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Persistent charge and spin currents in the long-wavelength regime for graphene rings
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We address the problem of persistent charge and spin currents on a Corbino disk built from a graphene sheet.
We consistently derive the Hamiltonian including kinetic, intrinsic (ISO), and Rashba spin-orbit interactions in
cylindrical coordinates. The Hamiltonian is carefully considered to reflect hermiticity and covariance. We compute
the energy spectrum and the corresponding eigenfunctions separately for the intrinsic and Rashba spin-orbit
interactions. In order to determine the charge persistent currents, we use the spectrum equilibrium linear response
definition. We also determine the spin and pseudospin polarizations associated with such equilibrium currents. For
the intrinsic case, one can also compute the correct currents by applying the bare velocity operator to the ISO wave
functions or alternatively the ISO group velocity operator to the free wave functions. Charge currents for both
SO couplings are maximal in the vicinity of half-integer flux quanta. Such maximal currents are protected from
thermal effects because the contributing levels plunge (∼1 K) into the Fermi sea at half-integer flux values. Such
a mechanism, makes them observable at readily accessible temperatures. Spin currents only arise for the Rashba
coupling, due to the spin symmetry of the ISO spectrum. For the Rashba coupling, spin currents are canceled at
half-integer fluxes but they remain finite in the vicinity, and the same scenario as above protects spin currents.
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I. INTRODUCTION

Graphene probably constitutes one of the most promising
materials of the century, not only because of all its remarkable
conduction, topological, and mechanical properties, but also
due to its theoretical implications as a testing ground for
relativistic effects in low-dimensional solid state systems. In
particular, the theoretical applications to spintronic devices
are very promising. As in semiconductors, the presence of
spin-orbit (SO) coupling in graphene gives a key element for
spin manipulation and is responsible for the existence of the
quantum spin Hall phase [1].

In a tight-binding perspective, the Rashba spin-orbit
coupling (RSO) comes from nearest-neighbor interactions
and an applied bias that breaks inversion symmetry, while
the intrinsic SO coupling (ISO) follows from next nearest-
neighbor contributions depending on intrinsic electric fields.
The intrinsic interaction is small for free suspended films (1–
50 μeV) compared to external perturbations, while the RSO,
controlled by an applied bias, can be substantially higher (up
to 225 meV) by introducing a coupling to a Ni substrate [2,3].
The latter enhancement can also be controlled by intercalating
Au atoms [4] between the Ni surface and the graphene film,
assuring a more decoupled graphene film and comparable SO
strength (100 meV). Intrinsic SO coupling, on the other hand,
can be manipulated by functionalizing with heavy atoms on
the graphene edges, producing a broad range of parameters
where quantum spin Hall phases are dominant over electron-
electron interaction effects [5]. Furthermore, although not
graphene based, the same physics has been concocted from
ordinary semiconductor superstructures (GaAs), where the SO
interaction is much stronger [6] than in suspended graphene.
It is then clear that various treatments can be used to build a
very significant SO coupling into graphene ribbons and rings
giving a starting point for spintronics-based device concepts.

Graphene quantum rings have recently attracted much
attention for many reasons among which we mention: (i)

confining Dirac fermions is nontrivial because of Klein’s
paradox. Various mechanisms have been devised to overcome
reduced backscattering from scalar potentials, such as spatially
modulating finite Dirac gaps [7] or through spatially inho-
mogeneous magnetic fields [8]. A direct approach is simply
mechanically cutting [9] into confining geometries creating an
infinite mass boundary. (ii) The multiply connected structure of
the ring gives rise to Aharonov-Bohm oscillations in external
fields [10] that can be manipulated by effective gauge fields
generated through strain [11]. (iii) Both ferromagnetic (FM)
and antiferromagnetic (AF) phases exist, when contemplating
electron-electron and/or spin-orbit interactions, that live on
the graphene edges, and their magnitudes are enhanced in
ring geometries [12]. (iv) Rings in Mobius topologies induce
spin Hall effect in graphene and various FM and AF phases,
even without SO couplings when electron-electron interactions
are considered. (v) Persistent currents are a ground-state
phenomenon induced by time reversal symmetry breaking
and manifest themselves as a ground-state current in coherent
conditions. Ring confinement in graphene has been shown
to lead to controlled lifting of the valley degeneracy in
conjunction with a magnetic flux [10]. The footprint of this
broken valley degeneracy is a charge persistent current.

In this work, we address graphene rings where Dirac
fermions are confined by an infinite mass barrier, by either
growing the ring epitaxially [13] or cutting it out by chemical
means [9]. We consider the bare Dirac Hamiltonian plus either
the Rashba or the intrinsic SO couplings. The former can
be modulated by either gate voltages or charge transfer to
a contrasting substrate causing large perpendicular electric
fields. The intrinsic coupling is enhanced by, e.g., edge
heavy-atom functionalization as discussed before. Under these
conditions, we compute the spectrum and the eigenfunctions
in the ring geometry, for large enough rings, so that boundary
conditions can be considered as zigzag to a high degree
of approximation [14]. We assume that the ring is in the
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lowest radial state, and no mixture occurs with higher excited
states [15], a consideration that we will show is warranted.
Finally, we ignore electron-electron interactions and consider
the SO coupling is dominant [5].

II. THE GRAPHENE RING MODEL

A quasi-one-dimensional ring (Corbino disk) of finite width
is cut out from a flat graphene monolayer as shown in Fig. 1.
Localized and discrete confined modes exist in the radial
direction (see Ref. [16] for the case of carbon nanoribbons),
while the angular direction is free, though appropriate closing
conditions for the wave functions are to be applied.

The starting Hamiltonian is given by that of a graphene
sheet [17] with SO interaction in the long-wavelength limit
around the Dirac points,

H = −i�vF (τzσx1s∂x + 1τ σy1s∂y)

+�SOτzσzsz + λR(τzσxsy − 1τ σysx). (1)

The first term is the kinetic energy, it has the form vF σ · p,
with the additional τz−Pauli matrix, which acts on the “valley”
index and distinguishes between the Dirac points in the band
structure, k = τK = τ (4π/3c,0), where c is the distance
between the Bravais lattice points and τ takes on values of ±1.
The σi-Pauli matrices encode for the sublattice distinction. The
si represents the real spin of the charge carriers. Products of
matrices in the Hamiltonian are understood as tensor products
between different subspaces. When only two operators or less
are present, identity 2 × 2 matrices are implied for each of the
omitted subspaces.

The second term in Eq. (1) is the intrinsic spin-orbit (ISO)
coupling [18], due to the electric fields of the carbon atoms.
From a tight-binding point of view, this interaction comes from
the second-neighbor hopping contribution that preserves all

kϕ

kρ

E

Φ

FIG. 1. (Color online) A quasi-one-dimensional graphene ring in
the long-wavelength approach inherits all the internal symmetries of
the lattice structure. The Corbino ring is cut out from a graphene
monolayer. The figure shows the (ρ,ϕ) coordinates, z being perpen-
dicular to the plane. The average radius of the ring is a, represented
by the red line. The ring is pierced by a perpendicular magnetic flux
and electric field.

the symmetries of graphene. The last term in Hamiltonian (1)
is the Rashba SO interaction, which results from the action
of an external electric field that breaks the space mirror
symmetry [19] with respect to the graphene plane.

The operators σi and si are dimensionless and normalized
as σ 2

i = 1σ and s2
i = 1s (Pauli matrices), and the parameters

�SO and λR have dimensions of an energy. Since the valley
operator τz is diagonal, the Hamiltonian can be split into two
different contributions, one for each valley in k space, thus
reducing the model to two copies of a 4 × 4 matrix system,
instead of the full 8 × 8 direct product space. One then gets
two separate valley Hamiltonians,

H+ = −i�vF (σx∂x + σy∂y) + �SOσzsz + λR(σxsy − σysx),

(2)

H− = −i�vF (−σx∂x + σy∂y) − �SOσzsz − λR(σxsy + σysx),

(3)

so each valley can be treated separately.

III. RING HAMILTONIAN, BOUNDARY CONDITIONS,
AND HERMITICITY

In this section, we will clarify a few important general points
for the Hamiltonian in polar coordinates that are frequently
overlooked in the literature. The first concerns the boundary
conditions imposed on the wave function in a nonsimply
connected geometry, and the other the form of the Hamiltonian
used when a change in coordinate system is involved. We
will first derive the closed ring Hamiltonian of radius a of
pure kinetic energy by performing the proper coordinate map-
ping [20]. Then we will discuss the boundary conditions (BCs)
on the ring geometry. The salient features of this model relevant
to the full Corbino disk Hamiltonian will be transparent.

When using coordinates other than Cartesian, one must
take care of subtleties in constructing a Hermitian Hamilto-
nian [21], whose correct form avoids spurious features in the
spectrum. In the τ = 1 valley, keeping only the kinetic energy
and omitting the spin degree of freedom, the coordinate change
applied to Eq. (2) results in

H = −i
�vF

a
(σy cos ϕ − σx sin ϕ )∂ϕ, (4)

after removing the radial part. The difficulty comes from
the observation that this Hamiltonian is not Hermitian [22],
since 〈F | H | G〉∗ �= 〈G | H | F 〉, where |F 〉 and |G〉 are
two-component spinors. This can be repaired by adding to
Eq. (4) a term proportional to i(σy sin ϕ + τσx cos ϕ) [20] and
one is easily led to the form

Hτ = −i
�vF

a

[
(−τσx sin ϕ + σy cos ϕ)∂ϕ

− 1

2
(σy sin ϕ + τσx cos ϕ)

]
. (5)

Not including this term would also lead to real, but physically
incorrect eigenvalues and eigenstates [22]. The reason for
real eigenvalues, in spite of nonhermiticity, follows from the
operator being PT (parity and time reversal) symmetric [23].
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Another way of deriving the correct form for the Hamilto-
nian is the following. Imagine that we start with the Hamil-
tonian H = vF σ · p. Writing it directly in polar coordinates,
one gets

H = −i�vF (σρ∂ρ + ρ−1σϕ∂ϕ), (6)

fixing ρ = a and taking care to properly symmetrize the
product σϕ∂ϕ , one describes a ring

Hring = −i�vF a−1
(
σϕ∂ϕ − 1

2σρ

)
(7)

that corresponds to the expression in Eq. (5) using σρ =
σx cos ϕ + σy sin ϕ and σϕ = −σx sin ϕ + σy cos ϕ. The term
1
2σρ in Eq. (7) is essential since it renders the derivative
in polar coordinates covariant by introducing the connection
that correctly rotates the internal degree of freedom so as to
keep the pseudospin parallel to the momentum. This form
of the Hamiltonian for the angular dependence is arrived at
independently of the form of the confining potential applied
radially [16,21]. The details of the confining potential will
arise as effective coefficients in the form of Eq. (7).

The eigenstates of Eq. (7) are of the form

ψ(ϕ,z) = eimϕ

√
2

(−iκe−iϕ

1

)
, (8)

with m a positive half-integer for metallic rings and κ = ±1
describing electrons and holes, respectively. The correspond-
ing energies are E = κ�vF

a
(m − 1/2). It is easy to verify

that 〈σ 〉 = κ(− sin ϕ, cos ϕ) = κk/|k|, as can be derived in
Cartesian coordinates. In spite of the fact that pseudospin
follows the momentum, it is endowed with proper angular
momentum [24]. This can be verified by noting that the
Hamiltonian of Eq. (7) does not commute with the orbital
angular momentum alone Lz = −i�∂ϕ but with the combina-
tion Jz = Lz + 1

2 �σz (and with (Lzuz + 1
2 �σ )2. Note that if

Lz does not commute with the Hamiltonian, there is a torque
on the orbital momentum. This torque is compensated by a
torque on the pseudospin angular moment so that the total Jz

is conserved. Thus, with the pseudospin there is an associated
“lattice spin,” presumably, from the rotation the electron sees
of the A-B bond. We will see in the next section, how this extra
angular momentum combines with the regular electron spin to
generate a total conserved angular momentum.

The wave function, nevertheless, preserves spinlike prop-
erties. One can verify that the ring eigenfunctions are an-
tiperiodic, thus ψ(ϕ + 2π ) = −ψ(ϕ), a property which finds
its origin in the effect of the 2π rotation on the connection
1
2σρ . The factor 1

2 corresponds to a Berry phase, discussed as
a very crucial feature of graphene (e.g., by Katsnelson [25]
and Guinea et al. [26]) and of carbon nanotubes (e.g., in
Ref. [27]). We will reemphasize these points in our derivation
in the following sections; several previous references have
overlooked these points (see Refs. [10,20,22,28]).

IV. CLOSING THE WAVE FUNCTION ON
A GRAPHENE RING

In this section, we are interested in discussing graphene
rings described with the effective Dirac theory in the vicinity of
the K points with appropriate boundary conditions. Recalling

that according to Bloch’s theorem, the wave function ψ(r) =
uk(r)eik·r should exhibit the ring periodicity, while the Bloch
amplitude uk(r) has the lattice periodicity. The periodic
boundary conditions imposed on the Bloch wave function
do not necessarily imply periodic boundary conditions for
the eigenfunctions of the effective theory [29]. Indeed, k
is measured from the Brillouin zone center (� point). The
effective theory is related to the wave vector q = p/� in the
neighborhood of the Dirac points through k = KD + q.

Generalizing the boundary conditions for the case of a ring
with linear dispersion (see previous section), we introduce a
twist phase θ0 in the closing of the wave function

ψ(ϕ + 2π ) = e−iθ0ψ(ϕ). (9)

The eigenstates are now of the form

ψ(ϕ) = ei(m−θ0/2π)ϕ

(
Ae−iϕ

B

)
, (10)

with m an integer, with corresponding eigenvalues

E = ±�vF

a

∣∣∣∣m − θ0

2π

∣∣∣∣, (11)

where κ = ±1 refers to particles (conduction band) and holes
(valence band). As we discussed in the previous section, in
the case of a graphene ring, antiperiodic BCs (ABC) should
be chosen [29]; this means θ0 = π for graphene in a Corbino
geometry, but for different boundary conditions, such as those
that occur in carbon nanotubes with arbitrary chiralities, can
also be described. Note that the twist phase plays the same role
as a magnetic flux through the ring that can modify its con-
ducting properties by manipulating the gap at the Dirac point.

It is important to discuss the boundary conditions on the
graphene rings that we will consider. As a reference, graphene
nanoribbons have been addressed in detail [30]. For the
approximation addressed here, the zigzag nanoribbons are the
closest relative, since it has been shown [14] that a generically
cut honeycomb lattice has approximately zigzag boundary
conditions to a high accuracy. Once zigzag boundaries are
assumed, it has been shown [16] that a continuum Dirac
description can well approximate nanoribbons modeled by the
tight-binding approximation with less than 1% error at least
for widths of ten times the basis vector length. The continuum
description gets better as the nanoribbon increases width.

For graphene ribbons with zigzag edges, there is the concern
that longitudinal and transverse states are coupled [30] and
slicing the graphene band using the boundary conditions
is not warranted for small ribbon widths N ∼ 1 (number
of transverse lattice sites). Nevertheless, for wide ribbons
(N � 1), this approximation becomes increasingly good as
can be judged from the relation coupling the longitudinal k and
transverse p modes, sin pN + w cos(k/2) sin p(N + 1) = 0,
where the wave vectors are given in units of the magnitude
of the primitive translation vectors of the lattice. When
N � 1, p = mπ/N independent of k. One final concern is
the existence of one localized state for nanoribbons for a
critical value of the longitudinal wave vector, nevertheless,
the restriction also disappears in the limit N � 1 in which our
continuum approximation is based. In the next section, we will
discuss the possible coupling of the transverse modes due to
the spin-orbit interaction.
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The vicinity to the Dirac points is an important issue
here, since the linear range of the spectrum is subject to the
lattice parameter and the radius of the ring. The estimated
limiting value of the momentum ignoring lattice effects [31]
is kl ≈ 0.25 nm−1. The carrier limiting energy at this point is
El = �vF kl . Equating this value with Eq. (11), we obtain the
maximum number of states, hence,∣∣∣∣m − θ0

2π

∣∣∣∣ � kla. (12)

As a reference estimation based on an analogous ring already
present in nature (in fact, a carbon nanotube section has a
kinetic term of the same form as the Corbino), a single-wall
carbon nanotube has a radius that goes from 10 to 100 nm; this
gives order of magnitudes from m ∼ 2 to ∼25, which varies
depending on whether it is an armchair or zigzag tube. For a
carbon nanotube with a smaller radius than 4 nm, the allowed
states will be outside the linear region establishing a threshold
for the values of a in the long-wavelength approach.

V. SPIN-ORBIT COUPLING

Having set up the correct Hamiltonian and boundary
conditions to describe a graphene ring, we can incorporate
SO interactions in the ring geometry to obtain the equivalent
of Eqs. (2) and (3). The spectrum becomes independent of
the valley index τ , so we will only deal with τ = +1 in polar
coordinates:

H+ = −i�vF a−1
(
σϕ∂ϕ − 1

2σρ

)
+�SOσzsz + λR(σρsϕ − σϕsρ). (13)

For the ISO only case, we assume a four-component vector
to represent the electronic states, incorporating electron spin,
� = eimϕ(Aκ,δ

↑ e−iϕ,A
κ,δ
↓ ,B

κ,δ
↑ ,B

κ,δ
↓ eiϕ)T , where A

κ,δ
↑,↓(Bκ,δ

↑,↓) is
the wave vector amplitude on sublattice A (B) with spin
δ = ↑↓. The ansatz for the spinor is constructed in order to
account for the conservation of the total angular momentum.
All components carry the same angular momentum Jz, adding
in units of � a purely orbital contribution (respectively, m − 1,
m, m, and m + 1 for the four components), a pseudospin or
lattice contribution (respectively, + 1

2 , + 1
2 , − 1

2 , and − 1
2 ), and

the spin contribution (respectively, + 1
2 , − 1

2 , + 1
2 , and − 1

2 ).
The eigenenergies, assuming these wave functions (with

constant amplitudes A an B), are

E
κ,δ
m,� = κ

√
�2

SO + ε2(m − δ/2)2, (14)

where κ = ±1 is the particle-hole index and δ = ±1 the SO
index, and ε = �vF

a
. κε|(m − δ/2)| corresponds to the electron

energies in the absence of ISO. On the other hand, when only
the Rashba interaction is present, the energy is given by

E
κ,δ
m,λR

= κ

2

√
ε2(1 + 4m2) + 8λ2

R − 4δ

√(
m2ε2 + λ2

R

)(
ε2 + 4λ2

R

)
,

(15)

which has the correct zero SO coupling limit. These energies
correspond to the angular wave vectors satisfying the closed
ring boundary conditions. The spectrum is shown in Fig. 2. We
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FIG. 2. (Color online) Dispersion relations for metallic rings for
the free (top) and both SO interactions (intrinsic middle and Rashba
bottom). The ISO has been drawn for �SO = 0.7 × 10−4 a.u., and
opens a gap of size 2�SO with separate branches for each spin
label. The Rashba interaction is depicted for λR = 1.2 × 10−4 a.u.,
the allowed values of m are indicated by the full dots. Note that the
spin asymmetry introduced by the Rashba coupling will have striking
consequences for the charge and spin persistent currents.

assume that the transverse mode is in the ground state using
again as reference the transverse modes for the graphene zigzag
ribbons. The spinor wave functions for the ribbons depend on
both longitudinal and transverse indices. Choosing the basis
state in the N � 1 limit permits writing an explicit expression
for the wave functions and assess the coupling of the free
transverse modes in the presence of the SO couplings. If the
coupling is large compared to the transverse level separation,
it must be contemplated in the analysis [32].

Let us estimate, on the basis of the previous considerations,
the widths of the rings we are describing in the continuum ap-
proach: assuming independence of longitudinal and transverse
modes for zigzag boundary conditions is a good approximation
when the width of the nanoribbon is much larger than the
magnitude of the primitive basis vector, a0, as was shown
by the exact solutions in, e.g., Ref. [30]. From this point of
view, the width of the ring has to be greater than 10 × a0.
The second issue is band mixing due to the SO coupling. This
can be estimated by calculating the energies of the transverse
modes in nanoribbons with zigzag edges for the free case and
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then evaluating the magnitude of the matrix elements of the
SO coupling between these modes.

The typical values used for intrinsic coupling are estimated
in Ref. [19] using a microscopic tight-binding model with
atomic spin-orbit interaction. The Rasha interaction comes
from the atomic spin orbit and Stark interactions and the
intrinsic from the mixing between σ and π bands due to atomic
spin-orbit interaction. The coupling constants are given by the
expressions

�SO = |s|ξ 2

18(spσ )2
, λR = eEz0ξ

3(spσ )
,

where |s| and (spσ ) are hopping parameters in the tight-
binding model, s = −8.868 eV and (spσ ) = 5.580 eV, ξ =
6 meV is the atomic SO strength of carbon, and z0 ∼ 3 × aB

(aB is the Bohr radius), is proportional to its atomic size.
λR is proportional to the electric field, E ≈ 50 V/300 nm,
perpendicular to the graphene sheet. This gives values for the
SO parameters λR ≈ 0.1 K and �SO ≈ 0.01 K.

The energies for different free transverse modes for
graphene and for zigzag edges have been computed in
Ref. [16]. Their calculation is a function of the nearest-
neighbor hopping parameter t = 2.8 eV. Taking their results
for the free case, the energy spacing between transverse modes
for a ribbon width of 8.66 × a0 is ∼0.8 eV, for double this
width (17 × a0), the energy gap decreases to 0.42 eV. The
matrix element of the SO couplings between the free states is
bounded from above by their absolute magnitudes in graphene.
The couplings for bare/suspended graphene, discussed above,
are �SO ∼ 0.569 μeV and λR = 6 μeV; these will not in-
troduce any appreciable coupling between transverse modes.
For the case of an enhanced SO due to hybridization to a
substrate (Rashba SO) or edge functionalization (intrinsic SO)
as we have discussed, the magnitude of the coupling reaches
100–200 meV and brings it closer to the transverse mode gap,
limiting the rings widths to below 20 × a0. In conclusion, for
the strongest SO coupling reported, the rings are optimally
described in the continuum for widths between 10–20 × a0,
while for smaller couplings the width can be much larger
within the radial ground-state approximation.

Recently, Shakouri et al. [15] have analyzed rings with
both Rashba and intrinsic Dresselhaus interactions (although
not graphene), and consistently discussed the problem of the
mixing of transverse (radial) states and the validity of the
aforementioned considerations. They concluded that it is only
when both interactions are present and of similar magnitude,
that radial state mixing occurs so that at least two states have
to be contemplated. Nevertheless, when only one of these
interactions is dominant, the single radial state approximation
is valid. This will always be our situation here.

Although the possible wave vectors take on discrete half-
integer values, they will trace a continuous change when a
gauge field is applied. Close to the point of closest approach
between the valence and conduction bands. For the ISO
coupling, these points are around m = ±1/2 and the expansion
takes the form

E
κ,δ
m,� = κ|�SO| + κε2

2|�SO| (m ± 1/2)2 + O((m ± 1/2)4),

(16)

while for the Rashba coupling the behavior is

E
κ,δ
m,λR

= κ|m ± 1/2|√
2
(
ε2 + 4λ2

R

) + O((m ± 1/2)2). (17)

The intrinsic spin-orbit term will open a gap in the vicinity
of (m = ±1/2), which is simply 2�SO, where the electrons
exhibit an effective mass of m∗

ISO = �2
SO/v2

F , which is small,
both because vF is large and �SO is in the range of meV
for graphene. For the Rashba coupling, there is no gap at
m = ±1/2 but we will see that a spin-dependent gap opens
continuously as the magnetic field is applied. Note also that
this is a gap between spin-orbit up states. The gap between
spin-orbit down states is given by

√
ε2 + 4λ2

R + 2λR. One
can define an effective mass of the spin-down states as
m∗

↓ = κλR�
2/[2ε2(2λR +

√
ε2 + 4λ2

R)].
The limit in which the SO coupling goes to zero is singular,

since both gaps close and the dispersion becomes linear as
κ�vF qϕ . This limit highlights another feature of the Rashba
spectrum; in the vicinity of the Dirac points K and K ′,
the electron behaves as a hole (has negative mass) in the
conduction band and has negative charge (positive mass). From
the expression above, m∗

↑ = −m∗
↓ at the Dirac point.

The split bands open a gap symmetrically between the δ

states when �SO = 0. If �SO �= 0, the contributions for each
gap are different [33,34]. In this parametrization, the blue and
the red curves (dashed and continuous respectively) represent
the levels in the quantization axis of the RSO interaction, i.e.,
in the SO basis [35].

As we will see below, the velocity operator merits a
nontrivial treatment in the context of graphene. For this reason,
we will derive the eigenfunctions for both SO couplings to
compute the charge and spin persistent currents using the
velocity operator, and compare it with the linear response
relation. For the ISO only, we have the wave functions

�
κ,δ
m,�(ϕ)

= eimϕ

2
∣∣Eκ,δ

m,�

∣∣

⎛
⎜⎜⎜⎜⎝

δδ,+
[
ε
(
m − 1

2

) − i
(
�SO + E

κ,δ
m,�

)]
e−iϕ

δδ,−
[
ε
(
m + 1

2

) + i
(
�SO − E

κ,δ
m,�

)]
δδ,+

[
ε
(
m − 1

2

) − i
(
�SO − E

κ,δ
m,�

)]
δδ,+

[
ε
(
m + 1

2

) + i
(
�SO + E

κ,δ
m,�

)]
eiϕ

⎞
⎟⎟⎟⎟⎠,

(18)

labelled by κ and δ as �
κ,δ
m,�. The polarization of this state is

given by the expectation value of the operator (�/2)1σsss,

〈sz〉 = �

2

(
�

κ,δ
m,�(ϕ)

)†
1σ sz�

κ,δ
m,�(ϕ), (19)

and all the states are polarized perpendicular to the Corbino
disk, i.e., the z direction. This is also the direction of the
effective magnetic field implied by the rewriting of the ISO
term as (�SOσ ) · sss = (�SOσz)sz, a field that aligns the spins
in opposite direction on different sublattices, in the z direction.
The result is zero global spin magnetization, while each
sublattice is spin magnetized in opposite directions. This is
in accordance with the fact that the intrinsic SO interaction
operates as a local magnetic field in each sublattice with
opposite sign and thus it is not breaking the time reversal
symmetry.
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The pseudospin polarizations are computed in an analogous
fashion:

〈σ 〉 = �

2

(
�

κ,δ
m,�(ϕ)

)†
σ1s�

κ,δ
m,�(ϕ),

= κ�

2

δ ẑ�SO + (m − δ/2)εϕ̂

E
κ,δ
m,�

, (20)

where we note the ordering of the matrix direct product.
One sees both orbital and spin-orbit contributions, so the
pseudospin does not simply follow the electron momentum.

The Rashba eigenfunctions are

�
κ,δ
m,λR

(ϕ) = eimϕ

√
�

⎛
⎜⎜⎜⎜⎜⎜⎝

−2iE
κ,δ
m,λR

(mε2+2λ2
R+δ�m)

(4m2−1)ε2λR
e−iϕ

−2iE
κ,δ
m,λR

ε(2m+1)

mε2−2λ2+δ�m

ελR(2m+1)

eiϕ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (21)

where �m =
√

(m2ε2 + λ2
R)(ε2 + 4λ2

R) and � = 4�m(�m −
δ(2λ2

R − mε2))/(2m + 1)2ε2λ2
R. The polarization of the

Rashba eigenvectors is given by

〈sss〉 = �

2

(
�

κ,δ
m,λR

(ϕ)
)†
1σsss�

κ,δ
m,λR

(ϕ),

= δ

(
�

2

)
mε(2λRρ̂ + εẑ)

�m

, (22)

where two contributions are evident, the polarization
points outward in the radial direction and has a com-
ponent due to the orbital rotation of the electrons.

Following previous expressions, the Rashba pseudospin
polarizations are

〈σ 〉 = �

2

[
�

κ,δ
m,λR

(ϕ)
]†

σ1s�
κ,δ
m,λR

(ϕ),

= �

2

δmεE
κ,δ
m,λR

(δmγ + �m)ϕ̂

(m − 1/2)
[
δmε2�m + m2ε2γ + λ2

R(γ − 2δ�m)
] ,

(23)

where γ = ε2 + 4λ2
R.

VI. CHARGE PERSISTENT CURRENTS

Persistent equilibrium currents are a direct probe of energy
spectrum of the system in the vicinity of the Fermi energy.
Although such currents are typically small and are detected by
the magnetic moment they produce [36], in recent experiments,
where many rings form dense arrays on a cantilever, boost the
magnetic signal allowing both measurement of the current sig-
nal and the use of this setup as a sensitive magnetometer. The
Corbino disk geometry can be easily built with high precision
by using new techniques [9] manipulating nanoparticles as
cutters and hydrogenating the open bonds.

The spectrum of the system is modified by a field flux
perpendicular to the Corbino disk as follows:

E
κ,s
m,�(�) = κ

√
�2

SO + ε2(m − δ/2 + �/�0)2, (24)

E
κ,δ
m,λR

(�) = κ

2

√
8λ2

R + ε2(4(m + �/�0)2 + 1) − 4δ

√(
4λ2

R + ε2
) [

λ2
R + ε2(m + �/�0)2

]
, (25)

where the Zeeman coupling has been neglected at small
enough fields. The addition of a magnetic field, in the form
of a U(1) minimal coupling with flux � threading the ring,
breaks time reversal symmetry allowing for persistent charge
currents [37]. In the case of a ring of constant radius threaded
by a perpendicular magnetic flux, the angular component of
the gauge vector Aϕ = �/2πa may be eliminated via a gauge
transformation A′

ϕ = Aϕ + a−1∂ϕχ = 0, � ′(ϕ) = �(ϕ)eieχ/�

at the expense of modifying the BCs on the ring to

� ′(ϕ + 2π ) = e−iθ0e−2iπ�/�0� ′(ϕ), (26)

where �0 is the normal quantum of magnetic flux (h/e). As
mentioned before, the twist in the BCs and the field accomplish
the same effect, so one can use them interchangeably while
satisfying the relation

E
κ,δ
m,�(θ0) = E

κ,δ
m,0(θ0 + 2π�/�0), (27)

hence m → m − θ0/2π + �/�0, as discussed in Eq. (11).
The energy dispersion for the graphene ring is illustrated in
Fig. 3 (left panel), where the different colors (online) (see
caption) refer to the conduction band (κ = +1, dashed line)
and valence band (κ = −1, full line). As expected, the energy
levels display a periodic variation with the magnetic flux (right
panel in the figure).

The charge persistent current in the ground state can be
derived using the linear response definition JQ = −�′

m,κ,δ
∂E
∂�

,
where the primed sum refers to all occupied states only. Since
the current is periodic in �/�0 with a period of 1, we can
restrict the discussion to the window 0 � � < �0, where the
occupied states are in the valence band κ = −1, since the
Fermi level is chosen at the zero of energy. We will first discuss
the simple ISO coupling. The analytical expression is given by

J κ
Q,� = −ε2κ

�0

∑
m,δ

′ (m − δ/2 + �/�0)

E
κ,δ
m,�SO

(�)
. (28)

In Fig. 3, on the left panel, the spin-orbit branches of the
spectrum labeled with their spin quantum number have been
depicted. The encircled dots are the allowed energy values, due
to quantization on the ring, at zero magnetic field. When the
field is turned on, these dots are displaced (no longer encircled)
on the energy curve.

On the right panel, we depict the trajectory of these dots as
the magnetic field is increased for both the filled (full lines
in figure) and unfilled (dashed lines) states. The negative
derivative of the curves on the right panel added over the
occupied states (both spin quantum numbers) is the net charge
persistent current. For the range of energies shown, the only
net contribution is from the levels closest and below the Fermi
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FIG. 3. (Color online) The energy dispersion for the ISO (top panel with �SO = 7 × 10−5 a.u. see Ref. [19]) and Rashba coupling (bottom
panel with λR = 1.2 × 10−4 a.u.) as a function of wave vector qϕ (for continuum range of values; solid and dashed lines). The circled dots
represent the allowed values of the energies on the ring at zero magnetic flux. The uncirled dots (blue online) represent the shift of the allowed
energies due to a finite flux. On the right panel, the energy bands are plotted against �/�0. On this panel, the trajectory of the allowed values
of the energy is followed as a function of the field. The solid lines represent the valence bands and the dashed lines the conduction bands. The
Fermi energy is assumed to be zero, except for the Rashba where a finite value for the Fermi energy is also illustrated. The bold arrow on the
right panels indicates level crossing, discussed in the text.

level. The lower levels have currents that tend to compensate
in pairs. Following the curve on the right, below the Fermi
energy and from zero field, the current first increases linearly
and then bends over to reach a maximum value before the two
levels cross (the crossing is indicated by an arrow on the right
panel of Fig. 3). At that point, one follows the level closest to
the Fermi energy (from below), the current changes sign and
increases until it crosses the zero current level, whereupon the
whole process repeats periodically. Such behavior is shown in
Fig. 4, top panel. Changing the Fermi level can change the
scenario qualitatively. For example, adjusting the Fermi level
to ε′

F (see Fig. 3), the currents would follow a square wave
form, alternating between constant current blocks of opposite
signs.

For the Rashba coupling, represented in the bottom panels
in Fig. 3, the current is derived in a similar way, but now there

is a striking asymmetry between spin branches. The analytical
form for the charge current is

J κ
Q,λR

= −ε2κ

�0

∑
m,δ

′

{
2 − δ(ε2+4λ2

R)√
(ε2+4λ2

R)[λ2
R+ε2(m+�/�0)2]

}
(m +�/�0)

E
κ,δ
m,λR

(�)
.

(29)

The spin branch closest to the Fermi energy is nonmonotonous
giving rise to two different contributions to the charge current
for the spin-up contribution. Note also that we have taken into
account the current coming from the spin-down branch, which
does not have the same effective mass as the corresponding
branch of the opposite spin. The results are depicted in
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FIG. 4. The equilibrium charge currents for both ISO and Rashba
interactions. The ring is considered to have a radius of a = 20 nm,
with the same SO couplings as previous figures. The variations of the
current are given by the slopes of the Fig. 3. At each flux region, the
states up to εF are taken into account.

Fig. 4, bottom panel. The structure of the spectrum being
asymmetric between spin branches makes for the possibility
of net spin currents as we will see below. The charge
persistent current can be manipulated with λR since the Rashba
parameter can be tuned by a field perpendicular to the plane
of the ring. In contrast, the intrinsic SO cannot be easily
tuned by applying external fields. Nevertheless, it has been
established experimentally [38] that light covering of graphene
with covalently bonded hydrogen atoms modifies the carbon
hybridization and can enhance the intrinsic spin-orbit strength
by three orders of magnitude [38]. Regulating this covering
may then be a tool to manipulate charge currents.

One can contemplate the effect of temperature on the
robustness of persistent charge currents by considering the
occupation of the energy levels. The Fermi function has then
to be factored into the computation of the currents:

J κ
Q,λR

(T ) = −
∑
m,δ

∂E
κ,δ
m,λR

(�)

∂�
f

(
E

κ,δ
m,λR

,εF ,T
)
, (30)

where f (E,εF ,T ) = (1 + exp (E − εF )/kBT )−1 is the Fermi
occupation function for the case of the Rashba coupling. There

is no need now to restrict the energy levels contemplated since
the filling is determined by the Fermi distribution.

Fig. 4 shows the effect of a temperature energy scale of
the order of the SO strength for both intrinsic and Rashba
couplings. The deep levels will be fully occupied while
the shallow levels (close to the Fermi energy) will have
a temperature dependent occupancy. Occupation depletion
affects mostly the current contributions from levels within
kBT of the Fermi level. This typically happens in the vicinity
of the integer values of the normalized flux �/�0, but at
half-integer fluxes the contributing levels dig into the Fermi
sea where carrier depletion is less pronounced and current
discontinuities tend to be protected from temperature effects.
From Fig. 3, one can estimate the depth in energy of the
crossing to be ∼3 × 10−4 a.u, which amounts to a temperature
equivalent of ∼1 K before degradation of spin currents is
observed at half-integer fluxes. This is an important feature
of the linear dispersions in graphene, and in enhanced SO
coupling scenarios could be of applicability for magnetometer
devices at relatively higher temperatures.

VII. EQUILIBRIUM SPIN CURRENTS

We now contemplate spin equilibrium currents. In the
absence of a direct linear response definition, one can obtain
them from the charge currents by distinguishing the velocities
of different spin branches. We define a spin equilibrium
current as

JS = JQ(δ = −1) − JQ(δ = 1), (31)

where one weighs the asymmetry in velocities of the different
occupied spin branches. As we mentioned in the previous
section, there is no spin asymmetry both for the free case
and for the ISO, so no spin current can result in this case, i.e.,
both spin branches contribute charge currents with the same
amplitude so they cancel in the above expression. With the
Rashba coupling, the inversion symmetry is broken inside the
plane and the spin branches are asymmetrical for a range of
qϕ values.

The peculiar separation of the spin branches makes for
velocity differences of the two spin projections and a spin
current ensues as shown in Fig. 5. The figure shows a large
spin current for small fluxes that can be traced back to the
large charge currents coming from a single spin branch in
Fig. 3. Toward half-integer flux quantum’s the opposite spin
charge current increases until it cancels out the spin current
completely. Beyond half-integer flux, the spin current is
reversed in sign and at zero temperature there is a discontinuity
approaching integer fluxes. As discussed for charge currents,
the spin currents are also most susceptible to thermal depletion
of carriers at integer fluxes, while toward half-integer fluxes
these are protected.

A striking feature, which survives temperature effects, is
that the spin currents increase as one lowers λR. The Rashba
coupling breaks inversion symmetry in the plane even for small
λR. The symmetry breaking determines the spin labeling of the
energy branches that take part in the spin current. It is only for
λR = 0 that the free Hamiltonian symmetry is re-established
and the spin currents are destroyed. A combination of the
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FIG. 5. Spin current for the Rashba SO coupling indicated by the
legends as a function of the magnetic field, as derived from the charge
currents distinguished by spin components. The large spin currents
at small fields are due to dominant charge currents for a single spin
orientation. Temperature affects currents at the integer values of flux,
while toward half-integer values the currents are protected.

described symmetry effect and the thermal shielding from deep
levels make these effects observable experimentally.

VIII. VELOCITY OPERATORS FOR GRAPHENE

As discussed in Sec. III, there are two ways to compute
the effect of the magnetic field: either putting the description
in the Hamiltonian as a gauge vector or performing a gauge
transformation and passing all field information to the wave
function. For SU(2) gauge theory applied to the present case,
this process cannot be done directly because of the lack of
gauge symmetry [39]. We have solved the problem fully
for the “gauge fields” in the Hamiltonian and determined
the eingenfunctions. Such eigenfunctions contain the full
information of the state, and the velocities as a function of the
magnetic field can be derived by using the canonical equations
vϕ = aϕ̇ = a

i�
[ϕ,H ] where the commutator takes the value

[ϕ,H ] = i�vF a−1σϕ1s and compute

JQ = evF

a

′∑
m,δ

(�κ,δ
m (ϕ,�))†σϕ1s�

κ,δ
m (ϕ,�). (32)

Taking the ISO wave functions and substituting m → m +
�/�0, we determine the appropriate �κ,δ

m (ϕ,�). We could also
leave the wave function untouched and include a U(1) gauge
vector in the momentum operator. Let us explicitly write out
an expectation value

J
+,+
Q,� = −evF (�+,+

m,� (ϕ,�))†σϕ1s�
+,+
m,� (ϕ,�)

= 1

4|E+,+
m,�|2

⎛
⎜⎜⎜⎜⎝

[
ε
(
m − 1

2 + �
�0

)+ i(�SO + E
+,+
m,�)

]
eiϕ

0

ε
(
m − 1

2 + �
�0

)+ i(�SO − E
+,+
m,�)

0

⎞
⎟⎟⎟⎟⎠

T

×
(

0 −ie−iϕ

ieiϕ 0

)
⊗

(
1 0
0 1

)

×

⎛
⎜⎜⎝

[
ε
(
m − 1

2 + �
�0

) − i(�SO + E
+,+
m,�)

]
e−iϕ

0
ε
(
m − 1

2 + �
�0

) − i(�SO − E
+,+
m,�)

0

⎞
⎟⎟⎠

= − ε2

�0

(m − 1/2 + �/�0)

E
+,+
m,�

, (33)

which coincides with the expression of Eq. (28). With either
of the two procedures one retrieves the same charge current of
Eq. (28). This is a simple but interesting connection between
linear response relations used to compute the current and a
canonical exact calculation in principle. Note also that this
expectation value corresponds to the procedure that eliminates
zitterbewegung from the Dirac definition of the velocity
operator 〈cα〉, where α = σϕ1s and c = vF . One can also
obtain the linear response result using the group velocity
operator applied to the free wave functions [40], where the
group velocity operator is then

Ĵ
κ,δ
Q,� = v2

F p̂

κ

√
�2

SO + ε2(m − δ/2)2
, (34)

where p̂ = (−i�/a)∂ϕ . The first procedure above does not
work for the Rashba coupling, that is, sandwiching the
ordinary velocity operator in between the Rashba wave
functions does not yield the linear response result. The second,
group velocity approach, depends on finding an appropriate
Foldy-Wouthuysen transformation we believe is not currently
known in the literature. These issues remain open for future
work.

IX. SUMMARY AND CONCLUSIONS

We have discussed equilibrium currents in a Corbino
graphene ring, taking into account Rashba and intrinsic spin-
orbit couplings separately. The ring is threaded by a magnetic
flux and an electric field perpendicular to the graphene
surface in order to tune the Rashba coupling. A detailed
discussion was given, for setting up the correct Hamiltonian
in polar coordinates and for the spinor wave functions closure
conditions. Twisted boundary conditions are discussed as a
gauge freedom useful in our treatment where the magnetic flux
can be translated from the Hamiltonian to the wave function.
Four quantum numbers are necessary to describe the energy
eigenvalues: the valley index τ , the particle hole index κ , the
spin-orbit quantum number δ, labeling the spin quantization
axis, and the angular momentum quantum number m.

The width of the rings, describable in terms of a continuum
description including generic zigzag boundaries, assuming
only the ground radial state of the ring, were discussed. Our
approach is valid for Corbino ring widths between at least
10–20 times the magnitude of the primitive lattice vectors.
The upper limit is determined by the radial state gap for the
free case, the possible width of the ring increases as the SO
coupling is reduced .
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The charge equilibrium currents are directly calculated
from the spectrum, using linear response relations, for small
magnetic fluxes (so the Zeeman coupling can be neglected)
and as a function of the spin-orbit couplings. We were able to
derive an explicit simple form for the four spinor in the case of
zero Rashba interaction. The charge currents are induced by
the magnetic flux, as expected. While spin-orbit interactions
do not induce charge currents by themselves (they preserve
time reversal symmetry), we showed that at a nonzero fixed
flux, away from ±h/2e, they can modify the charge current.
This is done through the Rashba coupling that can be varied
by gate voltages in the Corbino geometry.

Temperature effects have been addressed to determine
whether the persistent currents computed here are robust at
experimentally accessible conditions. The equilibrium current
turned out to be more temperature sensitive in the vicinity
of integer flux, while for half-integer flux (where they are
the largest) the currents are protected because they arise from
contributions of levels submerged in the Fermi sea. For the SO

strengths considered, equilibrium currents would be strong
even at temperatures close to 1 K.

Finally, we derived equilibrium spin currents on the Corbino
disk, by combining charge current contributions from opposite
spin-orbit labels. Spin currents only exist for Rashba-type
SO coupling (they cancel exactly of ISO interactions) and
they exhibit the same temperature dependence as the charge
currents, but in contrast, they are more robust when their
magnitude is smaller. A brief discussion was made regarding
alternative definitions of equilibrium currents that are only
successful for ISO-type interactions. Analogous formulations
for Rashba interactions are left for future work.
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