under pressures of 158–165 GPa, α-Mn transforms to a
phase interpreted as being either bcc, fcc, or hcp [67]. From
DFT data, Hafner et al. [23] predict that this phase is hcp
in line with the stable crystal structures of the nonmagnetic
group VII metals Tc and Re. Their results also predict hcp to
be nonmagnetic at equilibrium volume in contrast to fcc which
is antiferromagnetic.

III. THEORY

A. Tight-binding model

The TB model used in this work is based on that used by
McEniry et al. [34]. In summary, within the d-valent, two-
center, orthogonal TB bond model [29], and with the onsite
levels adjusted to fulfill the condition of local charge neutrality
(LCN) [41], the binding energy functional can be written as

UB = Ubond + UX + Uemb + Urep, (1)

where Ubond is the bond energy and UX is the exchange energy.
Uemb is an attractive embedding energy, accounting for the
contribution of the s electrons and sd hybridization which are
not included in the TB Hamiltonian. The Finnis-Sinclair [16]
square-root embedding function is chosen with the embedding
potential given by [33]

Uemb = −
∑

i

√∑
j �=i

(
a

ij

emb

)2
exp

[−b
ij

emb(Rij )c
ij

emb
]
. (2)

Urep is a pairwise, repulsive energy which accounts for
the overlap repulsion, double-counting energy, and ion-ion
repulsion. In this work, it is represented by two stretched
exponential terms

Urep =
∑

i

∑
j �=i

[
aij

rep exp
[−bij

rep(Rij )c
ij
rep

]

+ a
ij

hcr exp
(−b

ij

hcrRij

)
R

−c
ij

hcr
ij

]
. (3)

The first term follows the form of the repulsive energy used
in Ref. [34], while the second, a hard-core repulsion which
has a form similar to a Yukawa potential, has been introduced
to ensure that the internal coordinates of α-Mn and vacancy-
containing structures relax correctly. Readers are directed to
Ref. [34] for details of the functional form of the bond energy,
the bond integrals, the exchange energy, and that of the cosine
cutoff function which controls the range over which the bond
integrals, repulsive energy, and embedding energy all extend.

B. Choice of TB parameters

The TB parameters, given in Table I, were fitted as follows.
First, the bond integrals βddλ(R) were fitted to the matrix
elements of the Mn dimer which McEniry et al. obtained by
projecting an extended multiple-ζ basis set, taken from DFT
calculations based on the linear combination of atomic orbitals
(LCAO) approach, onto an optimized single-ζ basis set which
was then orthogonalized via the Löwdin transformation [34].
Within the d-band model, s and p electrons are not explicitly
treated and so the number of d electrons Nd is an input
parameter. The value in the model was chosen to minimize
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TABLE I. TB model parameters: repulsive energy, embedding
potential, bond integrals, Stoner parameter, and electron count. The
functional form of the bond integrals is given in Eq. (1) of Ref. [34].

Repulsive energy
arep (eV) brep (Å−1) crep

896.80 3.362 0.907
ahcr (eV) bhcr (Å−1) chcr

10000 0.01 15

Embedding potential
aemb (eV2) bemb (Å−1) cemb

2.513 0.0631 2.542
Bond integrals

a (eV) b (Å−1)
ddσ −24.723 1.404
ddπ 81.218 2.101
ddδ −83.284 2.892

Stoner parameter Electron count
Id (eV) Nd

0.65 5.7

the error between the TB and DFT bonding energies of NM
hcp ε-Mn and NM fcc γ -Mn structures at equilibrium volume.

The parameters for the hard-core part of the repulsive
function were set to ensure a strong repulsion at atomic
distances of less than 2 Å and the remaining repulsive and
embedding parameters were then fitted to minimize errors
between the TB binding energies and DFT energy-volume
curves for NM α-, β-, γ -, δ-, and ε-Mn and AFM α-, γ -,
and δ-Mn for atomic volumes of 8–14 Å3/atom. With the
efficient implementation of large-scale BOP simulations in
mind, this model was parametrized with shorter-ranged cutoffs
than those of previous models [34] such that the Hamiltonian
matrix elements are cut off by the fourth-, and the Urep and
Uemb functions by the fifth-, nearest neighbors in fcc γ -Mn.
Specifically, the cutoffs are Rcut = 4.5 Å and dcut = 1.0 Å for
the bond integrals, and Rcut = 5.5 Å and dcut = 0.5 Å for the
repulsive and embedding functions.

The value of the Stoner parameter Id , which is used
to determine the exchange energy UX, was chosen to best
reproduce the behavior of the magnetic states of the most
stable structures. While in principle its value should depend
on the atomic environment [68], in keeping with the simplicity
of the TB model it is kept constant across all structure types
ignoring volume-dependent effects, which are small [69].

C. BOP

A brief overview of analytic BOP theory is given here, but
readers are referred to Refs. [27,40,45,46] for comprehensive
details. Analytic BOP theory [27,40] approximates the local
DOS as a sum over Chebyshev polynomials which allows the
analytic integration of the bond energy. The moments of the
local TB DOS

μ
(n)
iαν =

∫
Enniαν(E)dE (4)

may be evaluated without explicit knowledge of the DOS by
relating the moment of order n to the self-returning hopping

paths of length n that start and end on spin orbital |iαν〉:

μ
(n)
iαν =

∑
i1α1ν1,i2α2ν2,...,in−1αn−1νn−1

〈iαν|Ĥ |i1α1ν1〉

× 〈i1α1ν1|Ĥ |i2α2ν2〉 . . . 〈in−1αn−1νn−1|Ĥ |iαν〉. (5)

The TB Hamiltonian can be represented in the form of a semi-
infinite one-dimensional chain with onsite matrix elements an

and nearest-neighbor hopping matrix elements bn using the
Lanczos recursion algorithm. This also generates associated
polynomials that form an orthogonal and complete set if the
DOS is used as a weight function in the definition of the scalar
product [70]. As such, if the DOS of a reference Hamiltonian is
known, the associated polynomials may be used to expand the
DOS of a different Hamiltonian. The reference Hamiltonian
used [40] is that of a semi-infinite chain with constant matrix
elements an = a

(∞)
iαν and bn = b

(∞)
iαν , which has a semielliptic

DOS

niαν0(ε) = 2

π

√
1 − ε2, (6)

with

ε = E − a∞
2b∞

. (7)

Using Chebyshev polynomials of the second kind [71]
Un(ε), the DOS can be guaranteed to be positive everywhere by
adapting the kernel polynomial method [46,72,73] and writing

niαν(ε) = 2

π

√
1 − ε2

[
nmax∑
n=0

g
(n)
U σ

(n)
iανUn(ε)

+
nexp∑

nmax+1

g
(n)
U σ

(n)
iανUn(ε)

⎤
⎦ , (8)

where g
(n)
U are damping factors appropriate to Chebyshev

polynomials of the second kind [46].
The expansion coefficients up to nmax moments are calcu-

lated explicitly, while the remainder, running up to nexp, are
obtained from the square-root terminator [46]. The asymptotic
recursion coefficients a

(∞)
iαν and b

(∞)
iαν must be approximated and

we have used the following identities [74]:

a
(∞)
iαν = (εmax + εmin)/2, (9)

b
(∞)
iαν = (εmax − εmin)/4, (10)

where εmax and εmin are calculated from the maximum and
minimum values of aniαν and bniαν :

εmax = amax
niαν + 2bmax

niαν, (11)

εmin = amin
niαν − 2bmax

niαν . (12)

Within BOP, unlike in a TB calculation, a direct minimiza-
tion of the binding energy with respect to the charges and
magnetic moments must be performed in order to ensure that
the energies and forces are consistent [27]. This is done by
ensuring that the gradients of the binding energy with respect
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to the Hamiltonian onsite levels are zero, namely,

∑
iαν

∂UB

∂Eiαν

= 0. (13)

The derivatives of the binding energy can be rewritten in terms
of the local moments, and the gradients of the local moments
with respect to the onsite levels can then be found [27,45]. The
calculation of these also allows a Hellmann-Feynman–type
expression for the exact analytic forces to be evaluated at no
extra computational cost.

IV. COMPUTATIONAL DETAILS

A. Density functional theory

DFT calculations were performed with the Vienna ab
initio simulation package (VASP) [75,76] using the all-
electron projector-augmented wave (PAW) method. For spin-
polarized exchange and correlation potentials, the Perdew-
Burke-Ernzerhof (PBE) [77] parametrization of the general-
ized gradient approximation (GGA) was used. The Brillouin
zone was sampled using the Monkhorst-Pack scheme [78]
and the tetrahedron integration method [79]. k-point grids
were used such that a convergence in the total energy of at
least 1 meV/atom was achieved. The cutoff energy for the
plane-wave expansion was fixed at 350 eV for all calculations.
For relaxation of the internal coordinates, the forces were
converged to at least 1 meV/Å.

B. Tight binding

TB calculations were performed using the BOPFOX

code [80]. The Brillouin zone was sampled using the
Monkhorst-Pack scheme and integrated using the tetrahedron
method [79] such that a convergence in the binding energy
of at least 1 meV/atom was achieved. Local charge neutrality
(LCN) was enforced such that the magnetic moments were
found self-consistently under the constraint that the final
atomic charges were numerically zero.

C. Bond-order potential

BOP calculations were also performed using the BOPFOX

code [80] using the bond integral and repulsive and embedding
parameters from the TB model. In the original analytic BOP
paper [40] it was discussed that some BOP DOS showed
small negative regions at the band edges. More recently, it was
shown that, even for elements for which the Fermi level lies
towards the middle of the band, regions of negative DOS can
significantly affect the outcome of defect structure calculations
and that in calculations with noncollinear magnetism regions
of negative DOS can occur in the middle of the band [81].
This motivated the development of an adaptation to analytic
BOP theory [46] in which two of the present authors showed
how to ensure an analytic BOP DOS which is positive across
the whole band, as briefly discussed in Sec. III C. This strictly
positive DOS can be seen in Fig. 2 which is a comparison of
the DOS for NM γ -Mn, ε-Mn, and α-Mn as calculated using
DFT, and the newly developed TB and analytic BOP models.
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FIG. 2. (Color online) Comparison of the electronic density of states in nonmagnetic γ -Mn (left panel), ε-Mn (central panel), and α-Mn
(right panel), as calculated using DFT (top), TB (upper center), 20-moment BOP (lower center), and 14-moment analytic BOP (bottom). The
plots have been shifted such that the Fermi level lies at the zero of energy and is marked with a dashed vertical line. Methfessel-Paxton k-space
integration with a smearing of 0.1 eV has been used in the TB and DFT calculations.
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The analytic BOP calculations have been performed with 14
and 20 exact moments and a terminator with nexp = 100, as
have all other BOP calculations in the paper. It can also be seen
that while the BOP expansion with 14 exact moments nmax =
14 reproduces the general shape of the TB DOS, much more
detail is reproduced in the nmax = 20 DOS. The convergence
of BOP results to those of TB, as a function of the number
of moments, will be discussed in Sec. V. With the version
of the BOPFOX code used in this work, the speed of a TB
calculation, for a four-atom unit cell, was comparable to that
of a 17-moment BOP calculation.

V. RESULTS

A. Origin of the ground-state structural trend from
χ to hcp down group VII

It has been noted that Mn is anomalous in that its ground
state is the complex χ -phase structure rather than hcp as is the
case for the other group VII elements 4d Tc and 5d Re. It has
been commonly reported that the reason for the stability of
the χ phase in Mn is its self-intermetallic character driven by
the atomic-size difference of the two sets of inequivalent sites
with the site I and II atoms, and their larger local coordination
polyhedra, behaving as larger atoms which are therefore able to
support larger magnetic moments, and the site III and IV atoms,
and their smaller local coordination polyhedra, behaving as
smaller atoms. However, as may be deduced from the results
of a previous DFT investigation into the stable phases of
Mn [22,23], and as will be shown in Sec. V B Fig. 7, even
without the magnetic energy which stabilizes AFM α-Mn
in the manner described above, NM α-Mn remains more
stable than the nonmagnetic and magnetic forms of all the

other structure types. Thus, magnetism and the atomic-size
difference present in the χ phase are not the critical factors in
stabilizing α-Mn.

1. Electronic structure and internal coordinates

A number of features of Mn, Tc, and Re have been examined
and it is found that differences in the electronic structure and
relaxed internal coordinates of the χ phase are not significant
enough to explain the anomalous χ -phase stability in Mn.

DFT structural energy differences for the NM bcc, hcp, fcc,
and χ -phase structures of the 3d transition elements, from V
to Co, and the corresponding 5d elements are plotted in the
left-hand panel of Fig. 3. It can be seen that DFT reproduces
the experimentally observed anomaly of 3d Mn having a χ -
phase ground state while 5d Re is hcp. The 4d series behaves
qualitatively the same as the 5d series with 4d Tc also predicted
by DFT to have an hcp ground state.

A comparison of the DFT total DOS for Mn, Tc, and Re,
plotted in the upper panels of Fig. 4, indicates that there are
no significant differences in the relative contributions of s,
p, and d orbitals in the NM χ phases of the three elements
with, as expected, very few s and p states in the d band. The
d-orbital DOS at EF does exhibit a small difference, lying at
the shoulder of a peak in Mn but lying in a small trough in
Tc and Re. The sources of this difference are shallow troughs
in the local DOS at EF of the site II, III, and IV atoms in Tc
and Re which are absent in Mn. In the lower panels of Fig. 4,
the total normalized DOS has been plotted as a function of
band filling. In order to negate differences in the bandwidths
of the three elements, each has been normalized with respect
to the DOS at EF of the χ phase at a band filling of N = 7
(corresponding to the seven valence electrons of the group VII

4 5 6 7
Nd

Mn
hcp
bcc
fcc
χ

Ta W Re Os Ir
Element

-0.050

-0.025

0.000

0.025

0.050

(U
 - 

U
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c)/U
* fc
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V Cr Mn Fe Co
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-0.025

0.000

0.025
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DFT (3d)

DFT (5d)

TB (Mn)

TB (canonical)

FIG. 3. (Color online) Left-hand panels: Structural energy differences calculated with DFT total energies for (upper left) 3d transition
metals, V to Co, and (lower left) 5d transition metals, Ta to Ir. Right-hand panels: Structural energy differences calculated with TB bond
energies using structural energy difference theorem [see Eq. (19)] versus the number of d electrons Nd for (upper right) the Mn TB model
detailed in this paper and (lower right) the canonical TB model detailed in Ref. [82]. The energies are normalized with respect to U ∗

fcc which
for the DFT calculations is the group VII fcc total energy and for the TB calculations is the fcc bond energy at Nd = 5.7 (the valence electron
count for the Mn TB model).
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FIG. 4. (Color online) Upper panels: Comparison of DFT total DOS for NM χ phase for Mn, Tc, and Re including the partial contributions
from s, p, and d orbitals. The Fermi level is marked with a dashed vertical line. Lower panels: DFT total DOS as a function of band filling N

for the χ phase, fcc, bcc, and hcp structures for Mn, Tc, and Re. For each element, the DOS has been normalized with respect to the value of
the DOS at the Fermi level for the χ phase at N = 7 (the valence electron count for the group VII elements). The value of the absolute DOS
per atom of the χ phase at N = 7 is 0.989 states/eV for Mn, 0.722 states/eV for Tc, and 0.718 states/eV for Re.

elements). From these plots, however, it can be seen that the
small differences in the χ -phase DOS of Mn, Tc, and Re are
not significant enough to drive the change in hcp-χ stability
observed from the 3d to the 4d and 5d elements.

The DFT valence band structures have been plotted for
Mn, Tc, and Re in Fig. 5 within the primitive fcc unit cell. In
order to compare them directly, they have been normalized by
the bandwidth of the respective element. It can be seen that
the differences between the band positions and curvatures are
minor and that the separation between the top of the s band
and the bottom of the d band at the � point, although varying
slightly, does not indicate that significantly different degrees
of s-d hybridization are present within the three elements.
Similarly, analysis of the total charges per orbital in the χ phase
showed trends consistent only with a decrease in effective
nuclear charge moving down the group from 3d to 4d to 5d.
This seems to discount the possibility of variations in sp-d
hybridization or the relative numbers of valence d electrons
being the critical factor in stabilizing the χ phase in Mn.

Additionally, we find that there are only minor differences
between the relaxed internal coordinates of χ -phase Tc and
Re and those of NM α-Mn (given later in Table III) and that,
furthermore, when the DFT structural energy differences seen
in Fig. 3 for Mn were recalculated using the relaxed Tc and

Re internal coordinates, and vice versa, the relative stabilities
of the χ phase and hcp were left unchanged, i.e., Mn still
stabilized the χ phase while Tc and Re still stabilized hcp.
This suggests that the differing behavior of Mn and Tc/Re is
not driven by a structural effect.
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FIG. 5. (Color online) Band structure, normalized by the band-
width, of the fcc primitive cell for Mn, Tc, and Re, plotted at their
respective equilibrium volumes.
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2. Effective atomic repulsion

The canonical TB d-band model of Seiser et al. [82],
previously used to investigate trends within topologically
close-packed structures in the 4d and 5d series, was then used
to further investigate the source of the relative stabilities of
hcp and the χ phase in the group VII elements. Within the
canonical TB model, the binding energy is given as the sum of
a bond energy and a repulsive energy. The bond integrals take
the simple canonical form [83,84]

ddσ

ddπ

ddδ

⎫⎬
⎭ =

−6
4

−1

⎫⎬
⎭ β(R), (14)

where

β(R) = CR−n, (15)

and C is a constant. The repulsive energy is assumed to be pair-
wise and given by the Wolfsberg-Helmholz approximation [4]
decaying with distance as a power of the bond integral, namely,

Urep =
∑

i,j,i �=j

�(Rij ), (16)

where

�(Rij ) = k[β(Rij )]m. (17)

The repulsive function is therefore dependent on both expo-
nents n and m with

Urep ∝ R−nm. (18)

By varying the exponents n and m, which control the decay
of the bond integrals and the repulsive energy, the role of
the relative hardness of the potential on phase stability for
a nearly half-filled d band was investigated. Previous work
has shown that changes in the relative hardness significantly
affect structural stability. For sp-valent carbon the graphite
ground state was shown to be stabilized over diamond by
decreasing the relative hardness of the potential compared to
silicon [85]. The origin of the decreased hardness for carbon as
compared to silicon is due to the absence of p-core electrons
in carbon, which leads to a weaker repulsion of the p-valence
electrons from the core region [4]. The variation of the s-p
level splitting then drives the stability from Si diamond to the
close-packed fcc ground state of Pb down group IV, but can not
explain the graphite ground state of C [86]. Thus, C (graphite),
N (dimer), and O (dimer) all take more open ground-state
structures than their counterparts in the remaining rows of the
groups because they have a decreased hardness, due to the
absence of p electrons in their cores [4]. Related structural
trends were also observed for four-atom molecules modeled
by a simple pair potential. A harder potential was shown to
stabilize the close-packed tetrahedron and rhombus over the
more open square, but when the hardness is decreased, the
relative stabilities of the rhombus and the square switch [4].
Specifically, the change in relative stability of the rhombus and
square occur as the degree of normalized hardness αh, given
by (m − 1)/m, decreases from 1

2 to 1
3 .

Figure 6 shows a plot of the structural energy difference of
hcp relative to χ as a function of both n and m as calculated
using the canonical TB model with a valence electron count of

FIG. 6. (Color online) Plot of U
χ

bond-U hcp
bond energies, calculated

using the structural energy difference theorem [Eq. (19)], as a function
of the exponents n and m. The domain of χ -phase stability, plotted
in green and corresponding to negative values of U

χ

bond-U hcp
bond, lies in

the lower right of the plot where m is small and n large. The domain
of hcp stability is plotted in blue and corresponds to positive values
of U

χ

bond-U hcp
bond.

Nd = 5.7. The calculations used a constant of proportionality
of 1 in Eq. (18) and, for comparison with Fig. 3, the bonding
energies have been normalized with respect to U fcc

bond using
m = 2 and n = 4. Increasing n relates to the bond integrals
decaying more rapidly, while decreasing m relates to the
repulsive function decaying less rapidly. The χ phase is
stabilized over hcp as n is increased above ∼4.25 and as
m is decreased from 2.00 to 1.50, which corresponds to αh

decreasing from 1
2 to 1

3 . That is, the χ -phase structure becomes
more stable than the more close-packed hcp structure as the
potential is softened. The source of the structural trend of the
group VII elements therefore appears to be analogous to that
of the group IV elements [85,86]. Mn is expected to have
a softer core because it lacks core d states and its valence
electrons are therefore able to readily penetrate the core region.
This favors the more open-packed χ -phase structure over
the closer-packed hcp. In contrast, 4d Tc and 5d Re have
harder cores which stabilize the closer-packed hcp. Consistent
with this argument, it is found that the hcp-χ -phase energy
difference for 5d Re, which we would expect to have a harder
core than 4d Tc, is larger, 48 meV/atom, than that of 4d Tc,
32 meV/atom.

It is apparent that the repulsion in the canonical TB with
m = 2 and n = 4 is hard enough to stabilize close-packed
hcp over the χ phase, thus reproducing the relative structural
stabilities characteristic of 4d Tc and 5d Re [82]. In contrast,
we will see in the following section that in the newly
parametrized Mn TB model, the repulsion is soft enough to
reproduce the χ -phase stability characteristic of 3d Mn.
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FIG. 7. (Color online) Plots of the binding energy relative to NM α-Mn for the α, β, γ , δ, and ε phases of Mn. The curves for magnetic
states, namely, AFM α-Mn, FiM β-Mn, AFM γ -Mn, and AFM2 δ-Mn, are marked with triangles. Results are shown for DFT (left), TB (center
left), 20-moment BOP (center right), and 14-moment BOP (right).

B. Relative structural stabilities of the nonmagnetic
phases of Mn

Results for the DFT, TB, and BOP calculations are
presented in the following sections. Figure 7 shows a plot
of the binding energy curves for the five primary phases of
Mn calculated with DFT (left-hand panel), TB (center left),
20-moment BOP (center right), and 14-moment BOP (right).
For α- and β-Mn, the internal coordinates have been fully
relaxed using DFT, TB, and BOP, respectively. Looking at the
left-hand panel of Fig. 7 and considering only the nonmagnetic
structures, DFT predicts the relative ordering from α → β →
ε → γ → δ. The TB and BOP models reproduce this ordering
with even the very small energy difference between the β and
ε structures correctly characterized. Additionally, the NM γ -ε
energy differences in TB, 20-moment, and 14-moment BOP of
29, 34, and 38 meV, are close to the DFT value of 35 meV. The
absolute TB and BOP binding energies are all within 0.5% of
the DFT total energies, while the equilibrium atomic volumes,
given in Table II, are all within 3% of DFT. Our DFT atomic
volumes are all within 2% of those of the DFT calculations
given in Ref. [23].

Table III lists the internal coordinates, as relaxed using
DFT, TB, and BOP, for nonmagnetic α- and β-Mn. The
labeling conventions used here can be matched to those used
in Refs. [22,23] for the α and β phases, respectively. It can
be seen that in both cases, the TB relaxed internal coordinates
are similar to the DFT coordinates with slightly larger errors
in the α-Mn site II coordinates and the β-Mn site I coordinate.
The differences between BOP and TB are smaller than the
differences between TB and DFT.

The convergence of the analytic BOP NM binding energies
to the TB binding energies are plotted in Fig. 8 for fcc γ -, hcp
ε-, and α-Mn. It can be seen that the BOP energies converge
systematically as the number of moments is increased. It is
noted that the binding energy of NM ε oscillates out of phase
with the energies of the other structures.

The structural energy difference theorem [87] allows
differences in the structural energy to be approximated as the

difference in the d-band energy alone, once the atomic volumes
have been prepared such that all structures display the same
average repulsive energy per atom. That is, to first order,

�U = [�Ubond]�Urep=0. (19)

The TB NM structural energy differences as a function of band
filling for the bcc δ-Mn, hcp ε-Mn, and α-Mn are plotted with
respect to the bond energy of NM fcc γ -Mn in Fig. 3 with the
results for the current Mn TB model in the upper right panel
and those of the canonical TB model (with m = 2 and n = 4)
in the lower right panel. In both cases, the plots have been
centered around Nd = 5.7 which is the d-electron count in the
Mn model. It can be seen that the Mn TB model qualitatively
reproduces the behavior observed for the 3d transition series
(upper left panel), with χ most stable at Nd = 5.7, and the
canonical model reproduces the behavior of the 5d series
(lower left panel), with hcp most stable at Nd = 5.7.

TABLE II. Equilibrium atomic volumes for the nonmagnetic and
magnetic forms of the five primary allotropes of Mn, calculated using
DFT, TB, and 20- and 14-moment BOP.

Atomic volume
(Å3)

BOP

Allotrope Magnetic state DFT TB μ20 μ14

α
AFM 11.16 11.04 11.00 11.05
NM 10.74 10.82 10.84 10.84

β
FiM 10.93 10.81 10.80 10.80
NM 10.82 10.81 10.80 10.80

γ
AFM 11.54 11.47 11.40 11.39
NM 10.68 10.70 10.70 10.72

δ
AFM2 11.26 11.52 11.28 11.49
NM 10.69 10.76 10.74 10.74

ε
AFM 10.74 10.71 10.67 10.68
NM 10.72 10.71 10.67 10.68
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TABLE III. Relaxed internal coordinates for nonmagnetic and magnetic forms of α- and β-Mn. The labeling conventions used here can
be matched to those used in Refs. [22,23] for the α and β phases, respectively. For NM hcp ε the optimized c/a ratio of NM hcp ε-Mn was
calculated to be 1.619 using TB, 20-moment, and 14-moment BOP. This is very close to the value of 1.628 calculated within DFT and the ideal
c/a ratio of 1.633. However, in this work the ideal c/a ratio was used for fcc γ - and hcp ε-Mn and the ideal rhombohedral angle was used for
bcc δ-Mn.

Internal coordinates

DFT TB BOP μ20 BOP μ14

Allotrope Magnetic state Site x y z x y z x y z x y z

I 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

NM
II 0.318 0.318 0.318 0.345 0.345 0.345 0.349 0.349 0.349 0.350 0.350 0.350
III 0.357 0.357 0.038 0.349 0.349 0.030 0.349 0.349 0.033 0.347 0.347 0.035

α
IV 0.088 0.088 0.281 0.089 0.089 0.296 0.089 0.089 0.298 0.089 0.089 0.299
I 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

AFM
II 0.319 0.319 0.319 0.322 0.322 0.322 0.327 0.327 0.327 0.327 0.327 0.327
III 0.356 0.356 0.035 0.351 0.351 0.032 0.352 0.352 0.030 0.350 0.350 0.030
IV 0.088 0.088 0.283 0.086 0.086 0.288 0.088 0.088 0.291 0.087 0.087 0.288

x x x x

NM
I 0.052 0.041 0.038 0.038

β
II 0.197 0.196 0.194 0.193

FiM
I 0.054 0.041 0.038 0.038
II 0.198 0.196 0.194 0.193

C. Relative structural stabilities of the magnetic phases of Mn

Referring to the DFT results in the left-hand panel of Fig. 7,
it can be seen that with the inclusion of magnetism (curves
marked with triangles) the relative stabilities of the phases
are left unchanged with the exception of AFM (fcc) γ , which
is stabilized significantly with respect to its NM counterpart
and which we predict becomes more binding than β and ε as a
result. Within our DFT results, the FiM β and AFM ε structures
are virtually degenerate in energy with FiM β found to be just
1 meV more stable. Hafner and Hobbs [23] also predict these
two structures to be very closely spaced in energy, but instead
predict AFM ε-Mn to be 2 meV more stable than FiM β-Mn.
This highlights just how difficult it is to calculate the small
energy differences between the different Mn structures, even
with accurate ab initio methods. The ordering of the magnetic
phases as per our DFT calculations, namely, α → γ → β →
ε → δ, is correctly reproduced by the TB and BOP models and
the correct forms of magnetism are stabilized, i.e., complex
collinear AFM in α-Mn, FiM in β-Mn, and AFM in the other
three structures. While the atomic volume at which the onset
of magnetism occurs for α-, γ -, and δ-Mn in the TB and BOP
calculations is in good agreement with DFT, the FiM β-Mn
and AFM ε-Mn structures are only stabilized within TB and
BOP at expanded atomic volumes.

Table IV gives the energies of the magnetic phases relative
to the AFM α-Mn ground state as well as the magnetic
energy for each phase, i.e., the difference in energy between
the nonmagnetic and magnetic forms of the structure at
their respective equilibrium volumes. It can be seen that the
magnetic energies for α-Mn calculated using TB, 20-moment
BOP, and 14-moment BOP (25, 23, and 30 meV, respectively)
are in good agreement with the DFT calculated value of
36 meV. Additionally, the relative stabilities of the γ and ε

phases are also well reproduced. The observation that it is
only with the inclusion of magnetism that γ -Mn becomes

more stable than ε-Mn demonstrates the importance of local
magnetism in stabilizing the fcc structure relative to hcp,

TABLE IV. Binding energies relative to the AFM α-Mn ground
state for the nonmagnetic and magnetic forms of the five primary
allotropes of Mn, calculated using DFT, TB, and 20- and 14-moment
BOP. The magnetic energy, defined as UNM(V NM

eq )-UMag(V Mag
eq ), is

given for each allotrope. The relative energies of the nonmagnetic
and magnetic γ and ε phases are also given. The BOP calculations
reproduce the results of the TB model reasonably well, while slightly
larger differences are found between the DFT and TB results.

Relative energy
(meV/atom)

BOP

Allotrope Magnetic state DFT TB μ20 μ14

AFM 0 0 0 0
α NM 36 25 23 30

Mag. Energy 36 25 23 30

FiM 86 61 57 60
β NM 88 61 57 60

Mag. Energy 2 0 0 0

AFM 80 58 57 49
γ NM 124 92 97 104

Mag. Energy 44 34 39 55

AFM2 155 120 111 107
δ NM 199 170 157 169

Mag. Energy 44 49 46 62

AFM 87 63 63 66
ε NM 89 63 63 66

Mag. Energy 2 0 0 0

Uε-Uγ
AFM 7 5 6 17
NM − 35 − 29 − 34 − 38

134102-12



MAGNETIC ANALYTIC BOND-ORDER POTENTIAL FOR . . . PHYSICAL REVIEW B 89, 134102 (2014)

FIG. 8. (Color online) Convergence of BOP binding energies to
TB binding energies as a function of increasing number of moments
for NM and AFM (fcc) γ -Mn, NM (hcp) ε-Mn, and NM and AFM
α-Mn.

just as Hasegawa and Pettifor first predicted for Fe at high
temperatures [14]. Figure 8 shows the convergence to the TB
values of the AFM analytic BOP binding energies for fcc γ -
and α-Mn. The convergence is systematic as the number of
moments is increased.

The equilibrium atomic volumes of AFM α-Mn as predicted
by TB, 20-, and 14-moment BOP, and given in Table II,
are 1.65%, 1.90%, and 1.85%, respectively, smaller than that
predicted by DFT, differences which are slightly larger than for
NM α-Mn. The DFT equilibrium atomic volume is 7% smaller
than the experimental atomic volume, reported as 12.05 Å by
Lawson [50], in agreement with Ref. [22]. While this may seem
unusual for a GGA calculation it has been noted previously
that GGA is less successful in correcting overbinding in the
LSDA in antiferromagnetic 3d metals than in ferromagnetic
metals [22]. For example, GGA calculations have predicted
equilibrium atomic volumes for AFM bcc Cr [88] and AFM
γ -Fe [89] that are ∼4% and ∼7%, respectively, smaller
than comparable experimental values. Table III lists internal
coordinates, relaxed using DFT, TB, and BOP, for the magnetic
forms of α- and β-Mn. The TB relaxed internal coordinates for
AFM α-Mn are closer to the DFT coordinates than their NM
counterparts. The 14-moment and 20-moment BOP relaxed
internal coordinates for AFM α-Mn are all very close to the
TB values. At equilibrium volume, the FiM β-Mn is only
fractionally more stable than NM β-Mn and it can be seen
from the two sets of DFT coordinates that their structures
are very similar. In our TB model, the FiM β-Mn state only
becomes more stable than NM β-Mn at volumes a little above
the equilibrium volume, and so the two sets of coordinates are
identical. This is also observed in the results of the 14- and
20-moment BOP calculations.

Table V lists the magnitudes of the magnetic moments
for each structure calculated with DFT, TB, and 20- and
14-moment BOP at their respective, fully relaxed, equilibrium
atomic volumes. The TB and BOP models are found to
correctly reproduce the complex collinear antiferromagnetic
magnetic structure of α-Mn. Not only are the correct parallel
and antiparallel alignments at each site correctly reproduced
[as may be seen in Fig. 1 where the DFT (green arrows), TB
(red arrows), and 14-moment BOP (blue arrows) magnetic

TABLE V. Magnitudes of the local magnetic moments of Mn
allotropes calculated with DFT, TB, and 20- and 14-moment BOP at
their respective, fully relaxed, equilibrium atomic volumes.

Local magnetic moments
(μB/atom)

BOP

Allotrope Magnetic state Site DFT TB μ20 μ14

I 2.97 3.27 3.34 3.32

α AFM II 2.40 2.88 2.87 2.87
III 1.39 1.38 1.16 1.70
IV 0.02 0.06 0.08 0.08

β FiM I 0.11 0.00 0.01 0.04
II 0.30 0.00 0.01 0.01

γ AFM I 1.98 2.37 2.26 2.26
δ AFM2 I 1.58 2.47 2.32 2.36
ε AFM I 0.54 0.00 0.00 0.00

moment vectors have been calculated using the DFT-relaxed
atomic coordinates], but also the relative sizes of the magnetic
moments at each site, which decrease from sites I → II →
III → IV, are correctly reproduced. This is in contrast to
a number of published DFT results [52,54] which predict
different alignments of the Mn I and/or Mn II moments.
Additionally, the TB and BOP models correctly predict that the
site IV magnetic moment is virtually zero. The TB and BOP
predictions of the size of the moments in AFM γ -Mn are in
reasonable agreement with those of DFT while those for AFM2
δ-Mn are less good. This is because the TB and BOP models
predict a too large equilibrium atomic volume for AFM2 δ-Mn
which results in an overestimation of the equilibrium magnetic
moment. As has been mentioned, while DFT predicts FiM
β-Mn and AFM ε-Mn to be fractionally more stable than
their NM counterparts, the TB and BOP models significantly
stabilize magnetism within these two structure types only at
volumes above ∼12 Å3/atom for β-Mn and 11.5 Å3/atom
for ε-Mn. As a result, the magnetic moments predicted at
equilibrium volumes are zero in TB and virtually zero in BOP,
whereas DFT predicts small but nonzero moments. The small
disparities between TB and BOP result from differences in the
shape of the DOS.

D. Elastic constants

Calculation of the elastic constants, which are given by
the second derivative of the energy with respect to strain, is
a sensitive test of the capabilities of an interatomic potential.
Table VI lists values of the bulk modulus (B0), the tetragonal
shear constant (C ′), and the trigonal shear constant (C44)
for the nonmagnetic and magnetic cubic Mn structures as
calculated by applying appropriate strains to each unit cell [28].
Unlike the MEAM models [20,21], our TB and BOP model
parameters were not explicitly fitted to any elastic constant
data, although because the TB parameters were fitted to
binding energies over a range of atomic volumes (see Sec. III),
values of the bulk moduli will be approximately reproduced.
Additionally, the tetragonal shear constant C ′, a measure of
the curvature of the Bain path between bcc and fcc structures
and defined as (c11 − c12)/2, was implicitly inferred because
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TABLE VI. Table of the elastic constants B0, C ′, and C44, calculated using DFT, TB, and 20- and 14-moment BOP for the nonmagnetic
and magnetic cubic Mn allotropes. For each method, the elastic constants were calculated at the equilibrium volumes and the atomic positions
were fully relaxed for each deformation applied.

B0 (GPa) C ′ (GPa) C44 (GPa)

BOP BOP BOP

Allotrope Magnetic state DFT TB μ20 μ14 DFT TB μ20 μ14 DFT TB μ20 μ14

α
NM 280 237 257 235 133 57 55 47 88 41 37 30
AFM 175 163 193 152 130 54 73 72 84 68 85 77

β
NM 269 256 256 259 51 40 37 21 94 78 86 70
FiM 205 218 220 210 53 49 51 39 87 78 86 74

γ
NM 280 237 240 241 74 43 10 17 167 82 70 107
AFM 155 166 179 189 50 64 77 75 93 80 101 110

δ
NM 284 248 250 248 30 −65 −45 −42 116 18 −32 4
AFM2 148 72 111 97 25 −1 1 6 146 42 18 41

differences in the equilibrium binding energies of the bcc δ

and fcc γ structures were included in the fitting [90,91].
There is a scarcity of experimental data available for

comparison and, to our knowledge, no DFT predictions of
C ′ and C44 for any Mn phase have been published. Our
DFT predicted bulk moduli are in good agreement with those
of Hafner and Hobbs [23] although some minor differences
result because they calculated B0 by fitting energies to the
Birch-Murnaghan [92] equation and the Vinet equation of
state [93], while ours were calculated directly from the two
elastic constants c11 and c12 [28] using B = 1

3 (c11 + 2c12).
For example, we calculate B0 for AFM2 δ-Mn to be 148 GPa,
whereas if we fit to the Birch-Murnaghan equation we obtain
166 GPa, which matches the value given by Hafner and Hobbs.
Our DFT calculations predict B0 for collinear AFM α-Mn to be
175 GPa while Hafner and Hobbs predict a value of 188 GPa
for their noncollinear AFM α-Mn. Both of these values are
higher than experimentally determined ones, which show
a significant spread. More recently published experimental
values include 131 [94], 137 [95], and 158 [67] GPa, while
older values tend to be lower, e.g., 60 [96] and 93 [97] GPa.
Just like the other magnetic 3d transition metals where the
bulk modulus is smaller than is expected from the skewed
parabolic behavior across the NM 4d and 5d series due to
magnetic pressure [11,55], we see in Table VI that it is indeed
the presence of magnetism and not the complex structure that
leads to the softness of α-Mn. It is also seen that the inclusion
of magnetism drives a softening of the bulk moduli in the other
structure types and that this behavior is correctly reproduced
in the TB and BOP models.

In general, the reproduction of the DFT shear moduli C ′
and C44 by the TB model is less satisfactory than for B0.
The TB model predicts all of the allotropes examined here to
be mechanically stable with positive shear constants except
for a small negative C ′ for AFM2 δ-Mn and a negative
C ′ for NM δ-Mn. While in the DFT calculations of the
tetragonal deformation pathway, i.e., the Bain pathway, the
energy relating to the NM bcc δ-Mn structure lies in a small
local minimum at the peak of a global maximum, thus its
tetragonal shear constant C ′ has a small but positive value.
In contrast, in the TB model, this small local minimum is
smeared out and the energy corresponding to the bcc structure

lies at the top of the maximum, resulting in a tetragonal shear
constant which is therefore negative. The same observations
are made for AFM2 bcc δ-Mn. That a previous TB model [34]
also, according to our calculations, predicted a negative C44

for AFM2 δ-Mn and a negative C ′ for FiM β-Mn indicates
just how challenging it is to capture all of the characteristics
and complexities of elemental Mn within a simple model.

Figure 9 illustrates the convergence of the three cubic
elastic constants for NM and AFM γ -Mn as a function of the
number of moments used in BOP. It can be seen, by comparing
with Fig. 8, that more moments are required to converge the
elastic constants than are required to converge the binding
energies [98]. Additionally, from Fig. 9 it is evident that B0

converges more quickly than the shear constants C ′ and C44.
This is because C ′ and C44 rely on the convergence of the
cancellation of oscillating force constants which extend out
many levels into a structure [99,100]. Distortions caused by
shearing also cause distortions of the Fermi surface, shown to
be responsible for observed anomalies in the temperature de-
pendence of shear constants in V, Nb, Ta, Pd, and Pt [101,102],
but because the BOP DOS are always smooth, the effects of
these distortions on the fine structure of the DOS close to
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FIG. 9. (Color online) A plot of the convergence of BOP elastic
constants to TB values for up to 30 exact moments, for AFM γ -Mn.
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the Fermi level can not be reproduced, even using a large
number of moments. As a result, accurate prediction of the
shear constants is challenging. The strongly oscillating C ′ for
NM γ -Mn as a function of the number of BOP moments is
thought to be an example of this. Given that little emphasis
was placed on reproducing the elastic constants, it is perhaps
not surprising that their reproduction with both TB and BOP
is poor in some instances. Ultimately, in order to reproduce
experimental or DFT elastic constants and to perform realistic
mechanical simulations, it will be required to specifically refit
the BOP model just as Mrovec et al. [42] did for a 9-moment
numerical BOP for Fe.

For hcp structures, there are five independent elastic
constants; C11, C12, C13, C33, and C44. For AFM hcp ε-Mn
the values of these elastic constants, in GPa, as calculated by
DFT, TB, 20- and 14-moment BOP, respectively, are C11: 707,
502, 418, 465; C12: 107, 196, 245, 207; C13: 155, 218, 232,
230; C33: 182, 132, 130, 130; and C44: 156, 96, 92, 98. The
resultant values of the bulk modulus are 270, 267, 265, and
266 GPa.

E. Vacancy formation energies

The formation energies of a single vacancy were calculated
using the supercell method [103] and the formula

UV
f = UV

B − NV

N
UB, (20)

where N is the number of atoms in the perfect supercell, UB

is the binding energy of the perfect supercell, and NV and
UV

B are those respective quantities for the vacancy-containing
supercell, such that NV = N − 1. Tests of the convergence
of the energy with respect to the supercell size showed
that, in agreement with other calculations [104], 32-atom
supercells were sufficient for γ -Mn and 54-atom supercells
were sufficient for δ-Mn and ε-Mn. The 58- and 20-atom unit
cells were shown to be sufficient for α- and β-Mn, respectively.

Table VII lists the unrelaxed and relaxed vacancy formation
energies for the magnetic forms of α-, β-, γ -, δ-, and ε-Mn
as calculated with DFT, TB, and 20- and 14-moment BOP.
DFT calculations predict that AFM2 bcc δ-Mn has the smallest

relaxed single-vacancy formation energy, with the β sites I and
II and the α site IV having slightly larger energies, and then
fcc γ , hcp ε, and the α sites II, III, and IV having somewhat
larger energies. This trend is also reflected in the unrelaxed
vacancy formation energies.

For α-Mn there are four possible atoms which can be
removed in order to create a vacancy. To our knowledge, in
all of the examples found in the literature, the site-specific
details of the vacancy formation energy of α-Mn are either
not given or not relevant to the level of theory used. For
AFM α-Mn, our DFT calculations predict that an unrelaxed
vacancy created by the removal of a site IV Mn atom has
the lowest formation energy followed by site III, site II, and
then site I. This trend is preserved upon structural relaxation
around the vacancies and accompanied by a modest reduction
of the formation energy. These trends are also observed for NM
α-Mn, indicating that they are a result of structural, rather than
magnetic, effects. Indeed, this ordering of the α-Mn vacancy
formation energies reflects the local coordination, with the
higher-coordinated Z16 Mn I site having the largest vacancy
formation energy, followed by the Z16 Mn II site, the Z13 Mn
III site, and finally the lowest-coordinated Z12 Mn IV site.
This behavior is consistent with the vacancy formation energy
being proportional to a reduction in the cohesive energy caused
by the loss of local coordination, which is proportional to the
local coordination number of the bulk structure z, scaling as
∼√

(z − 1)/z [104]. The TB and BOP models correctly predict
the relative ordering of the relaxed UV

f at each α-Mn site,
although for the unrelaxed vacancies TB and BOP predict the
UV

f of site III to be smaller than that of site IV. The absolute
TB and BOP values of UV

f for AFM α are all somewhat lower
than their DFT counterparts, however, they are comparable to
the values found in the literature for α-Mn, namely, 0.93 [105],
1.16 [21], and 1.20 [20] eV/atom.

Our DFT calculations show that for FiM β-Mn, of the
two possible vacancy sites the lower-coordinated Z12 site I
vacancy has a smaller relaxed formation energy than that
of the Z14 coordinated site II. This is consistent with the
observations of the effects of local coordination on the vacancy
formation energies of the inequivalent sites in α-Mn. The TB

TABLE VII. Unrelaxed and relaxed single-vacancy formation energies calculated using DFT, TB, and 20- and 14-moment BOP, for the
magnetic forms of α-, β-, γ -, δ-, and ε-Mn.

Vacancy formation energy (eV/atom)

Unrelaxed Relaxed

BOP BOP

Allotrope Magnetic state Site DFT TB μ20 μ14 DFT TB μ20 μ14

I 2.94 1.99 1.93 1.92 2.85 1.75 1.70 1.71

α AFM II 2.81 1.83 1.85 1.81 2.60 1.45 1.44 1.39
III 2.78 1.80 1.84 1.78 2.57 1.20 1.27 1.16
IV 2.41 1.85 1.88 1.81 1.98 0.98 1.12 1.02

β FiM I 2.30 1.86 1.81 1.76 1.93 0.41 0.39 0.36
II 2.23 2.02 2.03 1.97 2.05 0.73 0.59 0.76

γ AFM I 2.34 1.82 1.80 1.77 2.29 1.53 1.50 1.43
δ AFM2 I 2.00 1.67 1.70 1.70 1.19 0.95 0.88 0.91
ε AFM I 2.55 2.06 2.04 2.04 2.42 1.04 1.03 1.03
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and BOP models correctly predict this relative stability of the
vacancy energies of two sites within FiM β-Mn, however, a
shortcoming of the models is that while the unrelaxed energies
are reasonably close to the DFT values, the relaxed values are
significantly underestimated. We find that this is a result of
the vacancy-containing β-Mn structure relaxing to a structure
far from that predicted by DFT. For example, in the DFT
calculations the nearest-neighbor distance in bulk FiM β-Mn
is 2.29 Å and in the vacancy supercell it is 2.27 Å. However,
in the TB calculations, while the nearest-neighbor distance in
the bulk supercell is 2.28 Å, in good agreement with DFT, in
the vacancy supercell it is 2.04 Å. This, and the more modest
underestimation in the α-Mn structure, may be due to the
simple pair repulsion used in our model not being sufficient
to model the nature of the bonding and forces in the vacancy-
containing structures. This, however, could be mitigated by
making the repulsive energy environment dependent. For
example, in the numerical BOP for W developed by Mrovec
et al. [106], the repulsive term was described by a screened
Yukawa-type potential, the screening exponent of which was
fitted to experimental data for bcc W to ensure the reproduction
of the correct sign of the Cauchy pressure, thus allowing the
BOP to be applied to the investigation of extended defects.
Similarly, Aoki et al. [107] applied the same principles in
the parametrization of numerical BOPs in order to model
mechanical properties in hcp Ti and bcc Mo.

DFT predicts that for the three common crystal structures
fcc, bcc, and hcp, that AFM2 bcc δ-Mn has the smallest
unrelaxed vacancy formation energy, with the close-packed
AFM fcc γ -Mn and AFM hcp ε-Mn having larger energies.
For AFM2 δ-Mn, just as for α- and β-Mn, we find that there
is a modest change in the vacancy formation energy upon
relaxation of the supercell but in contrast, for the more compact
fcc γ and hcp ε vacancy supercells, the changes are much
smaller, in agreement with the work of Willaime et al. [108].
While TB and BOP reproduce the relative ordering of the un-
relaxed vacancy formation energies for these three structures,
the relaxed vacancy formation energy for ε-Mn is anomalously
small. Just as for β-Mn, this is found to be due to the TB and
BOP relaxed vacancy-containing structures having collapsed
somewhat as compared to their DFT counterparts. Using
a self-consistent Green’s function method, Korzhavyi [104]
calculated vacancy formation energies in magnetic γ - and
δ-Mn, although they do not state the type of magnetic ordering
considered for either structure. Additionally, they neglected the
effects of local lattice relaxations which, as shown for δ-Mn,
can be significant. Their values of 1.51 eV/atom for δ-Mn
and 2.51 eV/atom for γ -Mn are consistent with our unrelaxed
vacancy formation energy results.

Overall, while the TB and BOP models underestimate the
absolute values of the DFT vacancy formation energies, they
reproduce the relative trends between the inequivalent sites
in both α- and β-Mn and predict larger values of UV

f for the
more close-packed γ and ε structures and smaller values for
the more open α, β, and δ.

VI. CONCLUSION

In this paper, we have investigated why 3d Mn has a
complex χ -phase ground state in contrast to the other group
VII elements 4d Tc and 5d Re which are hexagonally close

packed. DFT calculations have confirmed that magnetism and
the resulting effective atomic-size difference are not the critical
factor in driving the anomalous stability of the χ phase in Mn.
Additionally, it has been shown that structural differences in
the χ -phase geometry of the three elements and variations
in the electronic structure are not significant enough to be
responsible. Using a simple canonical TB model, which allows
the effective potential to be varied in a transparent way, we
found that for a more than half-filled d band, harder potentials
stabilize close-packed hcp whereas a softer potential stabilizes
the more open χ phase. We propose therefore that by analogy
with the structural trend from open to close-packed phases
down the group IV elements, the anomalous stability of the χ

phase in Mn is due to 3d valent Mn lacking core d states and
therefore having a softer repulsion than either 4d Tc and 5d Re.

Furthermore, an analytic BOP has been derived from a new
short-ranged, d band, TB model and used to investigate the
structural and magnetic properties of Mn. In spite of their
simplicity, the TB and BOP models not only qualitatively
reproduce the small structural energy differences in the DFT
binding energy curves of the five primary phases of Mn, but
they also predict the complex collinear AFM ordering in α-Mn,
the FiM ordering in β-Mn, and the AFM ordering in γ -, δ-, and
ε-Mn that are predicted by DFT. The TB model reproduces
trends in the bulk moduli observed in the DFT results, but
values of the elastic shear constants C ′ and C44, which were
not included in the fitting of the model, are approximately a
factor of 2 too small. A BOP expansion including 14 moments
is sufficiently converged to reproduce most of the properties
of the TB model with the exception of these elastic shear
constants, which require further moments. Therefore, future
realistic MD simulations will require that the shear constants
be included in the fitting database from the outset. The TB and
BOP models correctly reproduce trends in the relative sizes
of the vacancy formation energies in antiferromagnetic α-Mn
which reflect the local coordination of the four inequivalent
sites, with the lowest coordinated site IV atom having the
smallest vacancy formation energy, followed by sites III,
II, and I. One limitation of the current model is that the
absolute vacancy formation energies are somewhat smaller
than those predicted by DFT. This is particularly true in the
case of vacancies in the β-Mn structure and was found to be
due to poor structural relaxation of the vacancy-containing
structure. An improved TB model might therefore include an
environment-dependent repulsive potential.

In summary, the current model captures the most important
structural and magnetic features of the complex low-energy
Mn phases. This makes the BOP model suitable for performing
large-scale dynamic simulations in the future, so that, for
example, it could model the local magnetic fluctuations
with temperature that may be responsible for stabilizing the
different Mn phases at high temperatures.
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