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When an applied magnetic field has an arbitrary direction with respect to the lattice axes of a periodically
microstructured or nanostructured metamaterial, the effective permittivity tensor of the metamaterial sample
becomes anisotropic and all its components can be nonzero. This is true even if the microstructure has a
high symmetry, e.g., cubic or triangular. It is found that the strong magneto-induced anisotropy which appears
in the macroscopic response leads to an unusually strong anisotropic behavior of the Voigt effect and other
magneto-optical effects. That is, these phenomena become strongly dependent on the direction of the applied
static magnetic field, as well as on the direction of the time-dependent electromagnetic field, with respect to the
symmetry axes of the periodic microstructure.
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I. INTRODUCTION

It is well known that natural or artificial materials with cubic
or square lattices exhibit absolutely isotropic transport and
optical, thermoelectrical, and other properties. Recently, we
have shown that application of a strong-enough magnetic field
B0 can spoil this isotropy when the cubic or square array of in-
sulating (conducting) inclusions are placed inside a conducting
(insulating) host medium (i.e., in the case of periodical com-
posites or, as they are now called, metamaterials) [1–4]. Such a
strong magneto-induced anisotropy can be observed when the
dimensionless magnetic field H = μH |B0| = ωcτ [where B0

is the applied magnetic field measured in conventional units,
μH is the Hall mobility, ωc is the cyclotron frequency, and τ is
the conductivity relaxation time; see text following Eq. (58)]
times the radius of the circular (or spherical) inclusion R is
larger than the lattice constant a: H · R > a. In Ref. [1] it was
predicted that the strong field dc effective magnetoresistance
ρ̂e(H ) = 1/σ̂e(H ) (where σ̂e is the macroscopic or bulk
effective conductivity) of such metamaterials will exhibit a
strong dependence on the precise orientations of the external
magnetic field B0 (with respect to the main crystal lattice axes)
and the volume-averaged current density 〈J〉, very similar to
its behavior in certain metallic single crystals; see Fig. 14 in
Ref. [1]. Since σ̂e can be measured directly, our predictions
for σ̂e(H ) were already verified experimentally [5,6]. A
similar magneto-induced anisotropy should exist in the case
of ac conductivity, i.e., for the macroscopic or bulk effective
permittivity tensor ε̂e of metal-dielectric metamaterials and
consequently for their optical properties [3,4]. However, since
ε̂e cannot be measured directly, our prediction for ε̂e(H ) has
not yet been tested experimentally. What can be measured
directly is the Faraday-like rotation. However, for the case of
an in-plane magnetic field B0 in a metamaterial the relevant
effect is Voigt rotation, for which general exact analytical
expressions (as far as we know) are not published. In this
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paper we derive such exact expressions for the general case
and verify our predictions numerically.

When a static magnetic field B0 is present the electric
permittivity ceases to be a scalar quantity, even in a material
that is homogeneous and isotropic. In the case of a dielectric
material, the off-diagonal antisymmetric elements of the
electric permittivity tensor ε̂ result in the appearance of new
macroscopic electromagnetic (EM) phenomena such as the
Faraday and Voigt effects. The Faraday effect appears when
a plane wave propagates in the direction of B0. In that case
there are two normal modes of propagation with oppositely
oriented circular polarizations and different phase velocities.
Therefore, when the incident plane wave is plane polarized
the polarization plane rotates as the wave advances. The Voigt
effect (also known as the Cotton-Mouton effect) appears when
B0 is perpendicular to the k vector of the plane wave. In this
case, the normal propagating modes are elliptically polarized;
again there are two of them and they have different phase
velocities. Both the orientation of the polarization ellipses and
their ellipticities, as well as the phase velocities, depend upon
the elements of ε̂.

It is well known that the Voigt, Faraday, and other magneto-
optical (MO) effects can be significantly enhanced in the
vicinity of an EM resonance [7,8]. One such resonance,
which is currently under intensive study, is the surface plasma
resonance. It is widely believed that this or similar resonances
are responsible for the extraordinary light transmission (ELT)
through a metal film, perforated by a periodic array of
subwavelength holes [9]. Application of a static magnetic
field B0 to such systems (see Fig. 1) induces strong optical
and transport anisotropy and leads to the appearance of
additional off-diagonal tensor components in the macroscopic
permittivity tensor ε̂e (see Fig. 2) and changes the frequency
of the surface plasma resonance [3,4,10]. Therefore, the
application of a static magnetic field to a conducting system
with dielectric islands or to a dielectric system with metallic
islands should lead to the appearance of strong MO effects and
to possibilities for the manipulation of light propagation. This
was shown both theoretically [3,4,11,12] and experimentally
[13–15].
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FIG. 1. (Color online) (a) Schematic drawing of a metal film with
a periodic array of holes. The fixed coordinate axes x,z are always
directed along the principal axes of the simple-square lattice of holes
and the applied static magnetic field B0 lies in the film plane. The
incident light beam is normal to the film surface; i.e., the ac electric
field E is parallel to the film plane, while the wave vector is normal
to it (i.e., k ‖ y). Note that the ac magnetic field H of the light
wave (H ⊥ E) is not important in our considerations and we omit it
everywhere. (Inset) The a × a unit cell of the simple-square periodic
composite film with a cylindrical hole of radius R at its center. (b)
The same as (a) but both B0 and the incident field E are rotated in
the film plane. The x ′ and z′ axes are referred to in the text as the
“rotating coordinates.”

After the phenomenon of ELT in the presence of applied
static magnetic field was discussed in Refs. [4,11], several
attempts were made to consider different MO effects in the
case of light propagating through a perforated metallic film
[16–22] or a film with metallic islands [23–29]. However,
in most of these studies only the Faraday configuration was
considered, where the magnetic field B0 is normal to the film
plane. In very few of them [30] was the Voigt configuration
(i.e., where the magnetic field is applied parallel to the film
plane) considered. From intuitive physical considerations we
expect that when an in-plane magnetic field is rotated with
respect to the main axes of the microstructure, a magneto-
induced angular anisotropy of the different MO effects will be
observed. In this paper we consider the general case of arbitrary
orientation of the magnetic field with respect to the film
microstructure.

In the case where B0 has an arbitrary direction with respect
to the lattice axes of the microstructure, all components of
the permittivity tensor can be nonzero [3,4,11]. When both
the external magnetic field B0 and the EM electric field E
are rotated in the film plane, the angular profiles of all the
permittivity tensor components are quite complicated (see
Refs. [3,4,11] and Fig. 2). As a result of this, the general
expressions for Faraday rotation and Voigt effect are also
quite complicated. Therefore, the MO effects in metamaterial
crystals need to be calculated using appropriate general
expressions, where simplistic assumptions regarding the form
of ε̂e are avoided.

The remainder of this paper is arranged as follows. In
Sec. II, we derive the dispersion relation of the light propagat-
ing through the metamaterial in the presence of an arbitrarily
directed external magnetic field B0. In Sec. III we generalize
results of Ref. [31] and find the electric field components E
of the light beam propagating through the metamaterial film

FIG. 2. (Color online) Real (solid blue lines) and imaginary
(dashed red lines) parts of the diagonal (top part) and off-diagonal
(lower part) components of the macroscopic permittivity tensor ε̂e

of the metamaterial, made of a simple-square array (with lattice
constant a) of circular cylinder holes (of radius R = 0.3a) in a metal
film. In the top half, panels (a)–(c) exhibit this in the fixed coordinate
system, plotted vs the rotation angle θ (in radians) of Fig. 1(b). Panels
(d)–(f) exhibit this in the rotating coordinates of Fig. 1(b). Panels
(g)–(i) are polar plots of the absolute values of the same results shown
in (d)–(f). In the bottom half, the ε(e)

xy component of the permittivity

tensor ε̂e is the Hall component ε
(e)
H . For any orientation of B0 in

the x,z plane (i.e., B0y = 0) the following symmetry relations hold:
ε(e)

xz = ε(e)
zx , ε(e)

yz = −ε(e)
zy . The permittivity tensor is taken (in both top

and lower parts) in the quasistatic approximation ε̂ = ε̂0 + i4πσ̂/ω,
where σ̂ is the Drude conductivity tensor [see Eq. (13) of Ref. [1]
for the Drude conductivity tensor σ̂ with arbitrary direction of B0]
where the plasma frequency ωp and the conductivity relaxation time
τ are such that ωpτ = 20. The light frequency is ω = 0.4ωp and the
dimensionless magnetic field H = 10; see text after Eq. (58) for the
definition of H .
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in the presence of such an external magnetic field. In Sec. IV
we find the polarization rotation and ellipticity in the general
case. In Sec. V we give a brief presentation of our calculational
scheme. In Sec. VI, we present our numerical results, followed
by a brief discussion in Sec. VII. In Appendix A, we obtain
some expressions for rotation and ellipticity in the case of
arbitrary direction of B0 using the expressions for the EM
field propagating through the sample (derived in Sec. II).
This can be done using direct consideration of the ellipse of
polarization, as well as by means of the Stokes parameters.
For convenience, some general textbook material for these
evaluations is summarized in Appendix B.

II. DISPERSION RELATION OF LIGHT IN A
METAMATERIAL IN THE PRESENCE OF AN

EXTERNAL STATIC MAGNETIC FIELD

We consider a metal film with an array of perpendicular
holes, which is placed in a static, in-plane magnetic field B0

with an otherwise arbitrary direction. We characterize this part
of our system by an effective permittivity tensor ε̂e, which
we calculate following our previous works [3,4,32–34]. The
second part of our system is a monochromatic light beam,
of angular frequency ω, which impinges upon this film along
the perpendicular axis y with linear polarization along the
principal axis x of the array; see Fig. 1. We seek a solution
of Maxwell’s equations in the form of a monochromatic
plane wave with frequency ω propagating along the y axis,
with electric and magnetic fields E = E0e

iωt−ik·r and H =
H0e

iωt−ik·r. Here E0 and H0 are constant amplitudes and k ≡
(0,k,0) is the wave vector in the y direction. Substituting this
in the macroscopic Maxwell equations we obtain a dispersion
equation for the complex wave vector k [35–41],

k2E0 − k(E0 · k) = ω2

c2
ε̂e(ω) · E0, (1)

where ε̂e(ω) is the macroscopic or bulk effective electric
permittivity tensor of the considered metamaterial, and k ≡
ω
c
Nk0 ≡ ω

c
(n′ + in′′)k0, where k0 is a real unit vector in the

direction of k and N ≡ n′ + in′′ is the complex refractive
index. The real part, n′, determines the phase velocity,
vp = c/n′, and the imaginary part, n′′, is the absorption index
(or the extinction coefficient).

For the vector directions shown in Fig. 1, where the x and
z axes are in the film plane and the light propagates along the
y axis, Eq. (1) is easily seen to lead to

Ey = −ε(e)
yx

ε
(e)
yy

Ex − ε(e)
yz

ε
(e)
yy

Ez, (2)

0 =
[(

c

ω

)2

k2 − ε(e)
xx + ε(e)

xy ε(e)
yx

ε
(e)
yy

]
Ex −

(
ε(e)
xz − ε(e)

xy ε(e)
yz

ε
(e)
yy

)
Ez,

(3)

0 =
(

ε(e)
zx − ε(e)

zy ε(e)
yx

ε
(e)
yy

)
Ex −

[(
c

ω

)2

k2 − ε(e)
zz + ε(e)

zy ε(e)
yz

ε
(e)
yy

]
Ez.

(4)

The homogeneous Eqs. (3) and (4) have a nontrivial solution
only if their 2 × 2 determinant vanishes. This requirement
leads to a dispersion equation for the wave numbers k±,
which are complex in general, as functions of the real
angular frequency ω, where the subscript ± denotes the two
propagating modes,

(
c

ω

)2

k2
± = N2

± ≡
(

detε̂e

ε
(e)
yy

)[
(ηzz + ηxx)

2

±
√

(ηzz − ηxx)2

4
+ ηzxηxz

]
, (5)

where η̂ = 1/ε̂e is the inverse permittivity tensor.
Thus, there are four solutions to Eq. (5): Two of them

represent forward-propagating waves with k± = (ω
c

)
√

N2
±,

while the other two represent backward-propagating waves
with k± = −(ω

c
)
√

N2
±. Therefore, a plane-polarized wave

normally incident at the sample surface evolves into a refracted
wave and a reflected wave. Note again that, in general, all
components of the permittivity tensor ε̂e can be nonzero
(see Fig. 2).

When the externally applied magnetic field vanishes, Eq. (5)
simplifies to the form [37–41]

(
c

ω

)2

k2
± = N2

± ≡ ε(e)
zz = ε(e)

xx . (6)

In Fig. 3(a) we plot numerical results for the case B0 = 0.
The behavior of the position-dependent phase yk± = (ωp/ω)

(ωpy/c)
√

ε(e)
zz is determined by the permittivity tensor com-

ponent ε(e)
zz , which has a surface plasmon resonance at

ω = ωp/
√

2 for an isolated circular cylinder.
When the magnetic field is directed along the z axis,

B0 ‖ z ‖ (001), which coincides with the principal symmetry
axis (001), Eq. (5) simplifies to the form [37–41](

c

ω

)2

k2
− = N2

− ≡ ε(e)
zz , (7)

(
c

ω

)2

k2
+ = N2

+ ≡ ε(e)
xx − ε(e)

xy ε(e)
yx

ε
(e)
yy

. (8)

Results for this case are shown in Fig. 3(b). The term N2
− is

again determined by ε(e)
zz . This tensor component has a surface

plasmon resonance at the frequency ωres 	 ωp/
√

2, which is
close to the resonance frequency of an isolated cylinder for the
case B0 = 0.

When the magnetic field is perpendicular to the film, B0 ‖ y,
Eq. (5) simplifies to the form [37–41]

(
c

ω

)2

k2
± = N2

± = 1

2

(
ε(e)
xx + ε(e)

zz

)
± 1

2

√(
ε

(e)
zz − ε

(e)
xx

)2 + 4ε
(e)
xz ε

(e)
zx . (9)

This equation describes the Faraday effect.
When B0 is directed not along the principal symmetry axes,

the behavior of the wave vectors k± is more complicated
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FIG. 3. (Color online) Real and imaginary parts of the squared
complex refractive index N2

± [see Eq. (5)] (a), (c), (d) and dimen-

sionless wave vector yk± = ω

ωp
( ωpy

c
)
√

N 2± (b) [where y is the wave
propagation distance; see text just before Eq. (19)] vs ω/ωp. Values
of N 2

+ (the real part is shown by blue squares while the imaginary
part is shown by green circles) and N2

− (the real part is shown by red
asterisks while the imaginary part is shown by magenta points) in
panel (a), as well as values of yk+ and yk− in panel (b), coincide for
H = 0 and θ = 0. At H 
= 0 these values (Re N2

− shown by red thick
solid line, Im N 2

− shown by red thin dashed line; Re N2
+ shown by blue

thick solid line, Im N2
+ shown by blue dashed line) do not coincide

anymore; see panel (c) obtained for H = 10, θ = 0 and panel (d)
obtained for H = 10, θ = π/8. ωpτ = 20 and ωpy/c = 1. The radii
of circular cylinder holes in all the results shown here and below are
R = 0.3a, where a is the lattice constant.

[see Figs. 3(c) and 3(d)]. The polarizations of the normal
modes are then usually not circular but elliptical, as shown
in Sec. III.

III. ELECTRIC FIELD OF THE LIGHT BEAM
INSIDE THE METAMATERIALS

By substituting each solution of Eq. (5) into Eqs. (2)–(4)
we find expressions for the electric field components Ez± and
Ey± for given Ex . We thus get

Ez± =
N2

± − ε(e)
xx + ε

(e)
xy ε

(e)
yx

ε
(e)
yy

ε
(e)
xz − ε

(e)
xy ε

(e)
yz

ε
(e)
yy

Ex± = −
 ±
√


2 + 4χη2

2χη
Ex±,

(10)

Ey± = −ε(e)
yx

ε
(e)
yy

Ex± − ε(e)
yz

ε
(e)
yy

Ez±

= −
[(

ε(e)
yx

ε
(e)
yy

)
−

(
ε(e)
yz

ε
(e)
yy

)

±

√

2 + 4χη2

2χη

]
Ex±, (11)

where we have introduced the definitions 
 ≡ ηxx − ηzz, η ≡
ηxz = χηzx and where the parameter χ is equal to +1 or
−1 depending on whether ηxz = ηzx (in Voigt configuration)
or ηxz = −ηzx (in Faraday configuration). Note that in those
cases χ2 = 1. That is, for the forward-propagating waves we
can write ⎛

⎝Ex±
Ey±
Ez±

⎞
⎠ = A±

⎛
⎝ 1

β±
α±

⎞
⎠ exp[i(ωt − k±y)], (12)

where A± are arbitrary amplitudes and

β± ≡ −
[(

ε(e)
yx

ε
(e)
yy

)
−

(
ε(e)
yz

ε
(e)
yy

)

 ±

√

2 + 4χη2

2χη

]
, (13)

α± ≡ −
 ±
√


2 + 4χη2

2χη
. (14)

Equation (12) represents two elliptically polarized
(in x,z-plane) waves propagating along y-axis:(

Ex−
Ez−

)
= A−

(
1

α−

)
exp[i(ωt − k−y)], (15)

(
Ex+
Ez+

)
= A+

(
1

α+

)
exp[i(ωt − k+y)]. (16)

The actual normal components of the propagating electric
field can now be written for t = 0 in terms of the normal modes
of Eqs. (15) and (16) as

Ex(y)|t=0 = A−e−ik−y + A+e−ik+y, (17)

Ez(y)|t=0 = α−A−e−ik−y + α+A+e−ik+y. (18)

Therefore, for y = 0 and t = 0 we can write Ex(0) =
A− + A+ and Ez(0) = α−A− + α+A+. From this we
get A+ = [−α−Ex(0) + Ez(0)]/(α+ − α−) and A− =
[α+Ex(0) − Ez(0)]/(α+ − α−). Using the latter expressions,
we get a result for the propagating electric field components
Ex , Ez at arbitrary distance y from the surface,

(
Ex(y)
Ez(y)

)
=

(
cos φ

2 + i
α++α−
α+−α−

sin φ

2
−2i

α+−α−
sin φ

2
−2iχ

α+−α−
sin φ

2 cos φ

2 − i
α++α−
α+−α−

sin φ

2

)

×
(

Ex(0)

Ez(0)

)
ei[ωt−(k++k−) y

2 ], (19)

where φ ≡ y(k+ − k−) and where the matrix we have used
is known as the “Jones matrix” and where α+α− = −χ

[see Eq. (14)]. The phase difference φ is given by

φ = ω

ωp

(
ωpy

c

)
(N+ − N−). (20)

The real part of φ is responsible for the magnetic birefringence.
We recall that k± are the wave-number eigenvalues of Eqs. (3)
and (4), which correspond to the appropriate choice of sign
before the square root in Eq. (5) and N± is the complex
refractive index (n′

± = ReN±). Equations (5)–(20) are valid
for any direction of the applied magnetic field and this
includes both Faraday and Voigt configurations.
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If φ is real, then expressions for the rotation angle β (the
angle of the major axis of the ellipse with respect to the
x axis of the ellipse of the incident light polarization) and
for the ellipticity κ [the ratio of the minor to major axes of
the polarization ellipse (see Appendix B )] can be found in
simple closed form [31]. Below we consider a more general
(and more complicated) case where the wave numbers k± and
the phase difference φ are complex valued and the optical
geometry is not restricted to the Faraday configuration.

IV. POLARIZATION ROTATION AND ELLIPTICITY
IN THE GENERAL CASE

A. General case

Let a plane wave polarized along the x direction with unit
amplitude (Ex0 = 1, Ez0 = 0) be incident upon the composite
medium. It follows from Eq. (19) that, at a distance y from the
sample surface, we have the following x and z components of
the electric field,

Ex(y) =
[

cos
φ

2
− i


√

2 + 4χη2

sin
φ

2

]
ei[ωt−(k++k−) y

2 ]Ex0

= Exe
iδx ei[ωt−(k++k−) y

2 ]Ex0, (21)

Ez(y) = 2iη√

2 + 4χη2

sin
φ

2
ei[ωt−(k++k−) y

2 ]Ex0

= Eze
iδzei[ωt−(k++k−) y

2 ]Ex0, (22)

where the values of the parameters Ex , δx , Ez, δz can be found
either numerically [Ex = √

A2 + B2, δx = arctan(B/A), where
A + iB ≡ cos φ

2 − i(
 sin φ

2 )/
√


2 + 4χη2, and similarly,

Ez =
√

Ã2 + B̃2, δz = arctan(B̃/Ã), where Ã + iB̃ ≡
2i(η sin φ

2 )/
√


2 + 4χη2], or algebraically. Note
also that η, 
, φ, etc., are complex valued
(η = η′ + iη′′, 
 = 
′ + i
′′, φ = φ′ + iφ′′, etc.) and
therefore sin( φ′

2 + i
φ′′
2 ) = sin φ′

2 cosh φ′′
2 + i cos φ′

2 sinh φ′′
2 ,

cos(φ′
2 + i

φ′′
2 ) = cos φ′

2 cosh φ′′
2 − i sin φ′

2 sinh φ′′
2 .

As soon as the electric field of the EM wave is written in the
form Exe

iδx , Eze
iδz [see Eqs. (21) and (22)], the rotation angle

β of the polarized electric vector E0 and its ellipticity κ can be
expressed through the ratio |Ex |/|Ez| (see Refs. [31,37,38]) or
through the related Stokes parameters (see Ref. [42]),

tan 2β = 2ExEz

E2
x − E2

z

cos(δx − δz), (23)

sin 2κ = − 2ExEz

E2
x + E2

z

sin(δx − δz), (24)

where, as was mentioned above, the parameters Ex , Ez, δx , and
δz [see Eqs. (21) and (22)] can be found either numerically or
algebraically (see Appendixes A and B).

B. Faraday configuration

In Faraday configuration the magnetic field B0 is di-
rected along the y axis perpendicular to the x,z-film plane
(see Fig. 1). In this case, the Hall (and only nonzero off-
diagonal) components are ε(e)

xz = −ε(e)
zx , i.e., χ = −1. Since we

consider a symmetric (in x and z directions) microstructure,
Eqs. (21) and (22) simplify drastically. In this case, ηxx = ηzz

and therefore 
 = 0. Then the only nonzero components of
the tensor η̂ are the following:

ηxx = ηyy = ε(e)
xx

ε
(e)2
xx + ε

(e)2
xz

, (25)

ηxz = −ηzx = ε(e)
zx

ε
(e)2
xx + ε

(e)2
xz

, (26)

ηzz = ε(e)
zz

ε
(e)2
xx + ε

(e)2
xz

. (27)

Equations (21) and (22) then take the form

Ex(y) = cos
φ

2
ei[ωt−(k++k−) y

2 ]Ex0, (28)

Ez(y) = sin
φ

2
ei[ωt−(k++k−) y

2 ]Ex0, (29)

where φ = y(k+ − k−) and k± = (ω/c)
√

ε(e)
xx ± iε(e)

xz [see
Eqs. (9) and (20)]. If ε(e)

xz � 1, then φ 	 (ωy/c) iε(e)
xz /

√
ε(e)
xx .

V. VOLUME-AVERAGED EFFECTIVE PERMITTIVITY
TENSOR AND CALCULATIONAL SCHEME

In order to observe and study the expected anisotropy of
the MO response of ordered metal-dielectric composites in
the quasistatic regime we applied a calculational approach
similar to what had been used earlier for the magneto-transport
response [1,43–49]. Following Refs. [3,4,32–34], we treated
the perforated metal film as insulating inclusions embedded in
a metal host. Following Ref. [46] we chose a scheme where
the composite medium occupies the entire volume between the
infinitely conducting plates of a large parallel plate capacitor.
The electric potential field φ of the considered system is the
solution of the partial differential equation ∇ · D = 0, namely,

∇ · ε̂2 · ∇φ(α) = ∇ · θ1δε̂ · ∇φ(α), (30)

with the boundary condition φ(α) = rα. Here D is the electric
displacement field, δε̂ ≡ ε̂2 − ε̂1, where ε̂1 and ε̂2 are the
electrical permittivity tensors of the (dielectric) holes and the
metal film (host), respectively, and θ1(r) is the characteristic
function describing the location and shape of the holes (θ1 = 0
inside the holes and θ1 = 1 outside of them) [4].

The left-hand side of Eq. (30) is simple enough (i.e.,
a second-order elliptic differential operator with constant
coefficients) that it is useful to define its Green’s function
G(r,r′|ε̂2):

∇ · ε̂2 · ∇G = −δ3(r − r′) for r ∈ V, (31)

G = 0 for r ∈ ∂V . (32)

Note that G depends only on the symmetric part of the
tensor ε̂2. Using G, we can transform the boundary value
problem of Eq. (30) to an integro-differential equation
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for φ(r),

φ = −E0 · r −
∫

dV ′G(r,r′|ε̂2)∇′ · (θ ′
1δε̂ · ∇′φ′)

= −E0 · r +
∫

dV ′θ ′
1(∇′G · δε̂ · ∇′φ′) (33)

= rα + �̂φ(α), (34)

where we used integration by parts to get the second line and
where the linear integro-differential operator �̂ is defined by

�̂φ ≡
∫

dV ′θ1(r′)∇′G(r,r′|ε̂2) · δε̂ · ∇′φ(r′). (35)

The electric field, E = −∇φ, therefore, has the form

E(r) = −∇φ = E0 +
∫

dV ′θ ′
1∇∇′G · δε̂ · E′. (36)

Here we used the abbreviated notation φ′ for φ(r′), etc. When
V is infinite, G(r,r′|ε̂) depends only on the separation vector
r − r′. The Fourier transform of G then has the simple form∫

dV e−k·(r−r′)G(r,r′|ε̂) = 1

(k · ε̂ · k)
. (37)

Although G, and hence also �̂, depend on the orientation of
the capacitor plates, this dependence is only important if at
least one of r, r′ is near the plates. For most purposes G

can be approximated by the Green’s function that vanishes
at infinity, and in that case the only dependence of (34)
on the boundary conditions comes from the term rα , which
ensures that φ(α) satisfies them. The microstructure enters
into �̂ through the characteristic function θ1(r). Due to the
symmetric dot products of ε̂2 and the two ∇ operators in
(31), the antisymmetric part of ε̂2 does not participate in that
equation. Therefore, G(r,r′|ε̂2) actually only depends on the
symmetric part ε̂2s of ε̂2. The Green’s function that vanishes at
infinity depends on r, r′ only through their difference r − r′.
In the case where ε̂2s is a diagonal tensor, this Green’s function
has a relatively simple closed form, namely [1,46,48],

G(r,r′|ε̂) = 1

4π (εxxεyyεzz)1/2

×
[

(x − x ′)2

εxx

+ (y − y ′)2

εyy

+ (z − z′)2

εzz

]−1/2

.

(38)

The distorted part of φ(α)(r) is defined by

ψ (α)(r) ≡ φ(α)(r) − rα, (39)

and satisfies an integral equation which immediately follows
from (34)

ψ (α) = �̂rα + �̂ψ (α). (40)

This equation can be solved symbolically by using the
resolvent operator 1/(1 − �̂)

ψ (α)(r) = �̂

1 − �̂
rα. (41)

While it is usually impossible to calculate the resolvent
operator in closed form, it is sometimes useful to expand it
as a series in powers of �̂ or δε̂.

The bulk effective electric permittivity tensor, ε̂e, is defined
as providing the linear relationship between volume averages
of the two fields, E, D:

〈D〉 ≡ ε̂e · 〈E(r)〉. (42)

The final result for ε̂e will be independent of the precise way
in which the local electric field is created, provided that the
composite microstructure, as well as the boundary conditions
that determine E(r), are macroscopically homogeneous. We
are therefore free to choose the most convenient boundary
conditions when setting up a scheme for calculating E(r).

Using (42) we can write for ε̂e

ε̂e · 〈∇φ(α)〉 = ε̂2 · 〈∇φ(α)〉 − δε̂ · 〈θ1∇φ(α)〉. (43)

This expression can be further processed by using (39) and
recalling that 〈∇φ(α)〉 = eα . In this way we get

(ε̂2 − ε̂e) · eα = δε̂ · 〈θ1∇rα〉 + δε̂ · 〈θ1∇ψ (α)〉, (44)

which reduces to

(ε̂2 − p1δε̂ − ε̂e)αβ = δε̂αγ 〈θ1∇γ ψ (β)〉, (45)

where p1 ≡ 〈θ1〉 is the volume fraction of the ε̂1 constituent.
Here and in the rest of this article we use the convention that
a summation over repeated tensor indices is always implied.

When the composite medium has a periodic microstructure,
great simplifications ensue due to the fact that θ1(r) is
now a periodic function. From the fact that, away from the
external boundaries, G depends on r, r′ only through their
difference r − r′ [see Eq. (38)], we get that for any periodic
or linear function f (r), �̂f is also periodic except near those
boundaries. Hence, ψ (α)(r) is periodic and can be expanded in
a Fourier series

ψ (α)(r) =
∑

g

ψ (α)
g eig·r, (46)

where the sum is over all the vectors g = (2π/a)(mx,my,mz)
of the appropriate reciprocal lattice, mi are arbitrary integers,
and a is the lattice constant. The Fourier expansion coefficient
of an arbitrary periodic function f (r) is given by

fg = 1

Va

∫
Va

dV e−ig·rf (r), (47)

where Va is the volume of one-unit cell.
The Fourier transform of G [see Eq. (38)] which vanishes

at infinity has an even simpler form, namely,∫
dV e−ik·(r−r′)G(r,r′|ε̂2s) = 1

k · ε̂2s · k
, (48)

which is valid regardless of the detailed form of ε̂2s . This result
is easily obtained by performing a Fourier transformation
of (31).

Instead of the Fourier coefficients fg [see Eq. (47)], it is
convenient to introduce the following coefficients:

i(g · ε̂2 · g)1/2fg = i(g · ε̂2s · g)1/2fg for g 
= 0. (49)

These characterize the function f (r) up to an additive constant.
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Some straightforward calculations lead to the following
results for the Fourier coefficients of �̂rα and �̂f , where f (r)
is an arbitrary periodic function,

i(g · ε̂2s · g)1/2(�̂rα)g = gβδεβαθg

(g · ε̂2s · g)1/2
, (50)

i(g · ε̂2s · g)1/2(�̂f )g =
∑
g′ 
=0

�gg′ i(g′ · ε̂2s · g′)1/2fg′ , (51)

�gg′ ≡ (g · δε̂ · g′)
(g · ε̂2s · g)1/2(g′ · ε̂2s · g′)1/2

θg−g′ , (52)

where θg is the Fourier coefficient of θ1(r). Clearly, the matrix
defined in (52) represents the integro-differential operator �̂

in this scheme.
We now translate the integro-differential equation (40) for

ψ (α)(r) into an infinite set of linear algebraic equations for the
Fourier coefficients ψ

(α)
g , which are represented by

a(α)
g ≡ i(g · ε̂2s · g)1/2ψ (α)

g for g 
= 0. (53)

This is done by Fourier transforming (40) and using (50) and
(51) and leads to

a(α)
g = r (α)

g +
∑
g′ 
=0

�gg′a
(α)
g′ for g 
= 0, (54)

r (α)
g ≡ gβδεβα

(g · ε̂2s · g)1/2
θg. (55)

Solving a finite subset of the linear equations (54) for the
Fourier expansion coefficients a

(α)
g , one can write for the

electrical potential φ(α)

φ(α) = rα + ψ (α) = rα +
∑

g

a
(α)
g

i(g · ε̂2s · g)1/2
eig·r (56)

and for the bulk effective permittivity tensor

(ε̂2 − p1δε̂ − ε̂e)αβ = δεαγ

Va

∫
Va

dV θ1(r)
∑

g

igγ ψ (β)
g eig·r

= δεαγ

∑
g

igγ ψ (β)
g θ−g

=
∑
g
=0

δεαβgβ

(g · ε̂2s · g)1/2
θ−ga

(β)
g . (57)

Note that the coefficient multiplying a
(β)
g in the last sum

looks similar to r
(α)∗
g , but actually differs from it, because

δεαβ 
= δε∗
βα .

In light of the above discussion, a finite subset of Eqs. (54)
and (55) was solved numerically and used to compute ε̂e [using
Eq. (57)] [1,46]. That was then used to implement a compu-
tational analysis of the Faraday and Voigt effects in various
metal-dielectric composites with a periodic microstructure.

Note also that in order to simplify the numerical procedure,
we calculate the permittivity tensor ε̂e for the system of a
three-dimensional composite with a two-dimensional colum-
nar microstructure: The finite cylinders become infinitely
long cylinders with axes parallel to y, while the finite film
thickness � is taken into account by using the proper analytical

expressions for the macroscopic MO response. This drastically
simplifies the calculations but does not qualitatively change the
final result as long as �H > a [50].

The metal permittivity tensor ε̂1 = ε̂M has the form
[3–6,11,43,51,52]

ε̂M = ε0 · Î + i
4π

ω
σ̂ = ε0 · Î

+ iω2
pτ

ω

⎛
⎜⎝

1−iωτ
(1−iωτ )2+H 2

−H
(1−iωτ )2+H 2 0

H
(1−iωτ )2+H 2

1−iωτ
(1−iωτ )2+H 2 0

0 0 1
1−iωτ

⎞
⎟⎠, (58)

where the conductivity tensor σ̂ is taken in the Drude
approximation (with B0 ‖ z), ε0 is the scalar dielectric constant
of the background ionic lattice, which we take to be 1 in this
article, and Î is the unit tensor. The applied magnetic field B0

enters only through the Hall-to-Ohmic resistivity ratio H ≡
ρH /ρ = σyx/σxx = μH |B0| = ωcτ , where ωc = e|B0|/mc is
the cyclotron frequency, τ is the conductivity relaxation time,
ωp = (

4πe2N0/ε0m
)1/2

is the bulk plasma frequency, N0 is
the charge carrier concentration, m is the effective mass of the
charge carriers, and μH is the Hall mobility [3,4,11,43].

VI. NUMERICAL RESULTS

A. Voigt configuration

When both B0 and E are rotated in the film plane [see
Fig. 1(b)], all components of the permittivity tensor ε̂e can
be nonzero and their angular profiles are anisotropic [3,4]
(this is similar to the magneto-induced angular anisotropy of
magnetoresistance [1,5,6,43–46,49–52]). The angular profiles
of the diagonal components ε(e)

xx , ε(e)
yy , ε(e)

zz and the off-diagonal
components ε(e)

xy , ε(e)
xz , ε(e)

yx , ε(e)
yz , ε(e)

zx , and ε(e)
zy in nonrotating

and rotating coordinate systems are shown in Fig. 2. Here and
everywhere below we perform numerical calculations for the
metamaterial sample, made of a simple-square array (with
lattice constant a) of perpendicular circular cylinder holes
(of radius R = 0.3a) in a metal film.

In Fig. 3 [see panels (a), (c), and (d)] we show the real and
imaginary parts of the squared refractive indices N2

+ and N2
−,

as well as the real and imaginary parts of of the dimensionless
wave vectors yk± vs ω/ωp, where y is the distance traversed by
the propagating wave in the composite. Here and everywhere
below it is assumed that ωy/c ∼ 1, which is a realistic situation
(see Ref. [16]). When H = 0, the permittivity tensor in the film
plane is isotropic (ε(e)

xx = ε(e)
zz ), and its off-diagonal component

ε(e)
xz vanishes. From Eq. (5) it then follows that N2

+ = N2
− and

k+ = k−.
By contrast, when H 
= 0 the permittivity tensor ε̂e and

its inverse η̂ are not isotropic (ε(e)
xx 
= ε(e)

zz , ηxx 
= ηzz), while
the value of ε(e)

xz depends on the direction of B0 with
respect to the microstructure axes. When θ = 0 the non-Hall
off-diagonal components ε(e)

xz ,ε(e)
yz vanish even for H 
= 0.

However, at other values of θ , for instance at θ = π/8, these
off-diagonal components are nonzero and the wave vector k+
differs significantly from k− in most frequency ranges [see
Fig. 3(d)]. When k+ 
= k− it means that the phase shift φ 
= 0
[see Eq. (20)] and we should expect to observe birefringence,
rotation of the polarization, and ellipticity.
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FIG. 4. (Color online) (a), (b) Real and imaginary parts of the
phase shift φ [see Eq. (20)] vs ω/ωp, respectively. (c), (d) tan 2β and
rotation angle β (in radians) vs. ω/ωp, respectively. (e), (f) sin 2κ

and ellipticity κ [see Eq. (24)] vs ω/ωp, respectively. The blue and
red lines in panels (a)–(f) show the values obtained for θ = π/8 and
θ = 0.1, respectively. H = 5, ωpτ = 20, ωpy/c = 1, and R = 0.3a.

In Fig. 4 we show the real and imaginary parts of the phase
shift φ [see Eq. (20) and Figs. 3(a) and 3(b)] vs ω/ωp for
H = 10. As soon as we know the phase shift φ, we can

FIG. 5. (Color online) Real and imaginary parts of the phase
shift φ [see Eq. (20)]. H = 10. (a), (b) Cartesian plots in fixed
coordinates. (c), (d) Cartesian plots in rotating coordinates. (e), (f)
Polar plots of the above quantities. In all the calculations the following
parameter values were used: ωpy/c = 1, ωpτ = 20, ω = 0.8ωp ,
R = 0.3a.

FIG. 6. (Color online) Rotation angle (in the Voigt configuration)
β and ellipticity κ vs the angle of rotation θ of the applied magnetic
field B0 (with respect to the main axes of the periodic microstructure)
in the rotating coordinate system. In the right column are shown the
absolute values of the same quantities as polar plots. (a) sin 2β vs θ ;
(b) β vs θ ; (c) sin 2κ vs θ ; (d) Ellipticity κ vs θ . H = 5. In all the
calculations the following parameter values were used: ωpy/c = 1,
ωpτ = 20, ω = 0.8ωp , R = 0.3a.

calculate tan 2β and the polarization rotation angle β as well
as sin 2κ and ellipticity κ using Eq. (24) with χ = 1 (in the
Voigt configuration).

In Fig. 5 we show the angular profile of the real and imagi-
nary parts of the phase shift φ [see Eq. (20)] in fixed and rotat-
ing coordinates for H = 10. Note that Figs. 5(c) and 5(d) look
the same as Figs. 5(a) and 5(b), despite the fact that they involve
different configurations. This is due to the fact that Eq. (5) is
invariant under the coordinate rotation (with the rotation axis
lying along the light propagation direction): k±(R̂−1 · η̂ · R̂) =
k±(η̂), where R̂ = {{cos θ,0,− sin θ},{0,1,0},{sin θ,0, cos θ}}
is the rotation matrix. Polar plots of the above quantities are
shown in Figs. 5(e) and 5(f).

The angular profiles of tan β and the polarization rotation
angle β as well as sin 2κ and the ellipticity κ are shown
in the left column of Fig. 6 for ω = 0.8ωp. As in the
previous cases, a strong angular magneto-induced anisotropy
of β and κ is observed. Their polar plots are shown in
the right column of this figure. These angular profiles and
their dependencies on the holes sizes [as well as angular
profiles of permittivity tensor components, see Figs. 2(g)–2(i),
top and bottom] are qualitatively similar to angular depen-
dencies of the magnetoresistance tensor ρ̂e(H ) = σ̂−1

e (H )
[1,2,5,6,44,45,50,51]. However, since the permittivity ten-
sor is complex, its quantitative description needs further
studies.
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FIG. 7. (Color online) Similar to Fig. 4, but for the Faraday
configuration when magnetic field B0 is perpendicular to the film
plane and χ = −1 in Eqs. (10), (11), (21), (22), and (A1)–(A6). All
components of the effective permittivity tensor ε̂e are calculated along
the fixed (not rotating) coordinates, i.e., θ = 0. H = 5, ωpτ = 20,
ωpy/c = 1, R = 0.3a.

B. Faraday configuration

For comparison, we show in Fig. 7 the dependencies similar
to Fig. 4, but for the Faraday configuration, when the magnetic
field B0 is perpendicular to the film plane and χ = −1. The
effect of rotation of the polarization plane β and the ellipticity κ

are much stronger in this case, but there is no magneto-induced
angular anisotropy in this case.

VII. SUMMARY AND DISCUSSION

In summary, we have studied analytically and numerically
the rotation and ellipticity of polarization of the light propagat-
ing through a metamaterial film with periodic microstructure
for arbitrary direction of the applied static magnetic field,
including both Voigt (when the static magnetic field is in the
film plane) and Faraday (when that field is perpendicular to
the film) configurations. In the Voigt configuration we found
strong dependencies of the above-mentioned effects on the
direction of the applied field. The angular anisotropy of other
MO effects (including Kerr effect) can be considered similarly.
We hope that the results presented here will stimulate exper-
imental studies aimed at verification of our predictions and
continued exploration of the MO properties of such systems.
This could also form the basis for a new type of MO switch
and other MO devices. As a material that may be suitable for
the metallic constituent, bismuth can be considered, wherein
the low free-charge density (∼3 × 1017 cm−3) can make the
carrier cyclotron frequency ωc equal to or greater than the
plasma frequency ωp [6,53–55].

Another possibility is to use a highly doped semiconductor
such as GaAs or InAs [3–5]: In that case, it is possible to
obtain large values of the Hall mobility μH and, therefore,
also large values of the dimensionless magnetic field H =
μH |B0|, while using lower values of B0. The value of ωpτ

in this case can be of the same order of magnitude as that
of conventional metals in our calculations, where we assumed
ωpτ = 20. Thus, such magnetic-field-dependent extraordinary
optical transmission in the infrared range of frequencies can be
sought in heavily doped semiconductor films with an array of
holes with a submicrometer periodicity. Detailed estimations
of the above-mentioned parameters, which are typical of GaAs
and InAs, can be found in Refs. [3–5]. Also to be found there is
a discussion of how small the size scale of the microstructure
should be in order for the quasistatic limit to be applicable.

In transition-metal films made of Ag or Au, wherein surface
plasmons are easily observed in visible light, stronger magnetic
fields would be needed in order to observe the behavior
described here. This is due to the lower values of the electronic
Hall mobility in those metals. A possible way to overcome
this handicap would be to use layered ferromagnet-Ag or -Au
sandwiches.

It has recently been shown that in a metal-dielectric meta-
material with a periodic microstructure the optical emission
and photoluminescence of an embedded quantum dot can
be significantly changed; see Ref. [56] and other references
cited therein. This occurs if the relevant frequency is in the
vicinity of an EM resonance of the metamaterial, due to the
great enhancement of the local electric field. Application of
an external magnetic field B0 will presumably make those
changes strongly dependent on the direction of B0 and on the
polarization.

Effects similar to those described in this article are expected
to appear for a periodically perforated metal film even if
the holes are not perpendicular to the film plane. Further
calculations are needed in order to show this in detail.

Some other recent achievements in nanoplasmonics and
metamaterials [57] could also be changed by application of a
strong static magnetic field B0.

It might also be interesting to consider the case where, rather
than forming a single two-dimensional crystal, graphene is
made as a perforated thin film with a periodic micro-structure
[58].
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APPENDIX A: EVALUATION OF Ex , δx , Ez , δz .

1. General case

The analytical form of the parameters Ex , δx , Ez, δz

introduced in Eqs. (21) and (22) can be found directly from
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the following equations:

E2
x =

(
cos2 φ′

2
+ sinh2 φ′′

2

)
+ 
′2 + 
′′2

√
a2 + b2

(
sin2 φ′

2
+ sinh2 φ′′

2

)

+
√

a + √
a2 + b2

√
2
√

a2 + b2

[
(
′ sinh φ′′ + 
′′ sin φ′) + b

a + √
a2 + b2

(
′′ sinh φ′′ − 
′ sin φ′)
]

, (A1)

tan δx =
− tan φ′

2 tanh φ′′
2 +

√
a+√

a2+b2√
2
√

a2+b2

[(

′′ tanh φ′′

2 − 
′ tan φ′
2

) − b

(

′ tanh φ′′

2 +
′′ tan φ′
2

)
(a+√

a2+b2)

]

1 +
√

a+√
a2+b2√

2
√

a2+b2

[(

′ tanh φ′′

2 + 
′′ tan φ′
2

) + b

(

′′ tanh φ′′

2 −
′ tan φ′
2

)
(a+√

a2+b2)

] , (A2)

E2
z = 4

η′2 + η′′2
√

a2 + b2

(
sin2 φ′

2
+ sinh2 φ′′

2

)
, (A3)

tan δz = −
(
1 + η′′

η′
b

a+√
a2+b2

)
tan φ′

2 − (
η′′
η′ − b

a+√
a2+b2

)
tanh φ′′

2(
η′′
η′ − b

a+√
a2+b2

)
tan φ′

2 + (
1 + η′′

η′
b

a+√
a2+b2

)
tanh φ′′

2

. (A4)

Here we have defined 
2 + 4χη2 ≡ a + ib, i.e.,

a ≡ 
′2 − 
′′2 + 4χ (η′2 − η′′2), (A5)

b ≡ 2(
′
′′ + 4χη′η′′). (A6)

We also have taken into account that η, 
, φ, etc.,
are complex parameters (η = η′ + iη′′, 
 = 
′ + i
′′,
φ = φ′ + iφ′′, etc.) and therefore sin(φ′

2 + i
φ′′
2 ) =

sin φ′
2 cosh φ′′

2 +i cos φ′
2 sinh φ′′

2 , cos(φ′
2 +i

φ′′
2 )= cos φ′

2 cosh φ′′
2 −

i sin φ′
2 sinh φ′′

2 .

2. Faraday configuration

In Faraday configuration χ = −1, 
 = 
′ + i
′′ = 0.
From this follows that

√
a2 + b2 = 4(η′2 + η′′2),

a + √
a2 + b2 = 8η′′2, η′′

η′ − b

a+√
a2+b2 = η′′2+η′2

η′η′′ , and

1 + η′′
η′

b

a+√
a2+b2 = 0. Equations (A1)–(A4) then simplify

drastically:

E2
x = cos2 φ′

2
+ sinh2 φ′′

2
, (A7)

tan δx = − tanh
φ′′

2
tan

φ′

2
, (A8)

E2
z = sin2 φ′

2
+ sinh2 φ′′

2
, (A9)

tan δz = tanh
φ′′

2
/ tan

φ′

2
. (A10)

After substituting Eqs. (A7)–(A10) into Eqs. (23) and (24) we
get the well-known expressions for the Faraday rotation and
ellipticity [37–41,59]:

β = 1
2φ′, (A11)

sin 2κ = tanh φ′′, (A12)

where φ = φ′ + iφ′′ is given by Eq. (20). This is in agreement
with formulas presented in Refs. [39,40].

APPENDIX B: ELLIPSE OF POLARIZATION
AND STOKES PARAMETERS

It is known that [60] the ellipse of polarization can
be described in two ways: in arbitrary axes x, z or in the
ellipse axes ξ , η (see Fig. 8). In the first case we use ratio of the
amplitudes |Ex | and |Ez| [ψ = arctan(|Ex |/|Ez|)] and phase

(a)

(b)

FIG. 8. (Color online) Ellipse of polarization. (a) Input; (b) output.
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shift δ = δx − δz. In the second case we use ratio of the minor
to major axes eη to eξ [i.e., ellipticity κ = ± arctan(eη/eξ )]
and the angle β of the major axis of the ellipse with respect to
the x axis. Between these two pairs ψ , δ, and κ , β there exist
several useful trigonometric relations. For example [60],

tan 2β = − tan 2ψ cos δ, (B1)

sin 2κ = sin 2ψ sin δ. (B2)

Since tan 2ψ can be expressed through tan ψ , we can rewrite
Eq. (B1) as follows: tan 2β = −2[tan ψ/(1 − tan2 ψ)] cos δ.

Similarly, we can use the equality sin 2ψ =
2 sin ψ cos ψ/(cos2 ψ + sin2 ψ) = 2 tan ψ/(1 + tan2 ψ).

The rotation angle β and the ellipticity κ can be also found
from expressions

β = 1

2
arctan

(
S2

S1

)
, 0 � β � π, (B3)

κ = 1

2
arcsin

(
S3

S0

)
, − π

4
� κ � π

4
, (B4)

where S0, S1, S2, S3 are the Stokes parameters [42,61,62]:

S0 = E2
0x + E2

0z, (B5)

S1 = E2
0x − E2

0z, (B6)

S2 = 2E0xE0z cos δ, (B7)

S3 = 2E0xE0z sin δ. (B8)
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