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Topological insulators support metallic surface states whose existence is protected by the bulk band structure.
It was predicted early that the topology of the surface-state Fermi contour should depend on several factors, such
as the surface orientation and termination, and this raises the question to what degree a given surface state is
protected by the bulk electronic structure upon structural changes. Using tight-binding calculations, we explore
this question for the prototypical topological insulator Bi1-xSbx , studying different terminations of the (111)
and (110) surfaces. We also consider the implications of the topological protection for (110) surfaces for the
semimetals Bi and Sb.
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I. INTRODUCTION

The defining feature of a topological insulator (TI) is the
existence of metallic surface states that is brought about by
certain topological properties of the insulator’s bulk band
structure. These topologically guaranteed surface states have
a number of remarkable properties, for example, their spin
texture and the scattering and localization behavior derived
from it [1–3]. Surface states are often said to be “protected”
by the bulk band structure and it is interesting to explore what
this protection actually means. One aspect is the protection
against certain scattering events, such as 180◦ backscattering.
Another is the protection against destruction by disorder [4,5]
or structural rearrangements, and this is the focus of the present
work.

It was pointed out early on, by Teo, Fu, and Kane (TFK),
that the detailed surface-state topology of a TI depends on the
surface orientation, and the general Fermi surface topology has
been discussed for some surface orientations and terminations
of Bi1-xSbx [6]. According to TFK, the topology of the surface
Fermi surface for a TI with inversion symmetry can be worked
out by calculating the surface fermion parity π (�a) at the
surface time-reversal-invariant momenta (TRIMs). π (�a) can
be evaluated from the parity invariants δ at the bulk TRIMs �i

by

π (�a) = (−1)nbδ(�i)δ(�j ), (1)

where nb is the number of occupied, spin-degenerate bulk
bands [6]. The π (�a) values then provide the Fermi contour
topology. For two surface TRIMs, �a and �b, the product
π (�a)π (�b) can be used to predict the number of surface-
state Fermi level crossings on a path connecting these surface
TRIMs. For π (�a)π (�b) = 1 [π (�a)π (�b) = −1] an even
[odd] number of crossings can be expected. Moreover, π (�a)
as such can be used to determine the number of Fermi contours
enclosing a given surface TRIM. For π (�a) = −1 [π (�a) =
1], the surface TRIM �a is enclosed by an odd [even] number
of closed Fermi contours.
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The application of this is illustrated in Fig. 1 for the
(111) and (110) surfaces of Bi1-xSbx . Essentially the same
figure can also be used for the Bi2Se3 class of materials by
changing the name of the bulk TRIMs such that the TRIMs
�, L, X, and T for Bi1-xSbx are replaced with �, L, F, and
Z for Bi2Se3, respectively. Evidently, the surface fermion
parity values depend on the orientation of the surface because
different bulk TRIMs are projected out onto different surface
TRIMs, depending on the surface orientation.

The application of (1) is very simple for the Bi2Se3 class
of materials, the most studied TIs. In this case, the bulk parity
inversion happens only at the � point. Together with the fact
that the number of bulk bands nb is even, (14), this leads
to π (�̄) = −1 for every possible surface orientation, since
the bulk � point is always projected out onto the surface �̄

point. All the other surface TRIMs, on the other hand, have
π (�a) = 1. Consequently, the �̄ point should be encircled by a
closed Fermi contour for every possible surface orientation of
the Bi2Se3 class, and this has been confirmed for the (111) [7,8]
and (221) [9] orientations so far. Differences in the electronic
structure of different surface orientations are important when
considering the transition from one crystal face to another on,
e.g., a Bi2Se3 nanowire. One would expect a smooth transition
since the electronic structure of all the faces is essentially the
same.

The situation is much more interesting for Bi1-xSbx because
there the bulk parity invariants are negative for every TRIM
except L. For the (111) surface, the L point projects out to
the M̄ point and one might therefore expect a negative surface
fermion parity there but the application of (1) actually gives the
same result as for Bi2Se3: π (�̄) = −1 and π (M̄) = 1. The rea-
son is the odd number of bulk bands (nb = 5) in Bi1-xSbx which
changes the sign of all the π values. The expected surface-state
topology for Bi1-xSbx(111) is thus indicated by the darker-
shaded (blue) areas in Fig. 1. It is the same as for Bi2Se3(111)
and this has also been confirmed experimentally [10]. The
similarity of Bi2Se3(111) and Bi1-xSbx(111), however, is a
mere coincidence. In contrast to Bi2Se3, changing the surface
orientation of Bi1-xSbx does change the electronic structure
qualitatively and for Bi1-xSbx(110) three surface TRIMs were
found to be encircled by closed Fermi contours [11]. This raises
interesting questions about the transition from one crystal face
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FIG. 1. (Color online) Topological predictions for the sur-
face electronic structure of Bi1-xSbx(111) and (110) (x � 0.09).
The bulk Brillouin zone and the projected surface Brillouin zones
are shown for both surface orientations. Filled black circles mark the
positions of time-reversal-invariant momenta (TRIMs). Calculation
of surface fermion parity values π for surface TRIMs according to
(1) is illustrated. Darker-shaded (blue) areas denote an odd number
of closed Fermi contours around a TRIM as derived from the surface
Fermion parity in Eq. (1). Lighter-shaded (yellow) areas would be
expected for the first atomic layer removed from either surface.

to another for a Bi1-xSbx nanowire. It is also relevant for the
design of more complex electronic structures on TI surfaces,
such as the possibility of achieving a quasi-one-dimensional
electronic structure on a two-dimensional TI [12].

Apart from the surface orientation, the microscopic termi-
nation could play an interesting role for the surface electronic
structure. This does not emerge directly from (1) but, rather,
is hidden in the assumptions this equation is based on: When
applying (1), it is assumed that the surface termination plane
contains the same bulk inversion center that has also been
used to calculate the parity invariants δ(�i). If this is not so
and the surface is terminated with different bulk inversion
centers, the signs for the surface fermion parities may have
to be changed. TFK have shown that a surface termination
where such a change is necessary is the (111)′ termination,
a surface where the top half of the outermost bilayer of the
A7 structure is removed [6]. Instead of the single blue Fermi
contour encircling �̄, one should expect to find the three yellow
contours encircling the M̄ points. Detailed changes in the
surface electronic structure as a function of surface termination
have been calculated for TI thin films [13] and the topological
crystalline insulator SnTe [14,15] and discussed for SmB6 [16].
The absence of such changes upon the simultaneous presence
of different terminations has also been found for PbBi4Te7

[17].

II. METHOD

In this paper, we explore the dependence of the surface band
structure on the surface orientation and termination for the
model TI Bi1-xSbx using tight-binding-based Green’s function
calculations for a semi-infinite solid. This approach has the
advantage of avoiding any coupling between the two surfaces
in a slab-type calculation. This can be particularly important
for non-(111) surfaces for Bi-like materials where the surface

states can penetrate very deeply [18]. We use the tight-binding
parameters of Liu and Allen [19], interpolated for the alloy as
in Ref. [6]. The calculations for the alloy are carried out for
x = 0.14. The bulk band structure projections are obtained by
a direct projection of tight-binding bands onto the surface of
interest. For the surface-state band structure calculation, an sp3

Slater-Koster tight-binding model is used [20], which includes
third-neighbor hopping parameters and spin-orbit coupling.
Based on this, the surface-state dispersion is calculated using
a transfer matrix technique and a Green’s function approach
[21,22]. The Green’s function of the semi-infinite surface
is generated from the transfer matrix, which is calculated
self-consistently. Its imaginary part represents the surface-state
dispersion as observed in ARPES experiments. Calculations
for surfaces terminated by half a bilayer are implemented by
setting the hopping matrix elements between the top layer and
the second layer in the first bilayer to 0 and changing the
on-site energy of the first-layer atoms to a high value, in order
to move their spurious spectral contribution out of the energy
range of interest. Note that the calculations reported here are
not derived from first principles but are instead based on the
bulk tight-binding parameters. No structural optimization can
be performed, the resulting surface-state dispersion can be
significantly different from that obtained by a first-principles
calculation, and no overall charge neutrality is guaranteed.
However, for the present purpose of examining the topological
properties of the surface states, the approach is still very useful.

III. RESULTS AND DISCUSSION

The result of such a calculation is shown for Bi1-xSbx(111)
in Fig. 2(a). As expected, it completely agrees with the similar
calculation by TFK in Ref. [6] (see Fig. 3 in that paper). It is
easy to see that the result fulfills the topological predictions
shown in Fig. 1 for the (111) surface. There is an odd number
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FIG. 2. (Color online) (a) Calculated surface electronic structure
for Bi0.86Sb0.14(111). Red lines are the projected bulk band structure
and the image is the imaginary part of the Green’s function. (b) The
same for Bi0.86Sb0.14(111)′. (c) Surface structure for the two surfaces.
For the (111)′ surface the (red) top-layer atoms are missing. Black
lines are nearest-neighbor bonds.
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FIG. 3. (Color online) (a) Fermi contour for Bi0.86Sb0.14(111)′

together with the surface Brillouin zone (or the imaginary part of
the Green’s function taken at the Fermi energy). (b) The same, but
with the Fermi level assumed to be 27 meV higher. This shift results in
a closed pocket around M̄ . Inset: Magnification of the closed pocket.

of Fermi level crossings between the surface TRIMs �̄ and M̄ ,
and moreover, �̄, the TRIM for which π = −1, is encircled by
an odd number of Fermi contours. The topologically required
parity change between �̄ and M̄ is achieved by the two
bands starting in the valence band at �̄, as one of these
bands ends in the conduction band at M̄ , whereas the other
stays in the valence band. Along �̄-M̄ , a crossing between
these bands is found that is not topologically required. This
crossing is enforced by a subtle error in the Liu and Allen [19]
tight-binding parameters that gives an incorrect mirror Chern
number for this direction [6].

Figure 2(b) shows the corresponding calculation for
Bi1-xSbx(111)′, the surface with half the outermost bilayer [red
atoms in Fig. 2(c)] removed. In contrast to the (111) surface,
the cleavage plane of (111)′ contains not the c0 bulk inversion
center but the c1 center (for a definition of the inversion centers
see Ref. [6]), and this is predicted to cause a sign change in
all the surface fermion parities, such that the yellow Fermi
contour shape in Fig. 1 is expected. The dispersion in Fig. 2(b)
shows a drastic change in the surface electronic structure upon
this switch of termination. Most importantly, the surface states
that disperse from �̄ to M̄ now start out in the conduction
band, not in the valence band. The topologically required parity
switching still holds, as one of the band ends in the valence
band and one in the conduction band, and also the spurious
crossing in between the bands is observed. However, this
change in termination illustrates that the topological protection
of the surface states only holds for the overall expectation of
metallic states in between certain TRIMs. It does not give
protection for any specific state if there is a possibility of
surface structural changes.

The topological predictions for Bi1-xSbx(111)′ not only
imply an odd number of crossings between �̄ and M̄ , but
also imply that M̄ is encircled by an odd number of Fermi
contours, whereas �̄ is encircled by none or an even number.
This is difficult to infer from Fig. 2(b) because of the many new
states around K̄ , a high-symmetry point that is not a TRIM.
Figure 3(a) therefore shows the calculated Fermi contour for
Bi1-xSbx(111)′. This Fermi contour is not consistent with the
topological prediction because it shows one closed Fermi
contour around �̄ and none around M̄ , even though the number
of Fermi level crossings between these TRIMs is still odd, as
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FIG. 4. (Color online) (a) Calculated surface electronic structure
for Bi0.86Sb0.14(110). Red lines are the projected bulk band structure
and the image is the imaginary part of the Green’s function.
(b) The same for Bi0.86Sb0.14(110)′. Inset: Magnification of the
electronic structure near the X̄2 point. (c) Structure of the (110)
surface. For the (110)′ surface the first-layer (red) atoms are missing.
The green line (pseudo–mirror line) would be a mirror line if the
crystal structure was simple cubic instead of rhombohedral A7. Black
lines are the nearest-neighbor bonds.

also shown in the dispersion in Fig. 2(b). Figure 3(a) also
shows a number of closed contours around K̄ and along the
K̄-M̄ line but these do not have any topological significance.

The problem can be resolved by moving the Fermi energy
upward by 27 meV, a value that is still within the gap of the
TI at this composition. This results in the Fermi contour in
Fig. 3(b). Now one finds two closed contours around �̄ and
one around M̄ , albeit a very small one. The failure of the simple
calculation to reproduce the expected Fermi contour topology
is not surprising because the tight-binding scheme employed
here does not guarantee charge neutrality, as pointed out in
connection with the calculational methods.

We now turn to another surface termination of Bi1-xSbx

that has been studied experimentally, the (110) surface. The
calculated band structure is shown in Fig. 4(a). As discussed in
Ref. [11], where this calculation is taken from, the qualitative
agreement of this calculation with the topological predictions
shown in Fig. 1 is excellent but the quantitative agreement is
notably poorer than for the (111) surface. In particular, the
closed contours around �̄ and M̄ are found to be electron
pockets in the Green’s function calculation but hole pockets
in the experiment and also in first-principles calculations for
the very similar Bi(110) [23,24]. As for the (111) surface, a
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FIG. 5. (Color online) (a) Fermi contour for Bi0.86Sb0.14(110)
together with the surface Brillouin zone (or the imaginary part of
the Green’s function taken at the Fermi energy). The small (yellow)
square contains a very small electron pocket. (b) The same for
Bi0.86Sb0.14(110)′. Inset: Magnification of the hole pocket around X̄2.

spurious crossing of the bands in the mirror direction of the
surface (�̄-X̄2) is observed, caused by the above-mentioned
reason of the incorrect mirror Chern number. The same good
qualitative agreement with the topological predictions and the
experimental result is found for the Fermi contour in Fig. 5(a),
where the spurious crossing gives rise to a very small and
topologically irrelevant electron pocket along �̄-X̄2.

It is also possible to find a different surface termination
for the (110) direction, which we call (110)′. A side view of
the geometric structure of the (110) surface [see Fig. 4(c)]
shows that the atoms in the first two layers have almost the
same height. As for the (111) surface, removing the first-layer
atoms causes the surface to be terminated by inversion centers
different from the one used to calculate the bulk parity values
δ (c1,c2,c23,c13 instead of c0,c3,c12,c123) and this changes the
sign of all the surface fermion parities π . This should lead to the
yellow Fermi contour in Fig. 1, i.e., an odd number of closed
contours around X̄2 only. Note that the removal of atoms on
this surface is expected to cause the opposite transition from
the (111) surface: For the (111) surface, the removal of one
layer changes the electronic structure from one TRIM enclosed
by Fermi contours to three, but for (110) the change is the other
way around.

The surface-state dispersion for Bi1-xSbx(110)′ is shown
in Fig. 4(b), and the corresponding surface Fermi contour in
Fig. 5(b). As for the (111) surface termination change, we
also observe a change in the electronic structure here but
it appears less drastic. At first glance, and apart from some
more pronounced changes around X̄2, the dispersion of the
states appears shifted and the spin-splitting is reduced. This
is particularly clear around �̄ and M̄ , where there is hardly
any splitting of the spin-degenerate states in the vicinity of the
surface TRIMs. Moreover, the dispersion of the states along
�̄-X̄2 and M̄-X̄1 is very small, suggesting that these states are
largely localized along the mirror plane of the structure [shown
in Fig. 4(c)].

The Fermi contour topology of Bi1-xSbx(110)′ agrees with
the prediction of merely one closed contour around X̄2 (see
Fig. 1). The state generating this feature is a hole pocket,
stemming from a band dispersing down from the conduction
band to the valence band in the vicinity of X̄2. The three closed
Fermi contours around the other TRIMs on Bi1-xSbx(110) are
removed: The upper spin-split band around X̄1 is moved down

in energy, removing the closed contour around this TRIM, and
the pockets around M̄ and �̄ are removed by an additional
change of surface-state exchanges between valence band and
condition band in the M̄-X̄2 and �̄-X̄2 directions,s respectively.

The Fermi contour of Bi1-xSbx(110)′ in Fig. 5(b) also
reflects the confinement of the states in the direction of the
mirror plane (i.e., �̄-X̄2). The states that form the pockets
around �̄ and M̄ for the (110) surface are still there but they
now form quasi-one-dimensional sheets of Fermi contour that
do not surround any surface TRIM. There appear to be two
factors causing this confinement. First, the loss of top (red)
atoms in the surface unit cell in Fig. 4(c) evidently must
reduce the dispersion along the mirror line because a state
dispersing in this direction would involve hopping matrix
elements over the red atom. Moreover, the dispersion along the
mirror line is expected to be smaller than perpendicular to the
mirror line because it involves hopping of electrons in between
the bilayers making up the A7 structure. These bilayers are
easily identified in the sideview parallel to the mirror plane
in Fig. 4(c). Finally, the reduced spin-orbit splitting for (110)′
also contributes to a smaller band width. Overall, the apparent
reduction in dimensionality that is observed for the transition
between the (110) and the (110)′ surfaces could be indicative
of the mechanism that leads to completely one-dimensional
states on the vicinal surfaces of Bi [12].

We now address a slightly different issue in connection with
the (110) surface and ask how strongly the topology protects
the surface states even if the underlying surface is not a TI or
does not even have a topologically nontrivial band structure.
Figures 6(a)–6(c) show the expected surface-state topology
for the (110) surfaces of Bi, Bi1-xSbx , and Sb. These have
been determined ignoring the fact that Bi and Sb are actually
semimetals, not insulators. Note that, as a result of the bulk
band structure topology, the predicted surface-state topology
is the same for Bi1-xSbx and Sb but different for Bi. Both
Bi1-xSbx and Sb have δ = −1 for every bulk TRIM except L,
whereas for Bi, δ is also −1 for the bulk L point. Therefore,
one obtains a topologically nontrivial Fermi surface with three
closed contours around surface TRIMs for Bi1-xSbx and Sb,
whereas the topologically trivial band structure of Bi leads to
four closed Fermi contours, an even number.

To what degree can the topological predictions be used
for the surfaces of the semimetals Bi and Sb? Consider a
specific direction in k space such as �̄-X̄1 [dashed black line
in Figs. 6(a)–6(c)]. For all three surfaces, both �̄ and X̄1 are
encircled by a closed Fermi contour or, more precisely, by
an odd number of such contours, such that there is an even
number of Fermi level crossings between �̄ and X̄1. However,
even though π (�̄)π (X̄1) = 1, the situation along this line is
not topologically trivial and the states cannot be removed.
Indeed, since both π values are −1, both surface TRIMs have
to be enclosed by a Fermi contour. On the other hand, both
Bi and Sb are semimetals and any path from �̄ to X̄1 has to
go through a piece of projected Fermi surface. This strongly
limits the validity of the topological predictions because any
required parity or symmetry change between valence band
and conduction band could happen within the projected Fermi
surface without having to involve surface states. A similar
situation arises for most high-symmetry directions on Bi and
Sb, especially also for the �̄-M̄ direction on Bi(111), for
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FIG. 6. (Color online) (a)–(c) Prediction of the surface-state topology for (110) surfaces of Bi, Bi1-xSbx , and Sb. Blue areas denote an odd
number of closed Fermi contours around a TRIM. Red areas are the projected bulk Fermi surface. Arrows on the Fermi contours around �̄ and
M̄ denote the calculated spin directions. (d)–(f) ARPES measurements of the electronic structure of these surfaces along the �̄-M̄ line [dashed
line in (a)–(c)]. Dark areas correspond to a high photoemission intensity. Black lines are the projection of the bulk bands onto the (110) surface.
Data for (a) and (b) taken from Ref. [11]; for (c), from Ref. [25].

which the strict application of topological predictions has been
discussed [26].

The situation is different along �̄-M̄ for the (110) surfaces
[lighter (green) dashed line in Figs. 6(a)–6(c)]. Again, two
closed Fermi contours are predicted, one around each of
the two surface TRIMs, but now the two TRIMs can be
connected by a line that does not pass through any segment of
the projected bulk Fermi surface. The topological prediction
should thus be a firm one. The experimental results in
Figs. 6(d)–6(f) appear to confirm this: Experimentally, the
states around both surface TRIMs are hole pockets, and
one always finds two crossings due to these. For Sb(110),
one finds two more crossings along �̄-M̄ due to a small
electron pocket along this line. For Bi and Bi1-xSbx , the two
hole-pocket-derived bands do not join each other but disperse
into the bulk bands. For Sb(110), they do appear to join without
reaching the bulk band projection but one has to keep in mind
the limited accuracy of the tight-binding calculation used for
the band structure projection.

When inspecting the spin texture along the two hole pockets
[arrows on the Fermi contour in Figs. 6(a)–6(c) as calculated
for Bi(110) [24,27] and Sb(110) [25,28] and assumed here
to be the same for the alloy], it appears obvious that the
two contours cannot be joint because the spin rotates in
opposite directions along the contours. However, this picture
is too simple because the spin is not conserved in strongly
spin-orbit-coupled systems such as these here. In fact, detailed
calculations of the spin polarization along the �̄-M̄ line
reveal that the spin polarization is present near the Fermi
level crossings but lost about midway between �̄ and M̄

[27,28], such that it would be possible to connect the states, as
apparently found for Sb(110).

Apart from the absence of a projected bulk Fermi contour
along �̄-M̄ , the stabilization of the topological states on
Bi(110) and Sb(110) is aided by two factors. Especially for
Bi(110), the spin-orbit interaction is very strong and this leads
to a situation where the states have to be degenerate at the
surface TRIMs but split strongly away from these points [29].
Moreover, the geometric structure of Bi and Sb leads to a
quasi–mirror protection of the states, similar to the situation on
a topological crystalline insulator [30]. The A7 rhombohedral
structure of Bi is very close to being a simple cubic structure.
This can easily be seen in the structure of the (110) surface
shown in Fig. 4(c), as a very small lattice distortion would
be sufficient to turn the structure into a simple cubic one.
The rhombohedral (110) surface would then be a pseudocubic
(100) surface [29,31]. In this case, the lighter (dashed) line
in Fig. 4(c) would be a mirror plane of the structure and the
states in the corresponding �̄-M̄ direction could be classified
by their mirror symmetry along this plane. This would make
it impossible to join the hole pocket around the �̄ with that
around the M̄ point because the mirror symmetry of the states
would need to be strictly conserved, unlike the spin.

IV. CONCLUSIONS

A few important conclusions can be drawn from this work.
As expected, we find metallic surface states on all investigated
surface orientations and terminations of the TI Bi1-xSbx , and
the Fermi surface topology of these states is also consistent
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with the detailed predictions of TFK [6]. However, a change
in surface termination by removal of one layer of atoms, to
obtain (111)′ from (111) and (110)′ from (110), leads to drastic
changes not only in the surface-state Fermi contour topology
but also in the surface electronic structure. For the (111)
orientation, for instance, it changes the electronic structure
near the �̄ point such that the topological states originate from
the conduction band instead of the valence band. This shows
that while the metallic surfaces are protected, as expected,
specific surface states are not protected and depend on the
local surface geometric structure. It should be emphasized
that a cut-bilayer termination may be so unstable that it might
not be possible ever to realize it. This is very likely to be
true for the (111) surface and probably also for (110). For
the (100) orientation of Bi, however, metastable terminations
between bilayers have been observed [32].

The second conclusion concerns the design freedom that
arises from the possibility of influencing the surface electronic
structure via the crystal termination. The removal of the first
layer of atoms, to obtain (111)′ from (111) and (110)′ from
(110), involves a change in the number of surface TRIMs
that are enclosed by closed Fermi contours from one to three,
and vice versa. This transition is particularly illustrative for

the (110) orientation because several of the bands from the
(110) termination are still present; they only change character
from being closed around surface TRIMs to being quasi-one-
dimensional, not enclosing any TRIMs. This illustrates how
the topologically required changes of surface Fermi contours
between different facets of a crystal could happen and how
quasi-one-dimensional topological states on vicinal surfaces
could be created, as in the case of Bi(114) [12].

Finally, we have seen how surface states on nontopological
semimetals like Bi can also benefit from the topological
protection, especially Fermi contour segments between two
surface TRIMS that can be connected along a path not crossing
any parts of the projected bulk Fermi surface. Such protection
is limited by the possibility of changing the surface termination
such that all surface fermion parities would change sign,
something that can potentially destroy all the topological
surface states on a trivial insulator or a semimetal.
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