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Analytical approach to excitonic properties of MoS2
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We present an analytical investigation of the optical absorption spectrum of monolayer molybdenum-disulfide.
Based on the density matrix formalism, our approach gives insights into the microscopic origin of excitonic
transitions, their relative oscillator strength, and binding energy. We show analytical expressions for the
carrier-light coupling element, which contains the optical selection rules and describes well the valley-selective
polarization in MoS2. In agreement with experimental results, we find the formation of strongly bound
electron-hole pairs due to the efficient Coulomb interaction. The absorption spectrum of MoS2 features two
pronounced peaks corresponding to the A and B exciton. For MoS2 on a SiO2 substrate, these are characterized
by binding energies of 455 meV and 465 meV, respectively. Our calculations reveal their relative oscillator
strength and predict the appearance of further low-intensity excitonic transitions at higher energies. The presented
approach is applicable to other transition metal dichalcogenides and can be extended to investigations of trion
and biexcitonic effects.
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Transition metal dichalcogenides (TMDs) build a new
class of layered two-dimensional materials with remarkable
optical and electronic properties [1]. They show a crossover
from indirect- to direct-gap semiconductors depending on the
thickness of the material [2–5]. Furthermore, they are char-
acterized by a strong spin-orbit coupling that in combination
with the circular dichroism [6,7] enables selective valley and
spin polarization [8–13]. This makes TMDs interesting for
both fundamental research and technological applications [1].
In particular, monolayer molybdenum disulfide (MoS2) has
been intensively studied in the past years. It consists of
Mo atoms sandwiched between two layers of S atoms; cf.
Fig. 1(c). Viewed from above, the structure builds a hexagonal
lattice with alternating covalently bonded molybdenum and
sulfur atoms; cf. Fig. 1(b). Similar to graphene, MoS2 shows
strong many-body interactions resulting in a variety of physical
phenomena [14–17].

In contrast to the bulk MoS2, the monolayer material
exhibits a direct gap giving rise to a strong photoluminescence,
which is characterized by tightly bound excitons and even trion
features have been observed [10]. So far, the experimental
data [10,13,15,18–22] has been complemented by a few calcu-
lations that significantly vary in their predictions with respect
to the excitonic effects [23–29]. Exploiting the Bethe-Salpeter
equation combined with the G0W0 approximation, Ramasub-
ramaniam et al. [23] predicted the appearance of strongly
bound excitons with a binding energy in the range of 1 eV. This
is in agreement with the estimation by Cheiwchanchamnangij
et al. [24] that relies on the Mott-Wannier effective-mass
theory. Recently, Molina-Sanchez et al. [26] and Qiu et al. [29]
provided well converged optical spectra in the framework of
Bethe-Salpeter including the spin-orbit coupling. Both studies
reproduce well the positions of experimentally observed peaks,
however, they significantly differ in the predicted excitonic
binding energies.

*g.berghaeuser@tu-berlin.de

In this article, we present an analytical solution to the
excitonic absorption spectrum of MoS2. Based on the density
matrix formalism, we derive the Wannier equation providing
access to eigenvalues including higher excitonic transitions as
well as excitonic eigenfunctions shedding light on the relative
intensities of the single transitions. Our goal is a thorough
understanding of the excitonic absorption spectrum of MoS2

and related structures.
We focus on optical transitions between the energetically

lowest conduction and the energetically highest valence band.
DFT calculations [30–36] show that in the vicinity of the
optically relevant K points, the valence band is mainly formed
by the 1/

√
2(dx2+y2 ± idxy) orbitals of the molybdenum atoms

with a small influence of 1/
√

2(px ± ipy) orbitals of the
sulfur atoms. In contrast, the conduction band is dominated
by dz2 orbitals of the Mo atoms with a minor influence of
1/

√
2(px ± ipy) orbitals of the S atoms. Here, + and − refer

to orbitals forming the K and the K′ point, respectively. For a
lattice with 2N atoms, we assume the following tight-binding
ansatz for the electronic wave function:

�λsξ (k,r) = 1√
N

∑
j=Mo,S

C
λsξ

jk

N∑
Rj

eik·Rj φ
λsξ

j (r − Rj ), (1)

with φ
λsξ

j (r − Rj ) as the linear combination of the relevant
atomic orbitals mentioned above. Here, Rj denotes the coor-
dinates of the atoms in the sublattice j built by molybdenum
and sulfur atoms, and ξ stands for the K and the K′ point,
respectively. The coefficients C

λsξ

jk determine the weight of the
single contributions stemming from different orbital functions.
They depend on the two-dimensional momentum k and the
index λs , denoting either the valence (vs) or the conduction
bands (cs) with the spin s = ↑ or =↓. The top view on the
MoS2 lattice reveals a hexagonal structure that similar to
graphene consists of two sublattices; cf. Fig. 1(b). However,
while in graphene they are formed by carbon atoms, in MoS2

one sublattice is built by molybdenum and the other by
sulfur atoms. Therefore, in contrast to graphene the inversion
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FIG. 1. (Color online) (a) Band structure of MoS2 in the vicinity
of the K valley. Note that at the K′ point, the spin-up and spin-
down states are reversed. The arrows schematically indicate the
allowed optical transitions leading to A and B excitons in optical
spectra. Due to Coulomb-induced electron-hole interaction, the bound
excitonic states are located below the conduction band reflecting
the corresponding excitonic binding energies. (b) Top view on the
hexagonal lattice of MoS2 lying in the xy plane. (c) Side view on the
MoS2 structure illustrating the Mo layer sandwiched between the two
sulfur atom layers.

symmetry is broken giving rise to a band gap opening at the
K and K′ points; cf. Fig. 1(a). The side view shows that the S
atoms build two separate layers with a distance of ±0.15 nm
with respect to the Mo layer, as shown in Fig. 1(c).

To obtain the electronic dispersion relation we solve the
Schrödinger equation H0�

λsξ = ελs �λsξ with the Hamilton
operator H0 = Hkin + HSO. Here, Hkin = p̂2/(2m0) describes
the free-particle energy with the momentum operator p̂ and
the free electron mass m0, while HSO = U (r)L · S denotes the
spin-orbit coupling (SOC) within the two-center approxima-
tion. Here, L and S stand for the momentum and the spin oper-
ator, respectively, while U (r) = 1

2m0c2r
dVr

dr
describes the radial

dependence of the SOC Hamilton operator with Vr correspond-
ing to the spherical electrostatic potential and c denoting the
speed of light. Since the explicit form of the radial dependence
of the molybdenum and sulfur orbitals is unknown, the
integration of the radial component will be fixed to the values
obtained from experimental data, as discussed below.

Since the orbitals have different symmetries at the K
and K′ point, we solve the Schrödinger equation around
both points separately. The two sublattices lead to a set
of four linear equations. In our nearest-neighbor approach
we assume that 〈φλsξ

j (r − Rj )|φλsξ

i (r − Ri)〉 = δj,i is a
good approximation, i.e., the overlap of orbital functions
of neighboring sides is neglected. Furthermore, we take
into account only the nearest-neighbor hopping integrals
tλs = 〈φλsξ

j (r − Rj )|Hkin|φλsξ

i (r − Ri)〉. Then, we obtain an
analytical expression for the electronic band structure in the
vicinity of the K and K′ points reading

ε
λs

k,ξ = ± 1
2

√(
	ε

λs

ξ

)2 + 4|tλs |2f (k), (2)

with ξ denoting the solution for the K and K′ valley.
Furthermore, λs = v↑,v↓,c↑,c↓ stands for the valence (v)
and the conduction (c) band as well as the spin-up (↑) and
the spin-down states (↓). The + solution is valid for the
conduction and the − solution for the valence bands.

The momentum dependence of the band structure is given
by the function

f (k) = 3 + 2 cos(ky) + 4 cos(ky/2) cos(
√

3kx/2)

stemming from the phase eik·Rj in the tight-binding wave
function in Eq. (1). Here kx,ky are the Cartesian coordinates
of the two-dimensional momentum k given in units of the
lattice vector a0 = 0.318 nm [23]. The function contains
the trigonal warping effect describing the deviation of the
equienergy contour from a circle around the K and K′ points
in the Brillouin zone [31–34]. Since this effect does not have
a qualitative influence on excitonic effects, we simplify the
electronic band structure from Eq. (2) by using a Taylor
expansion for small momenta leading to

ε
λs

k,ξ ≈ ±
(

	ε
λs

ξ

2
+ 3|tλs |2

4	ε
λs

ξ

k2

)
. (3)

This parabolic band structure has already been shown to be
a good approximation in the optically relevant energy region
around the K and K′ points [30,36]. The tight-binding hopping
integrals tλs determine the curvature of the electronic band
structure; cf. Eq. (3). The values tvs and t cs are fixed such that
we obtain first-principle values [31–34] for the effective mass
of the valence band mv

eff = 0.62m0 and of the conduction band
mc

eff = 0.48m0. The spin-dependent band gap 	ε
λs

ξ = εgap +
ξελs

soc consists of the band gap energy εgap and the spin-orbit
splitting ελs

soc, where ξ = +,− denotes the K and K′ points,
respectively. As a result, the spin-up (down) electronic state
is energetically raised (lowered) by the spin-orbit coupling
at the K point and lowered (raised) at the K′ point [2,3].
The broken inversion symmetry in MoS2 gives rise to the
spin-independent band gap εgap = 2.84 eV that is given by the
on-site energy difference of the molybdenum and the sulfur
atoms [23,24,29]. Both the valence and the conduction band
are split due to the efficient spin-orbit coupling; however, the
underlying processes are of different order [36]. Consequently,
the valence band splitting of εvs

soc = 160 meV is two orders
of magnitude larger than the conduction band splitting of
εcs

soc = 3 meV [3,5,9,33]. Figure 1 illustrates the obtained
electronic band structure in the region around the K point. It
consists of four parabolic bands stemming from the spin-orbit
coupling that splits the valence and conduction band each in
two separate spin-up and spin-down bands. We find that the
spin-orbit coupling also renormalizes the effective masses of
spin-up and spin-down valence bands leading to m

v↓
eff = 0.66

and m
v↑
eff = 0.575; cf. Eq. (3). This is in good agreement with

the results of Kormányos et al. [33]
Solving the Schrödinger equation, we also obtain the

eigenfunctions of electrons in MoS2. Assuming that they are
normalized, we find for the tight-binding coefficients

C
λsξ

Mo,k = C
λs

S,kg
λsξ

k , C
λsξ

S,k = ±1√
1 + ∣∣gλsξ

k

∣∣2
,
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where g
λsξ

k = tλs e(k)/(
	ε

λs
ξ

2 − ε
λs

k,ξ ) and e(k) = ∑3
j eik·bj with

bj connecting the nearest-neighbor atoms; cf. Fig. 1(b).
Having determined the wave functions, we can now calcu-
late the coupling elements. The carrier-light matrix element
Mvscsξ (k) = 〈�vsξ (k,r)|p|�csξ (k,r)〉 is given as the expec-
tation value of the momentum operator p = −i�∇ [37,38].
Exploiting the nearest-neighbor tight-binding wave functions
[cf. Eq. (1)], we obtain the Cartesian components of Mvscsξ (k)
in x(y) direction,

M
vscsξ

x(y) (k) = MC
vξ∗
Mo,kC

csξ

S,k

3∑
l

bl,x(y)e
ik·bl

−MC
vξ∗
S,k C

csξ

Mo,k

3∑
l

bl,x(y)e
−ik·bl , (4)

with the abbreviation M = e
√

3
a0

〈φvsξ

j (r − Rj )|px |φcsξ

i (r −
Ri)〉 for the nearest-neighbor orbital overlap. While molyb-
denum orbitals forming the valence and the conduction bands
have the d symmetry, the sulfur orbitals are of p type. Due
to the Laporte rule [39], we expect the main contribution
to the optical absorption to stem from transitions between
p and d orbitals. For such transitions, the azimuthal quantum
number changes by one, i.e., 	ml = ±1. They can be optically
excited by applying circularly polarized light, which carries
an azimuthal quantum number of ml = ±1 depending on the
polarization direction. In this study, we focus on the qualitative
features in the optical spectra of MoS2, i.e., we do not aim for
the absolute values of the carrier-light coupling. Since we are
interested in the momentum dependence of the optical matrix
element and since we want to keep the number of tight-binding
parameters as small as possible, we set all overlap integrals
appearing in M to one.

The excitation pulse is characterized by the vector potential
A = A0 exp( t2

2σ 2
t

)[cos(ωt)ex + sin(ωt)ey] with the amplitude
A0 determining the excitation strength and σt denoting
the pulse width. Projecting the optical matrix element in
the polarization direction, we can express the carrier-light
coupling by a linear combination of the Cartesian components
M

vscsξ
x (k) and M

vscsξ
y (k). For right- (σ−) and left-handed (σ+)

circularly polarized light, we find Mvscsξ
σ± (k) = M

vscsξ
x (k) ±

iM
vscsξ
y (k) [8]. Figures 2(a) and 2(b) illustrate the optical

matrix elements Mvscsξ
σ+ (k) and Mvscsξ

σ− (k), respectively. We
can clearly observe that the carrier-light coupling strongly
differs for different polarization of the light: For right-handed
circularly polarized light σ−, it exhibits maxima at the K points,
while it vanishes at the K′ points; cf. Fig. 2(a). The behavior is
inverse for left-handed circularly polarized light σ+, as shown
in Fig. 2(b). Furthermore, the matrix element shows similar
to the dispersion relation a strong trigonal warping effect
reflecting the threefold symmetry of the nearest neighbors in
the real space lattice; cf. Fig. 1(b). The appearing triangles
in the optical matrix element show a different orientation
depending on the polarization of light.

Figures 2(c) and 2(d) illustrate the absorption spectrum of
MoS2 in the spectral region of the K and K′ valley, respectively,
after optical excitation with right- (σ−) and left-handed (σ+)
circularly polarized light. The carriers occupying the K valley

FIG. 2. (Color online) Optical matrix element projected in the
direction of (a) right- (σ−) and (b) left-handed (σ+) circularly
polarized light. The corresponding absorption spectra in the spectral
region of the (c) K and (d) K′ valley after optical excitation with σ−
and σ+ light, respectively. The figure illustrates a pronounced valley-
selective polarization, i.e., the excitation with right-(left-)handed
circularly polarized light only leads to an absorption at the K (K′)
point.

only couple to the σ− light leading to pronounced peaks in
the absorption spectrum. The excitation with σ+ light does
not lead to any absorption due to the vanishing optical matrix
element; cf. Fig. 2(a). In contrast, at the K′ valley, the behavior
is reverse and we only observe pronounced peaks after the
excitation with σ+ light. This valley-selective polarization has
also been observed in experiments and enables the full control
of the valley and spin occupation by optical excitation with
circularly polarized light suggesting the application of MoS2

in valleytronics [8–13].
The absorption spectra in Figs. 2(c) and 2(d) are charac-

terized by strongly pronounced excitonic Lorentzian-shaped
resonances reflecting the efficient Coulomb interaction in
MoS2. Similar to graphene [40] or carbon nanotubes [41,42],
the Coulomb interaction is known to be particularly important
in monolayer TMDs due to their low-dimensionality and the
relatively weak screening in such one-atom thick materials.
Therefore, we extend the Hamilton operator by the Coulomb
interaction to account for the Coulomb-induced features in the
absorption spectrum yielding in second quantization [43]

Hc = 1

2

∑
k,k′,q

∑
λsλ′

s

a
†
k,λs

a
†
k′,q,λ′

s
ak′+q,λ′

s
ak−q,λs

V
λsλ

′
s ξ

k,k′,q ,

with the Coulomb matrix element

V
λsλ

′
s ξ

k,k′,q = �
λsλ

′
s ξ

k,k′,qVq,

the annihilation and creation operators a
†
k,λs

and ak,λs
, the

momenta k,k′, and the band indices λs,λ
′
s of the involved
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electronic states. The Coulomb matrix element is determined
by the tight-binding coefficients,

�
λλ′ξ
k,k′,q =

∑
j,f =S,Mo

C
λsξ∗
f,k C

λ′ξ∗
j,k′ C

λ′ξ
j,k′+qC

λsξ

f,k−q,

and the Fourier-transformed two-dimensional Coulomb poten-
tial

Vq = e2

ε0εsL2

1

|q|(1 + r0|q|) , (5)

including the sample size L2, the vacuum permittivity ε0,
and the dielectric constant εs = ε1 + ε2 that accounts for
the screening from the surrounding media above (ε1) and
below (ε2) the investigated monolayer MoS2. The form of the
Coulomb potential corresponds to the expression derived by
Keldysh and Cudazzo [44,45], including a consistent descrip-
tion of substrate-induced screening in quasi-two-dimensional
nanostructures with a thickness d. The latter determines
the screening length r0 = dε/εs , where ε = ε⊥ is assumed
to be the in-plane component of the dielectric tensor of
the bulk material [27,44,45]. In the limiting case of small
momentum transfers |q|, Eq. (5) corresponds to the regular 2D
Coulomb potential. In this work, we perform calculations on
free-standing MoS2 (ε1 = ε2 = 1) and for MoS2 on the silicon
dioxide substrate (ε1 = εvac = 1,ε2 = 3.9) [46]. To account
for the thickness d of the MoS2 layer, we consider the distance
between the two sulfur atoms in the direction perpendicular to
the layer (d ≈ 0.318 nm) [17,27].

Now, we have all ingredients including the electronic band
structure, the optical coupling element, and the Coulomb
matrix element to calculate the excitonic absorption spectrum
of MoS2. To obtain the absorption coefficient α(ω), we need to
know the temporal evolution of the microscopic polarization
p

csvs

k = 〈a†
k,cs

ak,vs
〉, which is a measurement for the optical

transitions of electrons in the state k between the valence (vs)
and the conduction (cs) band [38,40]. Exploiting the Heisen-
berg equation of motion [43], we derive the semiconductor
Bloch equation for the microscopic polarization yielding

i�ṗ
csvs

k,ξ (t) = ε̃s
k,ξp

csvs

k,ξ (t) − (
f

cs

kξ − f
vs

kξ

)
�k(t). (6)

Here, we used the cluster expansion to truncate the many-
particle hierarchy problem on the Hartree-Fock level [43,47].
The Coulomb interaction leads to the renormalization
of the band gap energy resulting in ε̃s

k,ξ = ε
cs

k,ξ − ε
vs

k,ξ −∑
k′(f

cs

k′ξV
cscs

k,k′,q − f
vs

k′ξV
vsvs

k,k′,q) and to the renormalization

of the Rabi frequency resulting in �k = Mvscsξ

±k · A(t) +∑
k′ V

exc
k,k′,qp

csvsξ

k′,ξ (t). Here, we introduced the abbreviation

V exc
k,k′,q = V

λsλ
′
s ξ

k,k′,q for λs �= λ′
s expressing the electron-hole

contribution of the Coulomb interaction. Focusing on linear
optics, where the optical perturbation is weak, we can assume
for an undoped system in equilibrium f

cs

kξ = 0 and f
vs

kξ = 1
neglecting thermal occupations. Since the band gap energy has
been fixed according to first-principle calculations including
the GW approximation [26], the Coulomb-induced energy
renormalization is already taken into account.

To get insights into the intrinsic properties of the system,
we first investigate the homogeneous solution of Eq. (6), which

defines the eigenvalue problem

ε̃s
k,ξ θ

s
νξ (k) −

∑
k′

V exc
k,k′,qθ

s
νξ (k′) = Es

νξ θ
s
νξ (k) (7)

corresponding to the well-known Wannier equation [43,47].
The eigenvalues Es

νξ present solutions of the excitonic
problem giving access to the spectral position as well
as the binding energies of the s-like excitonic states.
The excitonic wave functions θs

νξ (k) determine the oscil-
lator strength of the excitonic transitions appearing in the
absorption spectrum. The absorption coefficient α(ω) is
proportional to the imaginary part of the susceptibility χ (ω),
which can be expressed via the macroscopic current density
j (ω) [38]. The latter is directly determined by the microscopic
polarization p

csvs

kξ (t). With the solution of Eq. (7), we can
express the microscopic polarization by transforming Eq. (6)
using the relations p

csvs

kξ (t) = ∑
ν p

csvs

νξ (t)θs
νξ (k) and p

csvs

νξ (t) =∑
k p

csvs

kξ (t)θs∗
νξ (k) [47]. The new quantity p

csvs

νξ (t) depends on
the excitonic eigenvalues and can be expressed analytically in
the frequency domain yielding

p
csvs

νξ (ω) =
∑

k M
vscsξ
σ± (k)A(ω)θs

νξ (k)

Es
νξ − �ω − iγ

. (8)

Finally, we obtain for the absorption coefficient the analytical
expression [43,47]

α(ω) = 1

ε0εrω
Im

⎡
⎣∑

νξ,s

�s
νξ

Es
νξ − �ω − iγ

⎤
⎦ . (9)

This equation corresponds to the Elliot formula, which
describes the macroscopic answer of the system to an external
optical perturbation [43,47]. Note that we have introduced a
phenomenological dephasing rate γ = 25 meV to account for
higher correlation terms neglected on the Hartree-Fock level.
This rate determines the width of transition peaks appearing in
the absorption spectrum; however, it does not have any influ-
ence on their position or the excitonic binding energy. We find
that the oscillator strength of the peaks in the absorption spec-
trum is determined by the square of the optical matrix element
M

vscs± (λ,φ) and the sum over excitonic wave functions �s
νξ =∑

k θs
νξ (k,σ )Mvscsξ

σ± (k)
∑

k′[θs
νξ (k′)Mvscsξ

σ± (k′)]∗. The eigenval-
ues Es

νξ of Eq. (7) appearing in the denominator of the Elliot
formula determine the position of the excitonic peaks as well
as their binding energy.

The absorption spectrum of MoS2 features pronounced
peaks clearly arising from excitonic transitions, as free-particle
band-to-band transitions in a two-dimensional material give
steps in absorption; cf. Figs. 3(a) and 3(b). The appearing
two peaks stem from transitions between the two energet-
ically highest spin-split valence bands to the energetically
lowest conduction band; cf. Fig. 1(a). The energetically
lower (higher) transition is denoted as the A (B) exciton
in literature [3]. In the case of free-standing MoS2, i.e.,
without considering a substrate-induced dielectric background
screening of the Coulomb potential, the A exciton is located
at 1.9 eV and the B exciton at 2.04 eV. We also calculate
the Coulomb-renormalized band-to-band transitions in the
absorption spectrum to be able to determine the excitonic
binding energies EA

1s,b = 860 meV and EB
1s,b = 870 meV; cf.
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FIG. 3. (Color online) Absorption spectrum of the free-standing
MoS2 focusing on the well-pronounced (a) A and (b) B exciton
arising from the transition from the two energetically highest spin-
split valence bands to the energetically lowest conduction band,
respectively. The corresponding excitonic binding energies E

A/B

1s,b can
be directly read off from the difference to the free-particle transitions;
cf. the black lines. Note that we have doubled the free-particle
absorption intensity for better visibility throughout the paper. Higher
excitonic transitions with binding energies E

A/B

2s,b and E
A/B

3s,b can also
be observed. The corresponding eigenfunctions θs

νξ (k) of 1s and 2s

excitons are shown in (c) and (d), respectively. They determine the
oscillator strength of the excitonic transitions.

the arrows in Figs. 3(a) and 3(b). The difference of 10 meV
can be traced back to the unequal effective masses of the
spin-split valence bands. Our results are in good agreement
with recent first-principle calculations by Ramasubramaniam
et al. [23] and Qiu et al. [29] predicting values in the range of
1 eV. The relatively smaller value obtained in an effective-mass
approach by Berkelbach et al. [27] can be traced back to a
stronger screening in their model.

Besides the two main A and B peaks, we also observe fur-
ther higher excitonic resonances with a much smaller intensity.
In analogy to the Rydberg series in the hydrogen atom, each
exciton transition splits into a series of optically active exciton
states. In the absorption spectrum of MoS2, we observe the 2s

excitonic resonances that are located at 0.5 eV above the A and
B excitons (corresponding to the 1s transitions), respectively.
They show a weak intensity that is by one magnitude smaller
than the corresponding 1s transitions. Their excitonic binding
energy E

A/B

2s,b is in the range of 400 meV. To investigate the
relative oscillator strength of the observed peaks, we plot the
excitonic eigenfunctions θs

νξ (k) found as a solution of Eq. (7).
Figure 3(c) reveals that the eigenfunction of the B exciton
is slightly higher. We can trace this behavior back to the
difference in the effective mass m∗

λs
of the involved electronic

bands λs . Our calculations show that the oscillator strength is
enhanced for increasing m∗

λs
. Due to the spin-orbit coupling,
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FIG. 4. (Color online) Excitonic absorption spectrum of MoS2

on a silicon substrate. Compared to free-standing molybdenum
disulfide shown in Fig. 3, the excitonic binding energy is strongly
reduced to EA

1s,b = 455 and EB
1s,b = 465 meV due to the substrate-

induced screening of the Coulomb interaction.

the effective mass of the energetically higher valence band
is larger, giving rise to a larger oscillator strength of the B
exciton. However, this effect is almost completely canceled
due to the 1/ω dependence of the absorption coefficient [cf.
Eq. (9)], which suppresses energetically higher transitions. As
a result, the absorption spectrum shows that both peaks have
nearly the same oscillator strength.

To compare our results with the recent experimental
data [10], we study the absorption spectrum of MoS2 on the
silicon dioxide substrate. The latter gives rise to an efficient
screening of the Coulomb potential affecting the position and
the binding energy of excitonic transitions. The corresponding
absorption spectrum is shown in Fig. 4. Compared to free-
standing MoS2, the excitonic binding energies are reduced
to EA

1s,b = 455 and EB
1s,b = 465 meV. Our calculations could

not reproduce the measured relative oscillator strength of
the A and B excitons. While in the experiment, the A
exciton is higher in intensity, our theoretical spectra show
nearly the same oscillator strength for both excitons. This
might be due to the higher-order effects beyond the con-
sidered Hartree-Fock approximation and will be studied in
future work.

In conclusion, we have presented an analytical description
of the excitonic absorption spectrum of the MoS2 monolayer.
Our approach is based on the density matrix formalism
allowing a consistent treatment of the carrier-light and carrier-
carrier interaction on microscopic footing. We investigate the
formation of bound electron-hole pairs and their influence
on the absorption spectrum of MoS2. In agreement with
experimental data, our calculations show the possibility of
valley-selective polarization as well as the appearance of
strongly pronounced A and B excitons with binding energies
in the range of few hundreds of meV. Furthermore, we
predict the occurrence of still unobserved higher excitonic
transitions characterized by much lower intensities. Moreover,
we investigate the impact of the excitonic eigenfunctions
on the relative oscillator strength of the excitonic peaks
as well as the influence of substrate-induced screening
on the excitonic binding energies. Our approach can be
applied to the optical properties of other transition metal
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dichalcogenides as well as extended to investigations of the
nonequilibrium carrier dynamics beyond the Hartree-Fock
level [48,49].
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85, 1 (2012).

[26] A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, and
L. Wirtz, Phys. Rev. B 88, 045412 (2013).

[27] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Phys.
Rev. B 88, 045318 (2013).

[28] Q. C. Sun, L. Yadgarov, R. Rosentsveig, G. Seifert, R. Tenne,
and J. L. Musfeldt, ACS Nano 7, 3506 (2013).

[29] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett.
111, 216805 (2013).

[30] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[31] F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo, AIP Adv. 3,
052111 (2013).

[32] F. Parhizgar, H. Rostami, and R. Asgari, Phys. Rev. B 87, 125401
(2013).
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