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Thermal excitation in a spatially modulated monolayer solid: Incommensurate xenon/graphite
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Calculations of the properties of monolayer xenon/graphite for temperatures up to its triple point at 100 K are
reported. The average lattice constant and orientational epitaxy angle for the monolayer solid are evaluated along
its (two-dimensional) sublimation curve. The incommensurate rotated lattice approaches the incommensurate
aligned configuration as the melting temperature is approached, as in experiments. The calculated temperature,
latent heat of melting, and solid-liquid density difference at the triple point agree with experiment. The methods
include molecular dynamics simulations for large submonolayer patches of xenon and both self-consistent-
phonon and perturbation-variation approximations. An overall quantitative agreement between the simulations,
calculations, and experimental data is achieved with an interaction model that includes the spatially periodic
xenon-graphite corrugation energy.
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I. INTRODUCTION

A great deal is known [1,2] about the monolayer solid of
xenon adsorbed on the basal plane of graphite, Xe/graphite,
but the possible importance of substrate corrugation effects has
obscured [3] the relation of this system to melting phenomena
predicted for two-dimensional (2D) solids [4]. Previously [5],
we examined the conditions for stability of the commensurate
(
√

3 × √
3)R30◦ lattice of Xe/graphite that is a compressed

phase of the monolayer solid. A quantitative account of the
stability of the commensurate lattice at temperatures near
60 K was achieved [5] by adjusting the leading amplitude
Vg in the spatially periodic Xe-graphite potential energy
(the corrugation energy). The calculations reproduced the
experimental low-temperature lattice constant at monolayer
condensation Lu. Here, we evaluate the properties predicted
by that model for the solid at higher temperatures. Effects of
Vg are small in much of the phase diagram. Some experimental
data, such as the values for Lu at 60 to 100 K and the main
features of the triple-point melting at 100 K, are reproduced
and are insensitive to Vg . However, orientational epitaxy and
the commensurate solid arise only because there is a surface
corrugation Vg �= 0.

In orientational (also termed “rotational”) epitaxy [6], the
monolayer solid lattice is aligned at an angle ϑ to a symmetry
axis of the substrate. The energetics of mass density waves
(MDW) determine ϑ and, generally, there is a threshold
misfit [7] to go from an incommensurate aligned (IA) state to
an incommensurate rotated (IR) ϑ �= 0 state [8]. Experimental
data [2] for Xe/graphite show an unusual succession of IA,
IR, and finally IA states as the misfit increases, but there are
scarcely any applications of theory and simulation to this
problem. Our molecular dynamics (MD) results show that
the orientational epitaxy angle ϑ decreases with increasing
temperature near the monolayer melting temperature, in agree-
ment with experiment [9], although perturbation theory [6]
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predicts that ϑ increases because thermal expansion increases
the misfit. The balance in the competition between interior
physics (MDW) and boundary physics/edge effects changes
with system size [10].

We have implemented an array of computational methods to
get a quantitative account of structures and dynamics in regions
of the monolayer phase diagram with large thermal excitation.
We use MD simulations for the temperature range between
harmonic solid conditions and the triple-point melting of
submonolayer Xe/graphite. The MD simulations are extended
to large Xe islands to reduce a bias introduced by smaller
constrained cells. The largest island in the simulations has
312 000 atoms and this is on the scale of the largest coherent
patches in Xe/graphite experiments [11]. We examine the
modulation energy EMDW of the mass density waves by
several approximations as it is the driver of orientational
epitaxy. The threshold misfit for the IA → IR transition is
determined with a perturbation-variation (PV) extension of the
Novaco-McTague perturbation theory [6]. The self-consistent
phonon (SCP)-MDW approximation [5,12,13] was used as a
check on the MD and PV work.

The computer simulations most closely related to our
Xe/graphite work are a Monte Carlo simulation of monolayer
Ar/graphite by Flenner and Etters [14] that allows for three-
dimensional (3D) motion of the argon atoms and a molecular
dynamics simulation for a large 2D array of generic Lennard-
Jones [LJ] atoms near its triple-point temperature Tt by
Asenjo et al. [15]. Experiments [16,17] strongly suggest that
triple-point melting of Ar/graphite is a continuous transition
while that of Xe/graphite is first order. Flenner and Etters
treated samples of 256 to 1600 argon atoms and found a
continuous melting transition with phenomena near Tt that
are strongly affected by the graphite corrugation. They also
found, in agreement with early work of Abraham [18], that
a 2D treatment is a good approximation to their 3D results
for submonolayer coverage and small spreading pressure.
Asenjo et al. treated relatively large samples of 36 864 LJ(12,6)
atoms with no corrugation potential and found triple-point
behavior that is consistent with first-order melting. Our

1098-0121/2014/89(12)/125431(14) 125431-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.125431


A. D. NOVACO AND L. W. BRUCH PHYSICAL REVIEW B 89, 125431 (2014)

calculations are 2D simulations using a realistic potential
model for submonolayer Xe/graphite and including substrate
corrugation, with arrays of 78 000 and 312 000 xenon atoms.
A surprising result is that our triple-point temperature and
latent heat of melting are close to values obtained by scaling
the Asenjo et al. results. This occurs in spite of the fact
that the calculated orientational epitaxy shows effects of the
substrate corrugation (Vg) near Tt but it is consistent with the
fact that the calculated Tt and latent heat remain very similar
for a range of Vg . The differences between Ar/graphite and
Xe/graphite in simulations and in experiments are in contrast to
the successful applications of corresponding states [2] scaling
for 3D argon and xenon and highlight the delicate balances
involved in monolayer melting. We have been able to explain
the remarkable experimental results [9] for the evolution of the
orientational epitaxy angle ϑ along the monolayer sublimation
curve of Xe/graphite.

The organization of this paper is as follows. Section II
contains a description of the components and tests of the calcu-
lation and Sec. III the application to Xe/graphite. Concluding
remarks are given in Sec. IV. There are three Appendices:
Appendix A, the implementation of the MD; Appendix B,
useful surrogates; and Appendix C, the perturbation-variation
(PV) approximation to orientational epitaxy. See Ref. [19] for
Supplemental Material.

II. COMPONENTS OF THE CALCULATION

A. Interactions and samples

The interaction model is the same as in Paper I [5].
This is a 2D calculation in which the xenon positions are
constrained to lie in a plane above the triangular Bravais
lattice (� = 2.46 Å) of the graphite surface. The Xe-Xe
HFD-B2 pair potential [20] (ε = 282.8 K; Rmin = 4.3635 Å)
is augmented by the McLachlan substrate-mediated dispersion
energy [21] with parameters Cs1 = 142 au, Cs2 = 89 au, and
overlayer height Lov = 1.9 Å, so that the minimum in the
effective pair potential is −244.8 K at a separation 4.400 Å.
The corrugation potential energy is parametrized using only
the first shell of six reciprocal lattice vectors g of the graphite
|g| = g0 = 4π/�

√
3 [22]:

Vs(r) = Vg

∑
g

exp(ıg · r). (1)

The origin of r is at the center of a carbon hexagon and three
values of Vg [namely, −5.0, −6.0, and −7.0 K] are used. This
Vg span gives chemical potential stability margins [5] for the
commensurate phase that agree with the experimental phase
diagram [1,2]. Vg = −6 K has been used as the “best estimate”
fitting a range of data at temperatures T < 60 K.

The simulations treat unconstrained xenon arrays consisting
of an “island” or patch that fills about 50% of the simulation
cell. This avoids a bias on the orientational epitaxy introduced
by periodic boundary conditions. The quite large patches allow
for the growth of correlation lengths near the melting and
reduce the fractional effect of boundary terms. Most of the
work has a hexagonal solid patch of 78 000 atoms (“78 K”) as
the initial configuration; there also is a series of calculations

with a patch of 312 000 atoms (“312 K”) for Vg = −6 K. In
Paper I, the largest patch had 20 064 (“20 K”) atoms.

The specification of the parameters for the models in the
figures is given as SWXH.HFD-B2.McL.Y, where X gives the
magnitude of Vg in Kelvin and Y the size of the patch (78 K
or 312 K). The rest of the label specifies that the corrugation
[Eq. (1)] is a harmonic sine wave (SW), the patch is hexagonal
(H), and pair interactions are the HFD-B2 potential augmented
by the McLachlan substrate-mediated interaction (McL).

B. Methods

The basic tool is a classical molecular dynamics (MD)
simulation in the standard NVE ensemble [23] (Appendix A).
The temperature is derived from the average kinetic energy
〈K〉. Because a low-density 2D gas coexists with the solid,
the simulation has similarities to an NPT simulation of the 2D
sublimation curve. The work reported here had a substantial
commitment of computational resources amounting to more
than 150 CPU years with server class processors having clock
speeds in the 2.4 to 3.0 GHz range.

We evaluate the thermal average potential energy 〈�〉,
structure factor S(q), and hexatic (Nelson-Halperin) order
parameter [4,24,25] ψ6:

ψ6 =
〈∑

ij exp(ı6θij )∑
ij 1

〉
. (2)

θij is the angle that the relative position vector rj − ri makes
with the g(10) reciprocal lattice vector of the graphite for
adatom pairs at separations up to 1.41 − 1.49Rmin to span
the first-neighbor shell, i.e., within a disk in the monolayer
solid that usually contains 7 Xe. (This way of determining
the first-neighbor shell is not as systematic as that of other
workers [15,26–28] who used a Voronoi construction or
Delaunay triangulation.) Melting is manifested by a steep
continuous drop in |ψ6| as a function of temperature, but a
“tail” persists above the melting temperature for the corrugated
surface Vg �= 0, as shown in Fig. 1.

The structure factor S(q) for the N -atom patch,

S(q) =
〈∣∣∣∣

N∑
j=1

exp(ıq · rj )

∣∣∣∣
2〉/

N2, (3)

is evaluated for grids of wave vectors q to locate peaks. The
largest peaks occur at the reciprocal lattice vectors τ of the
average lattice except at temperatures within 0.5 K of the
melting temperature, where the density modulation driven by
Vs(r) creates stronger peaks at g(10) than at τ . The τ give both
the spacing Lnn and the orientation ϑ of the average lattice
(Appendix B). The peak heights of S(q) decrease sharply
(Fig. 2) in the same T range as the drop in |ψ6|; both drops
occur in a temperature range of about 1 K.

We use variants of the self-consistent-phonon (SCP)
approximation, especially the self-consistent-phonon mass-
density-wave (SCP-MDW) approximation for spatially
nonuniform monolayer lattices [5,12,13]. Potential ener-
gies of nonuniform monolayer lattices also are evaluated
with force-relaxation energy minimizations on higher-order-
commensurate (HOC) lattices [5] as in Paper I and with

125431-2



THERMAL EXCITATION IN A SPATIALLY MODULATED . . . PHYSICAL REVIEW B 89, 125431 (2014)

FIG. 1. (Color online) Hexatic order parameter ψ6 as function of
temperature T . The magnitude |ψ6| is plotted for simulations of the
78 K patch using four values of Vg (0, −5, −6, and −7 K) [Eq. (1)].
Note that the curves essentially superpose except for the tail above
the melting transition at T � 100 K.

a generalization (PV) of the perturbation theory [6] of the
nonuniform lattice that is outlined in Appendix C.

As a measure of the lateral stress on the monolayer, we
evaluate an effective pressure Pv using the virial theorem [29].
The 2D pressure Pv for N particles in area A at temperature
T is given by

PvA = NkBT − 1

2

∑
j

〈rj · ∇jVs(rj )〉

− 1

4

∑
i �=j

〈(rj − ri) · ∇jφ(rij )〉. (4)

In Eq. (4), the classical equipartition theorem for the kinetic
energy is used and the internal virial is evaluated in terms of the
forces from the corrugation energy [Eq. (1)] and the adatom
pair potentials φ(rij ). The time average 〈· · · 〉 is evaluated with
the MD simulation; results are shown in Fig. 3. Also, in the
temperature range 85–100 K, for which appreciable 2D gas
coexists with the solid patch, we determine the populations of
small clusters by finding the numbers of adatoms that have on
average 0,1,2, . . . neighbors within a radius R � 6.4 Å.

FIG. 2. (Color online) Temperature dependence of ln S(τ ) for the
(0,1), (1,1), and (0,2) reciprocal lattice vectors of the 78 K patch with
Vg = −6 K. S is normalized by 1/N2 [Eq. (3)].

C. Tests

We made several tests to assure ourselves that the imple-
mentation of the MD simulation was reliable. Side calculations
with more elementary methods showed quantitative agreement
for the nearly harmonic low-temperature solid and had the
expected departures at higher temperatures.

1. Lattice constants

Monte Carlo simulations showed [30] that the lattice
constant of monolayer Xe on a structureless substrate can be
reproduced by near-analytical approximations [quasiharmonic
lattice theory (QHT) and cell models] over the temperature
range 0–95 K. Now, we compare the temperature-dependent
lattice constant Lu(T ) of an unconstrained patch, determined
from the MD data for the peaks of S(q), to the results of
the following calculations: the classical limit (� → 0) of
QHT below 40 K; the SCP-MDW approximation over the
temperature range 0–80 K; and the classical cell approximation
for 50–95 K. In the temperature ranges of their anticipated
applicability, these approximations reproduced the MD results
to within about 0.01 Å.
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FIG. 3. (Color online) Virial pressure Pv as a function of temper-
ature T along the 2D sublimation curve for Vg = 0, −5, −6, −7 K
(78 K patch). Pv is evaluated using Eq. (4). For the Vg = −6 K 312 K
patch results, see the Supplemental Material [19].

2. Modulation energy

The energy EMDW arising from mass density waves is the
increment in thermal average total energy driven by Vg �= 0.
The MD work has signs that the orienting effect of EMDW

becomes weaker at temperatures above about 60 K. For
instance, the orientational epitaxy angle ϑ in Fig. 4 stops
decreasing with increasing temperature (and misfit) at about
60 K and then is roughly constant until close to melting.
The relaxation time for ψ6 also increases as the melting is
approached. As the temperature increases, |EMDW| is expected
to decrease as a consequence of the increasing misfit that arises
from thermal expansion and of the averaging of Vs(r) that
arises from the thermal motion. We made several tests that the
thermal-average values for EMDW evolve in the expected way.

The total potential energy � for the T → 0 K limit of
the MD calculations was constructed for both the 78 K and
312 K patches with Vg = −6 K and for the 78 K patch with
Vg = −5 K. A combination of the PV and HOC calculations
reproduces the � � −780 K of the 312 K Vg = −6 K case
to 0.1 K. For the two 78 K cases, the MD energy is about
0.8 K more negative, suggesting the difference arises from the
neglect of relaxation at the patch edge in the PV approximation.
The static lattice |EMDW| decreases in the expected way as Lnn

increases. Some results for Vg = −6 K, evaluated for higher-

FIG. 4. (Color online) Orientational epitaxy angle ϑ as a function
of temperature T for Vg = −5, −6, −7 K (78 K patch) and for Vg =
−6 K (312 K patch). ϑ is given in degrees relative to the

√
3 axis of the

graphite. Data of D’Amico et al. [9]. The uncertainty in the calculated
ϑ is believed to be ±0.1◦; see the discussion in Appendix A. The error
bar on the right of the figure represents the maximum range of values
for ϑ based on the four S(q) peaks used.

order-commensurate (HOC) unit cells, are shown in Table I.
These results and their approximation by the perturbation-
variation (PV) calculation are discussed further in Appendix C.

Another estimate of EMDW uses two configurations of the
312 K patch (Vg = −6 K) at T � 10 K that remained at ϑ � 1◦

and 15◦ for long times. The lattice constant Lnn = 4.375 Å is
reproduced to 0.01 Å by the QHT and the energy difference
between the two MD calculations is 6.5 K while the PV
approximation gives about 5.5 K for the energy difference
of the two alignments. We consider this to be satisfactory
agreement because the PV approximation underestimates the
HOC value for EMDW by 0.85 K at L = 4.373 Å, as shown in
the Supplemental Material [19].

The effect of thermal averaging on EMDW for a given Vg and
Lnn is shown by the SCP-MDW approximation (Fig. 5). There
is a reduction of more than 50% in EMDW as the temperature
increases from 0 to 60 K, but the energy difference between
the

√
3 alignment and the optimum angle remains about 0.1 K

for L = 4.40–4.45 Å. That is, the SCP-MDW approximation
shows two qualitative features of EMDW. First, there is a
rather small variation in EMDW for 0 � ϑ � 1◦. Second, the
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TABLE I. Approximations to the mass density wave energy EMDW. Configurations specified by lattice constant L, alignment ϑ , and the
number N of adatoms in the HOC unit cell. Sets of higher-order-commensurate (HOC) lattice cells, rotated and aligned, at nearly the same L

are listed. Calculations for the HFD-B2 + McLachlan effective pair potential and Vg = −6 K. EMDW is from a force relaxation on the HOC
cell; E(PV) is from a perturbation-variation calculation on the average triangular lattice patch of 78 000 atoms. Lengths are in Å and energies
(per adatom) are in Kelvin. The misfits are 3.8%–7.2% and correspond to states on the sublimation curve.

L ϑ a N EMDW E(PV) E(PV) − EMDW % ENM
b

4.5656 0.7351 441 −2.542 −2.417 0.125 4.92 −2.449
4.5652 0 196 −2.521 −2.393 0.128 5.08 −2.415
4.5298 1.945 64 −2.677 −2.573 0.104 3.88 −2.635
4.5274 0.648 576 −2.656 −2.540 0.116 4.37 −2.567
4.5271 0 256 −2.631 −2.516 0.115 4.37 −2.522
4.5168 0.624 625 −2.716 −2.599 0.117 4.31 −2.626
4.5115 0 289 −2.723 −2.608 0.115 4.23 −2.608
4.4996 1.74 81 −2.891 −2.842 0.049 1.69 −2.868
4.4976 0 324 −2.832 −2.711 0.121 4.27 −5.282
4.4756 1.575 100 −3.159 −3.027 0.132 4.18 −3.155
4.4741 0.525 900 −3.121 −2.981 0.140 4.49 −3.020
4.4739 0 400 −3.090 −2.953 0.137 4.43 −2.954
4.4559 1.438 121 −3.465 −3.335 0.130 3.75 −3.486
4.4545 0 484 −3.392 −3.233 0.159 4.69 −3.238
4.4396 1.323 144 −3.803 −3.615 0.188 4.94 −3.854
4.4384 0 576 −3.728 −3.536 0.192 5.15 −3.556
4.4257 1.225 169 −4.167 −4.009 0.158 3.79 −4.255
4.4247 0 676 −4.095 −3.857 0.238 5.81 −3.906

aAngles in degrees relative to the 30◦ commensurate alignment of graphite. 0◦ is incommensurate aligned (IA) while ϑ �= 0 is incommensurate
rotated (IR).
bSecond-order perturbation theory value for EMDW, following Novaco and McTague [6].

overall effect of the MDW terms decreases with increasing
temperature. Most of the increment in EMDW(ϑ) occurs for
ϑ in the range 2◦–10◦ and there is only a relatively small
change between 12◦ and 30◦, as in the results of the original
perturbation theory [6].

Finally, we estimated EMDW at temperatures 60–85 K by
comparing 〈�〉 for the MD calculations (Vg = −6 K) to
the average energy found in Null continuations of the MD
calculations. Then, an equilibrated configuration (and kinetic
energy) was used as the starting configuration and Vg was
set to zero. By choosing temperatures above 60 K, the lattice
constants for the Null and Vg cases are the same to ±0.01 Å at
a given temperature. We use a spline calculation to interpolate
in the Null cases to the temperature of a Vg case and then
take the modulation energy to be the difference in the two
values of 〈�〉. The ratio of the estimated modulation energy
to EMDW calculated with the PV approximation at the same
lattice constant decreases from 0.7 at 60 K to 0.5 at 85 K. The
scale of the reduction and the trend with temperature agree
with what we expect from the SCP-MDW approximation and
with the trend inferred from the MD results for ϑ .

3. Size dependence

Our most extensive calculations are with the 78 K patch.
We also made a scan over temperature for the 312 K patch at
Vg = −6 K. A comparison of the 78 K and 312 K results
for the total energy 〈E〉 = 〈K + �〉 is shown in Fig. 6;
the corresponding graphs for the magnitude of the hexatic
order parameter |ψ6| and the virial pressure Pv are shown in
the Supplemental Material [19]. Total energies varied with

patch size in an understood manner. The 312 K values for
ϑ as a function of temperature (Fig. 4) showed smaller
fluctuations/scatter than the results for the 78 K patch, and
we take this as further evidence of the sensitivity of ϑ to
details of the calculation. Our results for the 20 K patch, not
shown here, also had large fluctuations, no clear pattern, and
little resemblance either to the experimental results or to the
simulation results for the 78 K and 312 K patches.

The alignments ϑ are driven mostly by EMDW, but a second
mechanism becomes important for small patches. Then, there
is a net value for Vs even when summed over the rigid uniform
adlayer. The optimum ϑ typically is in the range 1◦–2◦ and both
ϑ and the ratio 〈Vs〉/Vg are sensitive to system size N . Figure 7
shows how the Vs contribution for a rigid hexagonal patch
varies with system size for three values of the scaled density
ρ/ρ√

3, where ρ√
3 is the density of a perfect commensurate

lattice. This rigid lattice calculation gives one limit for the
competition between boundary effects and interior effects as
calculated by the MDW-SCP approach. With Vg = −5 K, the
rigid lattice energy becomes larger than EMDW = −4.1 K at
L = 4.38 Å for N < 400 and −1.8 K at L = 4.52 Å for N <

1000 (see Fig. 7).

4. Hysteresis and relaxation

We have used two tests of equilibration in the simulation:
the size of hysteresis effects and the correlation time of
time-block averages of the kinetic energy. By hysteresis we
mean that averages do not retrace their values as a function of
temperature when cooling after a heating series. This effect is
small, as the offset of E as a function of temperature is less
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FIG. 5. SCP-MDW results for EMDW(ϑ) for Vg = −6 K at L =
4.41 Å; T = 0,20,40,60,80 K.

than 1 K (Fig. 8), with averages typically taken over 100 time
blocks after 400 time blocks to relax to equilibrium; a similar
graph for |ψ6| is shown in the Supplemental Material [19]. The
nature of the hysteresis is that voids and large islands persist
when the solid reassembles from the liquid.

The block averages also extend well beyond any transients.
Relaxation times τ are determined by autocorrelation functions
of the block averages of the temperature. After the first
400 blocks (time 4000t0), τ corresponds to about 20 blocks or
less (�650 ps) so that the averages over blocks 400–500 are
equilibrium averages (Fig. 9). These values are for the 78 K
patches at a temperature near 100 K, close to the melting [31].
Asenjo et al. [15] found greatly increased relaxation times at
temperatures within 1% of melting, and in some of our runs
in this temperature range the relaxation times are larger than
indicated in Fig. 9. The autocorrelation function for a quantity
X was evaluated with [24]

CnXX(t1) = [〈X(t1 + tn)X(tn)〉n − 〈X(t1 + tn)〉n〈X(tn)〉n]

[〈X(tm)X(tm)〉m − 〈X(tm)〉m〈X(tm)〉m]
,

(5)

where 〈. . .〉m denotes an average over m blocks. In a typical
calculation, a contiguous set of block averages was chosen.
The average in the denominator was taken over all the blocks
in that range, while in the numerator the average was taken

FIG. 6. (Color online) Total energy E = 〈K + �〉 as a function
of temperature for two patch sizes (78 K and 312 K) and Vg = −6 K.
The cell average density is ρR2

min � 0.53.

over a fixed number n of blocks and the range of t1 was set by
the difference in the numbers of blocks in the numerator and
denominator. CXX(t1) as a function of t1 is plotted in Fig. 9,
with t1 equal to the time at the center of a block of width
32.6 ps.

Figure 10 shows the relaxation of the orientational angle as a
function of time for various initializations ϑi at a relatively low
temperature T � 10 K, far below the melting temperature. The
case that was initialized at ϑi = 0◦ maintained that orientation
for the entire run of 500 blocks. The cases that were initialized
at ϑi = 1◦–13◦ all relaxed to a final orientation ϑf = 1.0◦–1.5◦
within 500 blocks, although the larger ϑi required more time to
reach this orientation. The two largest ϑi shown did not relax
within the 500-block period. These behaviors are consistent
with a function [6,12] EMDW(ϑ) that has a rather flat minimum
near 1◦, a steep increase between roughly 2◦ and 12◦, and
then a relatively flat plateau for 12◦ to 30◦. To test how the
temperature affects the relaxation time, many of these cases
were repeated at temperatures where ϑf versus T shows a
plateau, specifically at 53–58 K, and the equilibrium was
disturbed by rotating the lattice away from the equilibrium
orientation (�1◦) to initial orientations ϑi = 2◦–9◦; the results
are shown in the Supplemental Material [19]. The case with
ϑi � 2◦ showed little sign of any relaxation; cases with
ϑi = 3◦–9◦ did relax to smaller angles, but the relaxation times
were much longer than the 250 blocks that were evaluated. We
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FIG. 7. (Color online) The scaled modulation energy EMDW/|Vg|
as a function of the (reciprocal) patch dimension 1/

√
N , where N is

the number of atoms in the patch, for three reduced densities ρ/ρ√
3.

The energy EMDW is the minimum corrugation potential energy after
the placement and orientational alignment of the rigid triangular
monolayer lattice are optimized on the surface.

view this as further evidence that the MDW energy plays much
less of a role at the higher temperatures.

An effect very similar to kinetic slowing near the melting
has placed a computational limit on our study of the 312 K
system. As is evident in several of the figures, we were not able
to follow this larger system through the melting transition.
What happens is that the adatom configurations change so
rapidly that the neighbor list for the MD force calculation has
to be reconstructed at shorter time intervals and this slows the
computation drastically. Cases with relaxation times longer
than 10 ns would appear to us to be equilibrium states because
there are unavoidable drifts in the total energy over such times
in our MD implementation.

III. MODEL CALCULATIONS AND EXPERIMENT

A. Summary of experimental data

The triple-point temperature of monolayer Xe/graphite
(i.e., melting point on the 2D sublimation curve) is [32]
Tt = 99–100 K. Two analyses of the adsorption isotherms of
Thomy et al. [33,34] place Tt at 99 and 100 K, respectively.
The specific-heat data of Litzinger and Stewart [35] place it
close to 100 K. The x-ray data of Hammonds et al. [36] show

FIG. 8. (Color online) Hysteresis for the total energy E. Heating
and cooling series near T = 100 K. Runs with 500 blocks, averages
over last 100 blocks. Vg = −5 K and 78 K patch. The statistical
uncertainties in the energy on the heating and cooling curves are on
the order of ±0.02 K and are much smaller than the systematic errors
(∼1 K) arising from incomplete equilibration, i.e., hysteresis effects.

solidlike diffraction at 99 K but not at 100 K and are consistent
with the thermodynamic data. Assignment of the triple-point
melting of Xe/graphite as a first-order phase transition [16] is
supported by observations of a density discontinuity [33,37,38]
and two-phase coexistence [39] at the melting curve near Tt .

Thomy et al. [34] and Tessier [37] derived integral heats of
adsorption [qs, qv, qm] for the sublimation, vaporization, and
melting curves from the adsorption isotherm data. We adopt
qs = 2766 ± 50 K, qv = 2567 ± 50 K, and qm = 3470 ± 40 K
and hence have differences qm − qs � 704 ± 65 K and qm −
qv � 903 ± 70 K. The thermodynamic analysis of Larher [40]
relates the differences to the enthalpies (h) and densities (ρ)
of coexisting liquid (�) and solid (s) near the triple point:

qm − qs � ρ�

ρs − ρ�

[h� − hs], (6)

qm − qv � ρs

ρs − ρ�

[h� − hs]. (7)

In both these equations, terms that involve the coexisting
2D gas at the triple point are omitted. They are estimated
to contribute 20 K or less to the Xe/graphite differences,
using values [30,41] for the triple-point parameters of the 2D
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FIG. 9. Time autocorrelation function of kinetic temperature, as
defined in Eq. (5) with time “tn” in the range 500–1000 blocks
(1 block = 10 t0 = 32.6 ps). 78 K patch, with Vg = −6 K, T � 100 K,
very close to melting [31].

Lennard-Jones (LJ) system. Larher [40] estimated the latent
heat of melting at the triple point to be h� − hs = 96 K,
using Eq. (7) and the density change at melting on an
adsorption isotherm. Tessier [37] reworked the analysis and
got a value �70 K by using a density change calculated [41]
in a simulation of the LJ melting curve. The various exper-
iments [33,37,38] lead to estimates and extrapolated values
of ρ�/�ρ = 8–25. Hence, in Sec. III B 2, we combine the
enthalpy and density changes in our MD simulation to form
the ratios in Eqs. (6) and (7) and compare directly to the
differences of the empirical heats of adsorption.

The monolayer condenses as an incommensurate solid at
least down to [42–44] T � 15 K, as reviewed in Paper I.
Ellis et al. [42] give Lu = 4.42 Å at 15 K, a smallest misfit
m = 3.7%. The lattice constant data of D’Amico et al. [9],
Mowforth et al. [43], and Venables et al. [45,46] at or near the
2D sublimation curve are shown in Fig. 11.

The threshold misfit for the transition from incommensurate
aligned (IA) to incommensurate rotated (IR) monolayer solid is
given as mc = (1.5 ± 0.5)% at 65–70 K by Hamichi et al. [45]
and as mc � 1.9% at 70–75 K by Hong et al. [44]. Both
correspond to compressed monolayer states with L < 4.35 Å.

There are several data sets for ϑ as a function of lattice
constant L or misfit m. The data of Hong et al. [44] were

FIG. 10. Relaxation of orientation angle ϑ as a function of scaled
time (units of t0 = 3.26 ps) for several initial values of ϑ . The
temperature is T � 10 K and results are shown for the Vg = −6 K
312 K patch. These values of ϑ are derived from the complex phase
of ψ6.

the first to show the reentrant sequence IA → IR → IA
of transitions but clearly are for compressed monolayers.
The data of Venables et al. [45–47] include cases closer to
the sublimation curve and also show the reentrant sequence.
The data of D’Amico et al. [9] shown in Fig. 4 cover the
temperature range 55 to 100 K and the corresponding values
of L place the states close to the 2D sublimation curve; we use
these as the experimental values corresponding to the states
we access in the simulations. There is a consensus [2] that the
reentrant sequence of transitions occurs and that the maximum
value of ϑ is rather small and in the range 0.5◦–1.0◦.

It was suggested [48] that Xe/Ag(111) might have densities
of 2D gas up to 10% of the solid density at the sublimation
curve near the triple point and adsorption isotherm data [49] of
Xe/graphite were cited as possible evidence for this. The gas
densities observed for Xe/graphite had been attributed [49] to
heterogeneities.

B. Results of calculations

1. Commensurate solid

We extended the force relaxation calculations [5] to refine
the estimates of threshold corrugation amplitudes given in
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FIG. 11. (Color online) Lattice constant of the unconstrained
solid, Lu in Å, as a function of temperature T . Lu is derived from the
peak locations of the structure factor S(q) for various corrugations
and patch sizes. The results for Vg = −5, −6, −7 K for 78 K patch
and Vg = −6 K for 312 K patch essentially superpose. Experimental
diffraction data of D’Amico et al. [9] and of Hamichi et al. [45].
The deviation between the experiments and calculations below 50 K
arises because of the absence of quantum mechanical effects in the
MD calculation.

Paper I by using a finer grid of Vg and evaluating the
initial slope of the free energy for uniaxially incommensurate
lattices at quite small misfit (m < 0.5%). The answers are
scarcely changed. The threshold for a classical Xe/graphite
monolayer to condense as a commensurate lattice at T = 0 K
is Vg = −6.0 ± 0.1 K. When zero-point energy is included,
the threshold shifts to Vg = −8.3 ± 0.1 K. Thus, the (classical
mechanics) MD simulations with Vg = −7 K should give a
commensurate monolayer as T → 0 K and, indeed, this occurs
in the simulations. However, thermal expansion in the � → 0
approximation to the quasiharmonic theory (QHT) leads to a
lattice constant 4.33 Å at T = 10 K for Vg = −7 K.

2. Triple-point melting

The melting temperature for the 78 K and 312 K islands
(i.e., unconstrained patches) is Tt � 100 K to within ±1 K.
This is set by the extrapolation of the drops in the hexatic
order parameter |ψ6| and the structure factor peak height S(τ0)
for the leading reciprocal lattice vector (Figs. 1 and 2) and is

insensitive to the value of Vg and the size of the patch. The
average density also decreases rapidly as Tt is approached,
as shown in the Supplemental Material [19]. The calculated
drop in |ψ6| is steep and continuous but is consistent with
the experimental assignment of the triple-point melting as first
order. It does not exclude an interpretation as a continuous
transition [15] although the two transitions of continuous 2D
melting on a smooth surface [4] (Vg = 0) would have to be
spaced by less than ∼1 K. The fact that the results for three
values of Vg and the Null series superpose closely near the
melting is in accord with observations [3] of close similarities
in melting phenomena for Xe/graphite and for Xe/Ag(111),
nominally a system with very small corrugation effects [50].
The persistence of a tail in |ψ6| above Tt (Fig. 1) is in accord
with the corrugation energy (Vs) acting as a driving field for this
order parameter. The drops in S(τ0) and ψ6 occur over a much
smaller fractional temperature range than in a simulation [26]
of melting at higher 2D pressure and temperature.

The calculated triple-point temperature Tt is in excellent
agreement with experiment. To our knowledge, this is the
closest that any 2D sublimation curve calculation has come
to the experimental melting. The calculated Tt is identical
to a value of 100 K obtained from the reduced temperature
T ∗

t � 0.408 for the 2D Lennard-Jones solid [15] using the ε �
245 K of the effective pair potential (HFD-B2 + McLachlan)
of Xe/graphite [51].

The calculated thermal-average total energy and central
density for temperatures close to 100 K are shown in Fig. 12.
The latent heat of melting obtained from the near-vertical risers
for the Vg = 0,−5,−6 K series is 60–80 K, in good agreement
with the estimates 96 and 70 K cited in Sec. III A. The scaled
density ρR2

min at the top of the (Vg = −6 K) density drop is
approximately 1.04 and, depending on how the rounding at
the bottom is treated, we get a factor ρ�/�ρ � 8.1–10.2 and
hence to qm − qs = 610–650 K, which is at the lower end of
the empirical range 640–770 K cited in Sec. III A. The latent
heat of melting of Asenjo et al. [15] for the LJ solid is 0.296 ε

for 36 864 particles, or 72 K with ε = 245 K.
The MD simulations for 78 K and 312 K, Vg = −6 K, show

a slightly different rounding for |ψ6| and E near the melting
transition [(Fig. 6) for E and the Supplemental Material [19]
for |ψ6|]. The transition becomes sharper for the larger sample,
but has hardly any displacement in temperature.

3. Structure: Lu(T )

The calculated lattice constant at 60–100 K along the
2D sublimation curve (Fig. 11) agrees with the experimental
data [9,43,45,46]. The Lu(T ) from the structure factor peaks
for both the 78 K and 312 K patches agree well with each
other. Calculations with the quantum-corrected and classical
cell models at 50–95 K show that the expansion of Lu by
quantum effects is quite small and and decreases from 0.003
to 0.002 Å as T increases. Hence, it is meaningful to make
comparisons at the ±0.005 Å scale between the (classical) MD
results and the experimental data for 50–95 K. The calculated
values of Lu for the three Vg cases merge to 0.01 Å above
50 K, which accounts for the similarity of data for Lu of
Xe/Ag(111) [50] and Xe/graphite.
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FIG. 12. (Color online) The variation of total energy and central
density with temperature near the triple-point temperature. The
temperature scale is expanded and the results for several cases are
superposed to demonstrate how similar the behaviors are near the
melting transition. The two red asterisk series above 100 K are values
for heating (lower) and cooling (upper series).

Until close to Tt , the lattice has few defects, as shown by
the constancy of the product � ≡ (ρ̄L2

u

√
3)/2 at temperatures

up to 98 K (Fig. 13). The average density ρ̄ is evaluated
for a disk of radius 75Rmin at the center of the patch; for
most of the configurations, this is an average over about
19 000 adatoms. Lu is the lattice constant for a diffraction
experiment, determined from the peak locations of S(τ ). For a
perfect triangular lattice � is precisely 1; this is maintained to
within 1% until within 1 K of Tt . The vacancy concentration
is less than 0.1% at 97 K, but is 0.9% at 99.1 K and 3.8% at
99.5 K. A similar construction [50] using experimental data for
Xe/Ag(111) showed that there were fewer than 1% vacancies
for the temperature range 56–76 K.

We made a contour analysis of the peaks in the MD data for
the structure factor S(q). Over most of the temperature range,
until at least 90 K, the peak widths of S(q) are determined
by the finite size of the solid patches and the contours are
quite circular. At temperatures of 90 to 98 K, the peak
widths increase with increasing temperature and the contours
become elliptical. However, the azimuthal width is at most
25% greater than the radial width in this regime and so we
are not simulating the hexatic phase observed in various x-ray
experiments [3,52,53].

We found small-amplitude satellites for the main S(q)
peaks at low temperatures (and small misfits). These satellites

FIG. 13. (Color online) Defect proxy � as a function of temper-
ature, � ≡ ρ̄(L2

u

√
3)/2 is constructed from the average density ρ̄ at

the center of the patch, and the lattice constant Lu determined from
structure factor S(τ ). For a perfect triangular lattice, this is precisely
1; � remains 1 to within 0.01 until 98 K. Vg and patch size as noted.

had the general geometry expected for an incommensurate
solid with hexagonal domain structure that is described with
mass-density waves. However, they deviated from the simplest
description; i.e., although they formed “stars” centered on the
sixfold main peaks, most frequently there were four not six
satellites in the star. While there might be some effects due to
finite size and general disorder in the MD simulation, a similar
geometry has been observed in MDW-SCP results. Thus, there
is evidence that this is an intrinsic effect of the fundamental
domain structure of the system. The intensity in these satellites
is correlated with a decrease that is shown in Fig. 2 for the main
peak heights of S(q) at low temperatures.

4. Structure: Orientational epitaxy

The temperature dependence of ϑ for large xenon islands is
complex and in qualitative agreement with experiments [9]
(Fig. 4). The ϑ obtained from the MD simulations on
unconstrained islands, i.e., along the 2D sublimation curve,
decreases as T increases [54] from 0 to 50 K, is relatively
insensitive to T between 50 and 90 K, and then goes to zero
as Tt � 100 K is approached. This behavior is in contrast
to the perturbation theory results, where ϑ increases as
the nearest-neighbor spacing Lnn increases. The MD results
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are qualitatively different from the SCP-MDW and QHT
approximations at temperatures above 60 K. The difference
may arise because increased thermal averaging reduces the
effectiveness of a given energy corrugation Vg . This decrease
in the importance of the MDW energy term appears to allow
an increased role for edge effects along the boundary of the
patch. We have not established any systematic difference to
the dependence of ϑ(T ) on Vg for the 78 K patches because
fluctuations in the inferred ϑ for a given Vg are comparable to
the differences between the series. However, fluctuations in the
312 K system are clearly smaller both than those in the 78 K
system and than those found in the experimental data (Fig. 4).
The results for ϑ(T ) appear to have a smooth variation within
these fluctuations.

For the strongly compressed monolayer solid, the solid
thermally expands (increasing misfit) from the commensurate
lattice to an incommensurate lattice, and there is a temper-
ature range where ϑ increases as T increases. We estimate
the threshold (critical) misfit mc for rotation by using the
perturbation-variation (PV) approximation to calculate the ϑ

dependence of the modulation energy. EMDW is minimum for
the incommensurate aligned IA structure for misfits up to mc.
For m > mc, it is lower at an angle slightly displaced from the
30◦ azimuth. For Vg = −5,−6,−7 K, mc is 1.4%, 1.6%, and
1.8% in the PV approximation. (SCP results for the evolution
of the minimum of EMDW with L for Vg = −6 K are shown
in the Supplemental Material [19].) The experimental data
place the threshold at mc � 1.5% for temperatures of 65–75 K
and pressures close to the bilayer condensation. Using the
PV approximation to EMDW and free energies at 60 K from
quasiharmonic theory [5], chemical potential constructions
show that the transition IA → IR occurs at a misfit very close
to that where the energy minimum moves from 30◦. Thus, the
calculations reproduce the experimental threshold for values of
Vg in the range set by Paper I. The initial stage of the expansion
is reproduced by the PV approximation, but the experimental
reentrant transition to an IA phase at higher temperatures is
not yet reproduced by such approximations.

The tail of |ψ6| at T > Tt in Fig. 1 arises from the
hexatic ordering field h6 that drives orientational epitaxy and,
presumably, also from finite-size effects. We do not know of
a theoretical analysis that gives an explicit construction to
extract h6 from the data in Fig. 1.

5. 2D gas

The virial pressure Pv of the patches calculated with Eq. (4)
has a very small magnitude and is negative for temperatures
below 75 K. The standard deviation of the averages is larger
than the average in that range. At T > 75 K, Pv is positive and
the simulation gives stable values, as shown in Fig. 3. Then, the
results for the three nonzero corrugation amplitudes, the Null
series (Vg = 0), and two patch sizes are very similar and Pv(T )
rises steeply with increasing temperature, as is usual for vapor
pressure curves. The fact that the results for the four values of
Vg are so similar is further evidence that corrugation energy
effects are small at these temperatures and solid densities.
More quantitatively, the ratio Pv/T corresponds to rather small
gas densities for an ideal 2D gas. For the Vg = −6 K (78 K)
series of simulations, we found the number of adatoms with

zero, one, or two neighbors within a radius 6.4 Å, i.e., the
populations of monomers, dimers, and trimers. For 75–90 K,
the monomer density is less than 1% of the solid density and
in fair agreement with the value inferred from Pv/T . For
90–99 K, the combined density of monomers, dimers, and
trimers increases until it is about 5% of the solid density at the
melting temperature.

These results, with low 2D gas densities up to 90 K,
strongly support the assignment by Bienfait et al. [49]
that the gas they observed just before the monolayer solid
condensation of Xe/graphite is an extrinsic effect, probably
due to heterogeneities.

6. MD simulation of domains

The domain structure of Xe/graphite was discussed in
Paper I. These simulations extend that work to larger systems
and, perhaps more importantly, these possess boundaries
between the solid and a vapor (below the triple point).
Therefore, the solid is not pinned by the boundaries of the
box, but is surrounded by the vapor. It is free to rotate in a way
that is not possible for the constrained system.

One observed aspect of the vapor-solid boundary is quite
striking and ubiquitous. In all simulations, both for the
hexagonal patches discussed here and for rectangular patches
that are not presented here, the domain walls intersect the
patch boundary at right angles. This persists until T � 80 K,
where the boundaries become rather disorganized. It spans
the temperature range 50–80 K where the MD values for
ϑ are rather constant. Although we have no model for
how this behavior of the walls arises, we believe that it
produces an aligning effect that competes with the MDW-
driven orientational epitaxy term. As the MDW term is an
interior effect and this is a boundary effect, it gives another
interior-boundary competition. The boundary effect will be
important for the ϑ range where the MDW effects are
relatively flat, as they are for ϑ = 0◦–2◦, where the EMDW

is near its minimum value. This scenario is bolstered by the
observation of twists in the alignment of the rows of atoms
as one moves from the patch boundary into the interior. In
the interior of the patch, the alignment of atoms appears to
be consistent with the epitaxy angle predicted by the MDW
theory, at least at low temperature, while close to the boundary
there are significant deviations from this. Furthermore, as the
temperature is increased, the structure of the domains and
domain walls becomes far less ordered, more chaotic, and
rather ill defined. We did not carry out any detailed analysis
of this effect, so our observations are more qualitative than
quantitative. Nevertheless, we conjecture that the alignment of
the domain wall at the boundaries contributes to a competition
between interior effects (MDW) and size-dependent boundary
effects that was already discussed in Sec. II C 3.

Using the criterion [5] that adatoms more than �/4 from a
minimum of Vs are in domain walls, the fraction of adatoms in
domain walls increases from 0.585 at 48 K to 0.666 at 98 K, for
the 78 K patch with Vg = −6 K. A purely random placement
of adatoms on the surface would have a fraction 0.73 assigned
to walls by this criterion.
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IV. CONCLUSIONS

The estimate Vg � −6 K still is our best estimate. Recent
a priori calculations [55] scatter, but are consistent with this
value.

A striking aspect of our simulation is that the main
precursors of the melting occur over a very narrow temperature
range, about 1 K or 1% of the temperature. The hexatic
order parameter |ψ6| drops to about 0.9 as the temperature
increases from 20 to 90 K and then there is a steep drop
from � 0.8 to � 0.1 as the temperature increases from 99 to
100 K (Fig. 1). There is a similar steep drop in the structure
factor peak values S(τ ) for the first three shells of reciprocal
lattice vectors (Fig. 2). The concentration of lattice defects
also increases sharply in the final approach to the melting
temperature (Fig. 13). Similarly, the rise in the energy that
we interpret as a latent heat of melting occurs over less than
1 K (Fig. 6). In calculations [15] for a Lennard-Jones model
on a smooth surface, relaxation times became very large only
within 1% of the melting temperature.

The possibility of continuous melting [17] still is undecided
for many monolayer examples. We find the melting of
Xe/graphite at the triple point likely is a first-order transition,
in agreement with Strandburg’s review [16]. We note the
possibility that calculations on yet larger samples and carried
to even longer times might change this, although our results
with N = 78 000 and 312 000 and those of Asenjo et al. [15]
with N = 36 864 give reduced triple-point temperature and
latent heat of melting that lie in the range estimated with an
early simulation [30] using N = 224.

The x-ray results [9] for the orientational alignment ϑ of
Xe/graphite have been a puzzle from the start, as they disagree
strongly with a theory that gives a reasonable account of data
for other rare gases adsorbed on graphite. Our simulation
bridges the gap between the experimental and theoretical
results. At low temperatures, it gives an alignment that is close
to that from the simplest analytical approximation [6], with
small differences that we attribute to boundary effects. At
the moderate to high temperatures of the x-ray work [9], the
simulation tracks those data with a scatter that is comparable
to that in the experiments. We have a coherent explanation
for the experimental results. The effects of the MDW energy
are reduced by thermal excitations, and at high enough
temperature they become less important than other effects,
all of which restrict the alignment to be near the 30◦ azimuth
of the graphite. A detailed understanding of these other effects
will have to come from future studies of large-scale distortions
in the thermally excited monolayer solid.
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APPENDIX A: MD METHODOLOGY

The time step in the MD calculation is 0.01t0, where the
characteristic time is t0 = Rmin

√
mXe/ε = 3.26 ps with the ε

and Rmin of the HFD-B2 Xe-Xe potential [20]. In the dense

phases, the calculations of energy and forces generally include
36 atomic neighbors (5 hexagonal shells). The islands had
78 000 Xe atoms for Vg = 0,−5,−6,−7 K and 312 000 Xe
atoms for Vg = −6 K. For most of the temperatures, the cells
had large islands of solid surrounded by very low density gas,
with an average cell density ρR2

min � 0.53. These are relatively
large systems even in the context of recent simulations of 2D
melting [15,26,28]. The results for the two Vg = −6 K series
agree well, even within 1 K of the melting temperature.

Thermal averages were done in blocks of 103 time steps
(=32.6 ps) and final averages typically were formed on blocks
400–500, i.e., at 13–16 ns. Some cases were carried to 600–800
blocks. The evolution of block averages was used to assess
the approach to equilibrium. At temperatures above about
75 K, the relaxation of ϑ to a steady value tended to be slow.
Also the increased disorder in the Xe islands above 70 K
required reconstructing neighbor lists every 25 time steps and
this too slowed the simulations. Measures used to assess the
approach to equilibrium and evidence for lack of equilibrium,
metastability, or hysteresis were described Sec. II C 4.

Gaussian statistical characterization of the values for
temperature and total energy indicates the averages have three
to four significant figures, i.e., uncertainties smaller than the
resolution shown in the figures. The corresponding analysis
for the pressure Pv gives ±0.01 K/Å2, relatively constant for
T = 50–100 K. It is difficult to give a quantitative assignment
of the uncertainty in the angle ϑ derived from the structure
factor because it was formed as an average of values fit to only
four peaks (assumed to be those of a hexagonal structure) in
S(q). Our estimate is that ±0.1◦ is appropriate for the data
shown in Fig. 4, as there likely are non-Gaussian variations
and perhaps chaotic effects due to the boundaries.

APPENDIX B: SURROGATES

We have found it convenient to use some surrogates
to monitor the progress of the MD calculations before
detailed analyses are performed. These are recorded here,
as our success with them may be informative to workers
in related applications: (1) The nearest-neighbor separation
Lnn may be estimated by evaluating the average density
in a disk of radius 75Rmin at the center of a large patch,
before determining the peaks in the structure factor S(q).
As shown in the Supplemental Material [19], this gives
estimates accurate to δL < 0.005 Å up to 95 K. The increasing
population of vacancies above 95 K was discussed for Fig. 13.
(2) The orientational epitaxy angle ϑ may be estimated from
the complex phase ϕ of the hexatic order parameter ψ6 as
ϑ = ϕ/6, before the structure factor calculation, as shown
in the Supplemental Material [19]. Since both the real and
imaginary parts of ψ6 go to zero as Tt is approached, this way
of estimating ϑ becomes unreliable within 5 K of Tt . (3) We
estimated the 2D gas density ρg from the virial calculation of
the spreading pressure, using ρg = Pv/T , up to 90 K rather
than explicitly counting cluster densities. (4) Although we
have not used it here, we estimated the density of fivefold-
and sevenfold-coordinated lattice defects by counting the
number of nearest neighbors, rather than a Voronoi polyhedra
construction.
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APPENDIX C: PERTURBATION-VARIATION (PV)
APPROXIMATION

We adapt a generalization [56] of the Novaco-McTague
perturbation theory [6] to cover lattices with small misfits.
The nonlinear response [8] of the monolayer lattice to the
corrugation energy is approximated with one shell of Fourier
components for the position modulations, although solutions
in the SCP-MDW theory at misfits below 0.02 typically
include three to five g shells. Thus, the accuracy decreases
at misfits less than about 0.01. It remains informative and is
computationally simple for most of the states treated here and
has been adapted to treat finite-size effects of the Xe patches
by constraining the sums in Eq. (C1).

The total potential energy for adatoms at positions {rj } is

� =
∑

i

Vs(ri) +
∑
i<j

φ(|ri − rj |), (C1)

with pair potentials φ and the substrate corrugation energy Vs

[Eq. (1)]. The dynamical matrix for small-amplitude vibrations
about the positions {Rj } in the uniform incommensurate
lattice is

D(g) =
∑

j

[1 − exp(ıg · Rj0)]∇∇φ , (C2)

with orthonormal eigenvectors uα(g) (real for a 2D Bravais
lattice):

D(g) · uα(g) = λαuα(g), α = 1,2. (C3)

Define the trial array of perturbed positions:

rj = Rj +
2∑

α=1

fα

∑
g

uα(g)(−ıVg) exp(ıg · Rj )

× [g · uα(g)]/λα(g), (C4)

where f1 and f2 are variational parameters. The angle ϑ that
a primitive vector of the uniform adlayer lattice makes with a
primitive reciprocal lattice vector g(10) of the substrate (i.e.,
the 30◦ azimuth of the substrate space lattice) is specified for
each variational calculation.

We evaluate the total potential energy � for the positions
rj without expanding the functions Vs and φ. The scale factors
fα are varied to minimize � for each choice of {Rj } at given
ϑ . The energy E(PV) is the difference between � and the
potential energy of the uniform lattice with the same average
Lnn. The optimal orientation at small misfits is ϑ = 0◦, i.e., IA.
At larger misfits, there are double minima at angles displaced
by ±ϑ from 30◦ and the minimum energy configuration is
rotated, i.e., IR.

We test the accuracy of the PV approximation for
Xe/graphite lattices with Lnn in the range 4.42–4.56 Å, by
comparing E(PV) to the energy EMDW obtained by force-
relaxation calculations [5] on higher-order-commensurate
(HOC) unit cells. Results for several IA and IR lattices are
given in Table I. The accuracy of the PV approximation
increases as Lnn increases. Note that the MD simulations
give lattices with Lnn > 4.42 Å for T > 40 K, so that the
PV approximation has accuracy for the static lattice value of
EMDW that is better than about 6% over most of the range
of the simulations. The PV-approximation error increases as
ϑ decreases, at nearly constant Lnn, as a consequence of the
decrease in magnitude of the misfit wave vector. Results for
the second-order perturbation-theory [6] values ENM are also
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but it overestimates the change in EMDW from the

√
3R30◦

alignment to the ϑ that minimizes EMDW. As another series of
tests, we compared the E(PV) to EMDW(SCP) for Vg = −6 K
and T = 0 K and L = 4.38,4.39, and 4.41 Å. There was
agreement to within 0.3 K out of −4 to −6 K at ϑ = 0◦
and 3◦.
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ϑMD = 0.8◦–1.0◦ and 0.4◦–0.6◦, respectively. The SCP-MDW
values (Vg = −6 K) are ϑSCP = 0.6◦ and 0.9◦, while the original
perturbation theory gives ϑNM = 0.9◦ and 1.1◦, respectively.

[55] L. Sheng, Y. Ono, and T. Taketsugu, J. Phys. Chem. C 114,
3544 (2010); A. Ambrosetti and P. L. Silvestri, ibid. 115, 3695
(2011).

[56] L. W. Bruch and J. Z. Larese, Phys. Rev. B 85, 035401 (2012).

125431-14

http://dx.doi.org/10.1016/0301-0104(90)89079-6
http://dx.doi.org/10.1016/0301-0104(90)89079-6
http://dx.doi.org/10.1016/0301-0104(90)89079-6
http://dx.doi.org/10.1016/0301-0104(90)89079-6
http://dx.doi.org/10.1080/00268976300101141
http://dx.doi.org/10.1080/00268976300101141
http://dx.doi.org/10.1080/00268976300101141
http://dx.doi.org/10.1080/00268976300101141
http://dx.doi.org/10.1103/PhysRevB.26.284
http://dx.doi.org/10.1103/PhysRevB.26.284
http://dx.doi.org/10.1103/PhysRevB.26.284
http://dx.doi.org/10.1103/PhysRevB.26.284
http://dx.doi.org/10.1103/PhysRevB.83.214108
http://dx.doi.org/10.1103/PhysRevB.83.214108
http://dx.doi.org/10.1103/PhysRevB.83.214108
http://dx.doi.org/10.1103/PhysRevB.83.214108
http://dx.doi.org/10.1103/PhysRevB.35.279
http://dx.doi.org/10.1103/PhysRevB.35.279
http://dx.doi.org/10.1103/PhysRevB.35.279
http://dx.doi.org/10.1103/PhysRevB.35.279
http://dx.doi.org/10.1209/0295-5075/86/66004
http://dx.doi.org/10.1209/0295-5075/86/66004
http://dx.doi.org/10.1209/0295-5075/86/66004
http://dx.doi.org/10.1209/0295-5075/86/66004
http://dx.doi.org/10.1063/1.441901
http://dx.doi.org/10.1063/1.441901
http://dx.doi.org/10.1063/1.441901
http://dx.doi.org/10.1063/1.441901
http://dx.doi.org/10.1016/S0039-6028(03)00820-3
http://dx.doi.org/10.1016/S0039-6028(03)00820-3
http://dx.doi.org/10.1016/S0039-6028(03)00820-3
http://dx.doi.org/10.1016/S0039-6028(03)00820-3
http://dx.doi.org/10.1016/0167-5729(81)90004-2
http://dx.doi.org/10.1016/0167-5729(81)90004-2
http://dx.doi.org/10.1016/0167-5729(81)90004-2
http://dx.doi.org/10.1016/0167-5729(81)90004-2
http://dx.doi.org/10.1088/0022-3719/13/12/004
http://dx.doi.org/10.1088/0022-3719/13/12/004
http://dx.doi.org/10.1088/0022-3719/13/12/004
http://dx.doi.org/10.1088/0022-3719/13/12/004
http://dx.doi.org/10.1103/PhysRevB.39.2459
http://dx.doi.org/10.1103/PhysRevB.39.2459
http://dx.doi.org/10.1103/PhysRevB.39.2459
http://dx.doi.org/10.1103/PhysRevB.39.2459
http://dx.doi.org/10.1103/PhysRevB.28.6416
http://dx.doi.org/10.1103/PhysRevB.28.6416
http://dx.doi.org/10.1103/PhysRevB.28.6416
http://dx.doi.org/10.1103/PhysRevB.28.6416
http://dx.doi.org/10.1039/f19747000320
http://dx.doi.org/10.1039/f19747000320
http://dx.doi.org/10.1039/f19747000320
http://dx.doi.org/10.1039/f19747000320
http://dx.doi.org/10.1016/0378-4371(81)90222-3
http://dx.doi.org/10.1016/0378-4371(81)90222-3
http://dx.doi.org/10.1016/0378-4371(81)90222-3
http://dx.doi.org/10.1016/0378-4371(81)90222-3
http://dx.doi.org/10.1016/0039-6028(85)90011-1
http://dx.doi.org/10.1016/0039-6028(85)90011-1
http://dx.doi.org/10.1016/0039-6028(85)90011-1
http://dx.doi.org/10.1016/0039-6028(85)90011-1
http://dx.doi.org/10.1039/f29868201621
http://dx.doi.org/10.1039/f29868201621
http://dx.doi.org/10.1039/f29868201621
http://dx.doi.org/10.1039/f29868201621
http://dx.doi.org/10.1103/PhysRevB.36.7311
http://dx.doi.org/10.1103/PhysRevB.36.7311
http://dx.doi.org/10.1103/PhysRevB.36.7311
http://dx.doi.org/10.1103/PhysRevB.36.7311
http://dx.doi.org/10.1103/PhysRevB.40.4797
http://dx.doi.org/10.1103/PhysRevB.40.4797
http://dx.doi.org/10.1103/PhysRevB.40.4797
http://dx.doi.org/10.1103/PhysRevB.39.415
http://dx.doi.org/10.1103/PhysRevB.39.415
http://dx.doi.org/10.1103/PhysRevB.39.415
http://dx.doi.org/10.1103/PhysRevB.39.415
http://dx.doi.org/10.1103/PhysRevB.43.3208
http://dx.doi.org/10.1103/PhysRevB.43.3208
http://dx.doi.org/10.1103/PhysRevB.43.3208
http://dx.doi.org/10.1103/PhysRevB.43.3208
http://dx.doi.org/10.1016/0039-6028(82)90467-8
http://dx.doi.org/10.1016/0039-6028(82)90467-8
http://dx.doi.org/10.1016/0039-6028(82)90467-8
http://dx.doi.org/10.1016/0039-6028(82)90467-8
http://dx.doi.org/10.1016/0039-6028(77)90054-1
http://dx.doi.org/10.1016/0039-6028(77)90054-1
http://dx.doi.org/10.1016/0039-6028(77)90054-1
http://dx.doi.org/10.1016/0039-6028(77)90054-1
http://dx.doi.org/10.1016/0039-6028(74)90098-3
http://dx.doi.org/10.1016/0039-6028(74)90098-3
http://dx.doi.org/10.1016/0039-6028(74)90098-3
http://dx.doi.org/10.1016/0039-6028(74)90098-3
http://dx.doi.org/10.1016/0039-6028(79)90539-9
http://dx.doi.org/10.1016/0039-6028(79)90539-9
http://dx.doi.org/10.1016/0039-6028(79)90539-9
http://dx.doi.org/10.1016/0039-6028(79)90539-9
http://dx.doi.org/10.1103/PhysRevLett.50.1791
http://dx.doi.org/10.1103/PhysRevLett.50.1791
http://dx.doi.org/10.1103/PhysRevLett.50.1791
http://dx.doi.org/10.1103/PhysRevLett.50.1791
http://dx.doi.org/10.1103/PhysRevB.32.7373
http://dx.doi.org/10.1103/PhysRevB.32.7373
http://dx.doi.org/10.1103/PhysRevB.32.7373
http://dx.doi.org/10.1103/PhysRevB.32.7373
http://dx.doi.org/10.1021/jp907861c
http://dx.doi.org/10.1021/jp907861c
http://dx.doi.org/10.1021/jp907861c
http://dx.doi.org/10.1021/jp907861c
http://dx.doi.org/10.1021/jp110669p
http://dx.doi.org/10.1021/jp110669p
http://dx.doi.org/10.1021/jp110669p
http://dx.doi.org/10.1021/jp110669p
http://dx.doi.org/10.1103/PhysRevB.85.035401
http://dx.doi.org/10.1103/PhysRevB.85.035401
http://dx.doi.org/10.1103/PhysRevB.85.035401
http://dx.doi.org/10.1103/PhysRevB.85.035401



