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Ground-state degeneracy for Abelian anyons in the presence of gapped boundaries
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Gapped phases with long-range entanglement may admit gapped boundaries. If the boundary is gapped,
the ground-state degeneracy is well defined and can be computed using methods of topological quantum field
theory. We derive a general formula for the ground-state degeneracy for Abelian fractional quantum Hall phases,
including the cases when connected components of the boundary are subdivided into an arbitrary number of
segments, with a different boundary condition on each segment, and in the presence of an arbitrary number of
boundary domain walls.
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I. INTRODUCTION

The simplest fractional quantum Hall phases with ν = 1/p

are characterized by the presence of chiral gapless edge
modes [1,2]. Being chiral, these modes cannot be gapped by
any boundary perturbation. However, more general FQH states
may have nonchiral edge states which can be lifted. In such
cases both the bulk and the boundary are gapped, and one may
pose the question of computing the ground-state degeneracy
of such a system. A macroscopic quantum degeneracy would
be of particular interest if it occurred in a system with a simple
topology, such as a disk or an annulus, since such a system
would be easier to realize experimentally.

The simplest possibility is to impose the same boundary
condition along each connected component of the boundary.
One may also place quasiparticles both in the bulk and
on the boundary. However, one can show that for Abelian
systems this does not lead to quantum degeneracy unless the
geometry is nonplanar (and thus hard to realize in practice).
More generally, one can consider the situation when each
connected component has several segments, with different
boundary conditions on each segment and with boundary
domain walls separating the segments. A boundary domain
wall may be regarded as a quasiparticle sitting at the junction
of two different kinds of gapped boundaries. We will see that
using boundary domain walls it is possible to create a quantum
ground-state degeneracy even in a very simple geometry, like
a disk. Examples of this kind were recently given in [3,4].
Our results go beyond those in [3,4] in several respects. The
method of [3,4] was geared towards a rather special case where
the geometry is that of a polygon with an even number of
sides, only two boundary conditions M and M ′ are involved,
and they are imposed in an alternating manner: MM ′MM ′ . . . .
We consider the case of a polygon with an arbitrary number of
sides and with an arbitrary set of boundary conditions imposed.
(In fact, we also explain how to compute the degeneracy in
the case when the geometry is that of a genus-g Riemann
surface with h holes, but this is of less practical interest.)
Second, while the method of [3,4] was based on identifying
a noncommutative operator algebra acting on the space of
ground states and then studying its irreducible representations,
we give a closed formula for the number of ground states.

Macroscopic properties of Abelian FQH phases are
described by Abelian Chern-Simons theory [1,2] which
is a three-dimensional topological quantum field theory

(3d TQFT). Gapped boundary conditions correspond to
topological boundary conditions in TQFT; for Abelian Chern-
Simons theory they have been studied in [5–7] while a more
general theory based on fusion categories was developed
in [8,9]. The problem of computing the ground-state degener-
acy was previously addressed in [10], but only in the case when
there are no boundary domain walls. Our approach is based
on reducing the problem to a problem in 2d TQFT which can
then be analyzed using fairly standard methods.

II. ABELIAN CHERN-SIMONS THEORY

A. Bulk properties

This section is a review of Abelian Chern-Simons theory,
including topological boundary conditions, following [5,7].

Consider a general Abelian Chern-Simons gauge the-
ory with gauge group T � U (1)N [1]. The fields in this
theory are U (1) gauge fields Ai = Ai

μdxμ, where i =
1, . . . ,N and μ = 0,1,2. They have the usual gauge-
invariance

Ai
μ �→ Ai

μ + ∂μf i, (1)

where f i are arbitrary real functions which are allowed to be
multivalued, f i ∼ f i + 2π . The action is

S = Kij

4π

∫
M

εμνρAi
μ∂νA

j
ρ d3x. (2)

To ensure the invariance of exp(2πiS) under arbitrary gauge
transformations, the symmetric matrix K must be integral. For
the theory to be well-defined, K must also be non-degenerate.
Naively, since the action does not involve the metric, it defines
a TQFT. It turns out that on the quantum level this is true only
if the diagonal entries of K are even; otherwise the theory also
depends on the choice of spin structure on M [11,12]. For our
purposes this distinction will be unimportant, since we will be
mostly interested in topologically trivial spaces.

FQH effect (FQHE) quasiparticles are represented by
Wilson loops:

exp

(
i

∮
QiA

i
μdxμ

)
. (3)

Here Qi is the electric charge with respect to the ith component
of the gauge field. Since the gauge group is compact, Qi is an
integer. There are also monopole instantons. In Chern-Simons

1098-0121/2014/89(12)/125307(7) 125307-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.125307


ANTON KAPUSTIN PHYSICAL REVIEW B 89, 125307 (2014)

theory, a monopole with magnetic charge �i can absorb a
quasiparticle of charge Qi = Kij�

j . Thus the electric charge
is conserved only modulo vectors of the form Kij�

j , where the
vector �j is integral. Since K is nondegenerate, such vectors
form a finite-index subgroup in the lattice of all charges. The
quotient group is a finite group which we will denote D. Its
elements label quasiparticles which cannot disappear into the
vacuum.

Another way to explain why quasiparticles are labeled by
integer vectors Qi modulo the equivalence Xi ∼ Xi + Kij�

j

is to note that a quasiparticle with charge Qj creates a vortex
with holonomy

φi =
∮

Ai = 2π (K−1)ijQj , j = 1, . . . ,N. (4)

Since φi is periodically identified with period 2π , shifting
Qi by Kij�

j gives an equivalent holonomy. If a quasiparticle
is characterized by the holonomy it creates, then one has to
identify Qi and Qi + Kij�

j .
Taking a quasiparticle with charge Q′

i around a quasipar-
ticle with charge Qi multiplies the wave function by a phase

exp(2πiQ′
i(K

−1)ijQj ) = exp

(
i

2π
φ′iKijφ

j

)
. (5)

The braiding phase is unchanged if one replaces the charge
vector Q or Q′ by an equivalent one.

In many respects Abelian Chern-Simons theory resembles
a 3d gauge theory with a finite Abelian gauge group G. In the
latter theory, there are both “vortex” quasiparticles and electric
quasiparticles [13]. The former are labeled by their holonomies
which are elements of G, while the latter are labeled by
their charges which are elements of the Pontryagin-dual group
G∗. By definition, an element of G∗ is the character of an
irreducible representation of G.

Chern-Simons theory is very similar, except that electrically
charged quasiparticles are also vortices, so the two kinds of
quasiparticles are identified. The effective gauge group G can
be identified with the subgroup of U (1)N spanned by the
possible holonomies of electric quasiparticles., i.e., G is the
subgroup consisting of elements of the form (4). Equivalently,
G can be described as a subgroup of U (1)N consisting of phase
vectors 	 = φ1, . . . ,φN such that

exp(iφiKij�
j ) = 1 (6)

for any integer vector �j . We will see in the next section
that after compactification to 2d Abelian Chern-Simons theory
becomes ordinary 2d gauge theory with gauge group G. Note
that the finite group D whose elements label quasiparticles
can be thought of as the group of characters of G (i.e., the
Pontryagin dual G∗ of G). Indeed, given an integral vector Qi

we can associate to it a character exp(iφiQi). This character
depends only on the equivalence class of Q, and all characters
of G have this form.

B. Boundary properties

Elementary topological boundary conditions correspond to
special subgroups of D called Lagrangian subgroups [5,7]. By

definition, a Lagrangian subgroup L ⊂ D consists of charges
of quasiparticles which satisfy the following two properties:

(i) The braiding phase of any two quasiparticles in L is
trivial.

(ii) L is maximal, in the sense that any quasiparticle not in
L has a nontrivial braiding with at least one quasiparticle in L.

The physical meaning of L is this: its elements label
those bulk quasiparticles whose charges can be screened once
brought to the boundary. One can interpret this as the presence
of a condensate of quasiparticles with charges in L.

An equivalent way to characterize a boundary condition is
to ask which subgroup of the bulk gauge group is unbroken
on the boundary. An element 	 ∈ G belongs to the unbroken
subgroup H only if and only if all quasiparticles in L have
zero charge with respect to 	, that is, exp(iφiQi) = 1 for all
Q ∈ L. This implies that H consists of elements of the form
φi = 2π (K−1)ijQj , where Qj is an arbitrary vector in L. The
Lagrangian condition can be equivalently formulated in terms
of H ⊂ G instead of L ⊂ D, since the braiding phase (5) can
equally well be expressed in terms of the holonomy vector φi .

A Lagrangian subgroup always has order which is the
square root of the order of D [7]. Indeed, consider again the
map which sends a charge vector X ∈ D to the corresponding
group element in G, φi = 2π (K−1)ijXj . This map is an
isomorphism between D and G. Since G is the Pontryagin
dual of D, we get an isomorphism of D and D∗. Now let L
be a Lagrangian subgroup of D. The above map sends L to a
character of D which is trivial on L, by virtue of the first part
of the Lagrangian condition. That is, it maps L to (D/L)∗. The
second part of the Lagrangian condition implies that this map
is an isomorphism. Let |G| denote the order of a finite group
G. Since |D/L| = |D|/|L|, we conclude that |L|2 = |D|. Thus a
necessary condition for the existence of topological boundary
conditions is that the number of distinct bulk quasiparticles is
a square of an integer. The order of the unbroken gauge group
H is the same as the order of L, i.e.,

√|D| = √|G|.
A point where two segments of the boundary meet will

be called a boundary domain wall. The boundary conditions
on the two segments can be the same or different. Boundary
domain walls may be characterized by the electric charges they
carry, or equivalently by the holonomy of the U (1)N gauge field
along a small semi-circle enclosing the domain wall. If we take
the former viewpoint, then elementary boundary domain walls
correspond to integer vectors Qi modulo elements of the form
Kij�

j + Li + L′
j , where �i is an arbitrary integer vector, as

before, and Li and L′
i are arbitrary charge vectors which lie

in the subgroups L and L′, respectively [5]. Indeed, at the
boundary domain wall both condensates with charges in L and
L′ are present, and boundary domain walls which differ only
by the emission or absorption of the condensate particles are
indistinguishable.

Alternatively, we can associate to a quasiparticle with
charge Qi the corresponding holonomy (4) in the effective
gauge group G. Since the charge of the boundary domain wall
is defined only modulo elements in L and L′, the corresponding
holonomy is defined only modulo elements in the subgroups
H and H ′ corresponding to L and L′. In what follows we will
mostly use this alternative viewpoint and label an elementary
boundary domain wall by elements of G defined modulo
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elements of H and H ′. In mathematics, this is known as the
set of cosets of G with respect to the subgroup H + H ′.

We are interested in the situation when the spatial geometry
is that of a compact oriented 2-manifold 
 with a non-empty
boundary. Each boundary component �a is a circle and is
subdivided into segments �1

a, . . . ,�
Na
a . On a segment �i

a

one picks a Lagrangian subgroup Li
a ⊂ D, or equivalently

a Lagrangian subgroup Hi
a ⊂ G, while at the junction of

two consecutive segments �i
a,�

i+1
a one picks an element of

G/(Hi
a + Hi+1

a ). We are going to compute the dimension
of the space of states H of Abelian Chern-Simons theory in
this situation. It is equal to the ground-state degeneracy of the
corresponding FQHE system.

III. REDUCTION TO TWO DIMENSIONS

A. From 3d Chern-Simons to 2d gauge theory

Consider the path integral for 3d Chern-Simons theory
on 
 × S1, where 
 is a 2d manifold with a boundary. Its
partition function is equal to the dimension of the vector space
H
 . Hence we can rephrase the problem as follows. Consider
the 2d TQFT obtained by compactifying the Chern-Simons
theory on S1. Each topological boundary condition reduces to
a topological boundary condition in this 2d TQFT. Boundary
domain walls in 3d reduce to particular boundary-changing
operators in the 2d TQFT. The dimension of H
 is therefore
equal to the 2d topological correlator on 
.

Let us identify the 2d TQFT that one obtains by compact-
ification on a circle. Each 3d gauge field Ai gives rise to a
periodic scalar φi ∼ φi + 2π . This scalar is the holonomy of
Ai along S1, and periodic identification arises from gauge
transformations which have a nontrivial winding number on
S1. The components of Ai along 
 can be regarded as a 2d
gauge field which we denote by the same letter. On the classical
level, compactification is very simple: one simply considers
configurations of 3d gauge fields which are independent
of the circle coordinate and evaluates the action on such
configurations. The resulting 2d action is

S2 = 1

2π

∫



Kij ε
μνφi∂μAj

ν. (7)

This action describes a topological gauge theory with a
finite Abelian gauge group G ⊂ U (1)N . To see this, let us
dualize the scalars φi . To this end we note that φi enters only
through its derivatives hi

μ = ∂μφi . The vector field hi
μ has a

vanishing curl, so we can trade φi for hi
μ and a Lagrange

multiplier field χi whose equation of motion enforces the
vanishing of the curl of hi

μ. This leads to the following
equivalent action:

S ′
2 = −

∫



εμν
(
∂μχi − KijA

j
μ

)
hi

ν. (8)

There is a slight subtlety in that the vector field hi
μ must

satisfy an additional condition: its integral along any closed
curve must be an integer multiple of 2π . One can show that
this condition is enforced if χi is periodically identified with
period 2π , and one includes in the path-integral sectors with
all possible winding numbers for χi (see, e.g., [14,15]).

The fields transform under gauge transformations as fol-
lows:

χi �→ χi + Kijσ
j , Ai

μ �→ Ai
μ + ∂μσ i. (9)

where the functions σ i parametrize the gauge transformation.
Locally we can choose the gauge χi = 0. Since χi is periodi-
cally identified, this does not completely fix the gauge freedom:
we are left with constant gauge transformations σ i(x) = σ i

0
such that for all i we have

1

2π
Kijσ

j

0 ∈ Z. (10)

These are precisely gauge transformations which lie in the
subgroup G defined by (6). This means that in the gauge χi = 0
the gauge field is zero locally, but the transition functions must
be constant and take values in the subgroup G. Such a gauge
field is flat, and its holonomy takes values in G. Thus the
path-integral reduces to a sum over flat G connections. The
classical action vanishes on such configurations, so each term
in the sum has the same weight.

The weight is a bit subtle, since it requires specifying the
measure in the path integral. The usual normalization factor is
1/|G| [13]. It is determined as follows. One the one hand,
the partition function on a torus T 2 must be equal to the
dimension of the quantum space of states of the 2d theory on
S1. This dimension is |G|, since there are exactly |G| distinct
flat connections on S1, and each of them gives rise to a single
state in the quantum theory. On the other hand, the number of
flat connections on T 2 is |G|2, hence we need a normalization
factor 1/|G|.

However, this argument neglects the possibility that the
path-integral measure might depend on the geometry of 
.
Such dependence can be thought of as a local geometric term
in the action, i.e., a term which does not depend on the fields
but depend on the topology of 
. In 3d, there are no such
terms, but in 2d we can add to the action a geometric term

μ

2π

∫



R
√

gd2x = μχ (
), (11)

where χ (
) = 2 − 2g is the Euler characteristic of 
. Such
a term modifies the partition function by a factor eμ(2−2g) and
therefore does not contribute for 
 = T 2. To determine μ, we
need to consider nonflat 
. It is well known that the number
of states of the Abelian Chern-Simons theory on a genus-g
Riemann surface without boundary is |G|g [2]. On the other
hand, with the usual normalization factor 1/|G| the partition
function of the 2d topological gauge theory is the number of
flat G connections on 
 divided by |G|, i.e., |G|2g−1. They
agree for g = 1 but disagree for other g. This implies that
the dimensional reduction of Chern-Simons theory gives a 2d
gauge theory with a geometric term (11) and eμ = √|G|.

B. Bulk properties of the 2d gauge theory

The bulk properties of the 2d gauge theory with a
discrete Abelian gauge group G are very simple. Classical
configurations on a circle are labeled by the holonomy of the
discrete gauge field, therefore the quantum space of states has
dimension |G|. It has a distinguished basis eg , g ∈ G, where eg

is the quantum state corresponding to the holonomy g. Axioms
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of 2d TQFT say that there is a 1-1 correspondence between
states and local operator insertions [16,17]. By definition,
a local operator insertion corresponding to eg creates a
singularity in the gauge field with holonomy g. Axioms of
TQFT also tell us that local operators form a commutative and
associative algebra with respect to the usual operator product.
Clearly, fusing local operators eg and eg′ gives a singularity
with gauge field holonomy g + g′. Hence the product of eg

and eg′ is proportional to eg+g′ . Since the algebra of bulk local
operators is commutative, the multiplication law must have the
form

eg ◦ eg′ = f (g,g′)eg+g′ , (12)

where f (g,g′) is a function on G × G satisfying f (g,g′) =
f (g′,g). It is assumed that f (g,g′) �= 0 for all g,g′. Associa-
tivity of the operator product implies that f (g,g′) satisfies the
cocycle condition

f (g + g′,g′′)f (g,g′) = f (g,g′ + g′′)f (g′,g′′). (13)

Thus f is a 2-cocycle on G with values in the group of nonzero
complex numbers. It follows from the universal coefficients
formula that any such cocycle is a coboundary [18], that is,
there exists a function h(g) on G such that

f (g,g′) = h(g)h(g′)h(g + g′)−1. (14)

This means that by rescaling eg → h(g)eg one can remove
f (g,g′) so that the multiplication law becomes

eg ◦ eg′ = eg+g′ . (15)

This rule completely describes the algebra of bulk local
operators. This algebra is known as the group algebra of G.

An equivalent way to describe this algebra is to note that the
most general local operator

∑
g c(g)eg, c(g) ∈ C, depends on

a complex-valued function c(g) on G. Thus one can identify
the space of local operators with the space of such functions.
It is easy to see that the multiplication rule (15) for the
basis elements eg is equivalent to the following rule for the
multiplication of functions:

(c1 ◦ c2)(g) =
∑
g′∈G

c1(g′)c2(g − g′). (16)

That is, the product is given by the convolution of functions.
Note that the local operator eg0 corresponds to a function c(g)
which takes value 1 on g0 and is zero everywhere else. We will
denote such function δ(g − g0).

The local operator eg can be thought of as the dimensional
reduction of a quasiparticle in the 3d theory whose wordline
is a loop wrapping S1. Indeed, eg is a prescription to perform
a path integral over flat gauge fields whose holonomy around
the insertion point is g. Since a quasiparticle in 3d creates
precisely such a gauge field, its dimensional reduction must
be identified with eg , at least up to a numerical factor.

We can fix this normalization factor by computing the 2d
partition function on S2 with two operator insertions eg1 and
eg2 . From the 3d viewpoint, this must be the dimension of the
state space of Abelian Chern-Simons theory on S2 with two
quasiparticles with holonomies g1 and g2. Therefore we expect
to get δ(g1 + g2) (if the holonomies do not add up to zero,
the space is zero dimensional, otherwise it is one-dimensional

because the two quasiparticles can fuse together and annihilate
each other). The 2d path integral, including the normalization
factor eμχ , is

Z(g1,g2) = (
√|G|)2

|G| δ(g1 + g2) = δ(g1 + g2),

since there is a unique flat connection with prescribed
singularities if g1 + g2 = 0 and no flat connections otherwise.
Thus the operator eg is precisely the compactification of
an elementary quasiparticle in 3d, without the need for any
additional factors.

While in the case of discrete gauge theory one can perform
the sum over flat connections in the continuum, one can also
use a lattice model. To describe this model, let us foliow
Dijkgraaf and Witten [13] and pick a triangulation of 
,
or better yet, a cell decomposition of 
, since this allows
more flexibility. A cell decomposition of 
 is a graph whose
complement consists of several regions (2-cells). Edges of a
graph will be referred to as 1-cells, while vertices will be
referred to as 0-cells. We assume that each 1-cell has been
oriented in some way and place a variable g ∈ G on each
oriented 1-cell, so that reversing orientation changes g �→ −g.
These variables must satisfy the flatness constraint which says
that for any 2-cell P the signed sum of variables corresponding
to all 1-cells in the closure of P vanishes. The constraint ensure
the absence of “lattice vortices.” The partition function is the
sum over all choices of 1-cell variables satisfying the flatness
constraints, divided by the order of the gauge group. Gauge
transformations are G-valued functions on 0-cells, acting on
1-cell variables in an obvious manner. Finally, an insertion
of a local operator eg corresponds to modifying the flatness
prescription for a particular 2-cell so that 1-cell variables
sum to g instead of zero. We will find the lattice formulation
useful when we study the partition function in the presence of
boundaries and boundary domain walls.

IV. DISK CORRELATORS IN THE 2D TQFT

Topological boundary conditions in the topological 2d
gauge theory with gauge group G are labeled by repre-
sentations of G. A boundary condition corresponding to a
representation V is equivalent to placing a charged particle
in the representation V on the boundary. In other words, for
every boundary component labeled by V one inserts a Wilson
loop in the representation V . Elementary boundary conditions
correspond to irreducible representations of G. It is also easy to
describe boundary-changing operators: they are maps between
representations which commute with the action of G. However,
not all 2d boundary conditions arise by dimensional reduction
from 3d boundary conditions, and moreover an elementary 3d
boundary condition after compactification on a circle becomes
a sum of elementary 2d boundary conditions. For this reason
we focus on a special class of 2d boundary conditions labeled
by subgroups of G. Namely, for every subgroup H ⊂ G we
may consider a boundary where G is broken down to H ,
and no additional weights in the path integral. This can be
achieved by constraining both A and χ on the boundary.
From a representation-theoretic perspective, such a boundary
condition corresponds to a representation of G in the space of
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functions on G/H . In general it is a reducible representation.
In the Abelian case that we are discussing, the subgroup H

acts trivially on such functions, while the rest of the group acts
nontrivially. Thus a particle in such a representation breaks the
gauge group down to H .

We focus on these 2d boundary conditions because they are
more naturally related to 3d boundary conditions. Namely, as
explained in Sec. II B, a boundary condition in Abelian Chern-
Simons theory is completely determined by the unbroken
gauge group on the boundary. Note that the converse is not true:
a 2d boundary condition corresponding to a subgroup H can
be lifted to a 3d boundary condition only if H is a Lagrangian
subgroup of G. Nevertheless, since in the 2d computations the
Lagrangian condition does not play a role, we may leave H

arbitrary for now.
Consider now an oriented surface 
 with a nonempty

boundary. Each boundary component is a circle and may be
subdivided into segments so that there is a different boundary
condition on each segment. At each junction of two boundary
segments there is a boundary-changing operator. In the case of
interest for us these boundary-changing operators arise from
the boundary domain walls in the 3d theory, but this fact
is not important for the time being. Using the factorization
properties of 2d TQFT [16,17], one can replace each boundary
component with a local operator. This local operator can
be expanded in our preferred basis {eg}, and the expansion
coefficients are equal to the disk correlator with an insertion
of eg in the bulk. Thus our problem is reduced to evaluating
such disk correlators in the 2d TQFT.

As a preliminary step, we need to understand the 2d
interpretation of boundary domain walls. As explained in
Sec. II B, given two boundary conditions labeled by subgroups
H1 and H2, the set of boundary domain walls is G/(H1 + H2).
A boundary domain wall labeled by [g] ∈ G/(H1 + H2) has a
singularity in the gauge field with holonomy g. The holonomy
vector gi = ∫

Ai
μdxμ is defined only modulo elements in H1 +

H2 because the holonomy is measured along a semi-circle,
rather than a circle. Thus boundary gauge transformations will
shift g by elements in H1 + H2:

g �→ g + h2 − h1, h1 ∈ H1, h2 ∈ H2. (17)

Nevertheless, since H1 + H2 need not be the whole G, some
gauge-invariant information survives.

Upon reduction to 2d, each boundary domain wall gives rise
to a boundary-changing operator. Let us denote the boundary-
changing operator corresponding to x ∈ G/(H1 + H2) by ψx .
It turns out that any boundary-changing operator is a linear
combination of ψx for different possible x. If we think about ψx

as a function on G/(H1 + H2) which is equal to 1 on x and zero
elsewhere, then this is equivalent to saying that the space of
boundary-changing operators is the space of complex-valued
functions on G/(H1 + H2). Indeed, axioms of 2d TQFT [17]
tell us that the former space can be identified with the space
of states of the TQFT on an interval, with the boundary
conditions corresponding to H1 and H2 on the two ends. This
is a boundary version of the state-operator correspondence
familiar from 2d conformal field theory. Quantization of 2d
topological gauge theory on an interval is very simple: classical
configurations are labeled by the holonomy of G modulo
gauge transformations, that is, by elements of G/(H1 + H2),

H
g

(a) (b)

x12x21

H1

H2

g

FIG. 1. (a) A cellular decomposition of a disk, with an insertion
of a local operator eg in the interior of the 2-cell. (b) A cellular
decomposition of a disk, with an insertion of a local operator eg in
the interior of the 2-cell and two boundary-changing operators.

and each classical configuration gives rise to a quantum state.
Hence the quantum space of states is the space of functions on
G/(H1 + H2). It is easy to see that the dimension of the space
of boundary-changing operators is

|G|
|H1 + H2| = |G||H1 ∩ H2|

|H1||H2| . (18)

It is convenient to regard a function on G/(H1 + H2) as a
function on G which is invariant under translations by elements
of H1 and H2. Then one has

ψx(g) =
∑

g∈G,[g]=x

eg, x ∈ G/(H1 + H2).

The above arguments imply that the dimensional reduction of
a boundary domain wall labeled by x ∈ G/(H1 + H2) is given
by ψx(g), up to a normalization factor. The normalization
factor will be fixed below.

To evaluate disk correlators, let us begin with the case when
there are no boundary-changing operators, and accordingly
the whole boundary is labeled by a subgroup H . As usual,
the partition function can be evaluated by summing over all
flat connections and dividing by the order of the gauge group.
The only difference compared to the no-boundary case is that
variables living on 1-cells which lie on the boundary take
values in H , rather than in G, and the gauge transformations
at the boundary 0-cells also lie in H . We also need to multiply
the partition function by the factor eμ = √|G|, since the Euler
characteristic of the disk is 1. The simplest cell decomposition
of the disk depicted in Fig. 1(a) yields the following expression
for the partition function:

Z1a =
√|G|
|H | δ(g).

If H corresponds to a Lagrangian subgroup in D, this is equal
to δ(g), i.e., the 3d space of states is one-dimensional if g = 0
and zero otherwise. This is the expected result, confirming that
the partition function was normalized correctly.

Next we consider the case of a disk with two boundary
segments labeled by subgroups H1 and H2, a bulk insertion
eg and two boundary-changing operators which are obtained
from by dimensional reduction from boundary domain walls
in 3d [see Fig. 1(b)]. As explained above, a boundary domain
wall labeled by x ∈ G/(H1 + H2) reduces to a ψx , up to a
normalization factor. To fix the normalization factor, let us
compute the partition function corresponding to Fig. 1(b).
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g ∈ G

H1

H2

FIG. 2. In the lattice model, a boundary-changing operator ψx

corresponds to a special 1-cell separating two segments of the
boundary. One sums over all values of the variable g ∈ G living
on this 1-cell such that g corresponds to a fixed x ∈ G/(H1 + H2).

Following the above rules and taking into account only the
usual normalization factor

√|G|, we find

Z1b =
√|G|

|H1 ∩ H2|δ([g] + x12 + x21).

In particular, for g = 0 and x12 = −x21 the disk partition
function is equal to

√|G|/|H1 ∩ H2|.
On the other hand, the 3d version of the state-operator

correspondence (see, e.g., [19]) implies that for g = 0 the
space of states of the Abelian Chern-Simons theory corre-
sponding to Fig. 1(b) can be identified with the space of local
operators inserted at the boundary domain wall corresponding
to x12. This boundary domain wall is simply a Wilson line
(i.e., a charged quasiparticle) at the junction of two boundary
conditions. It has no internal degrees of freedom, therefore
there are no nontrivial local operators which can be inserted
there. (This is equivalent to saying that the boundary domain
wall is elementary.) Thus we expect Z1b = 1. To achieve this,
the dimensional reduction of the elementary boundary domain
wall must be ψx times the normalization factor

c12 =
√

|H1 ∩ H2|√|G| .

Note that this factor is 1 in the special case when H1 = H2 and
|H1| = √|G|.

We are now ready to compute the partition function on a disk
for an arbitrary number of boundary segments and arbitrary
boundary-changing operators. Boundary segments are labeled
by subgroups H1, . . . ,HN , while boundary-changing operators
are labeled by elements xi ∈ G/(Hi + Hi+1), i = 1, . . . ,N

with the convention HN+1 = H1. Including the normalization
factors explained above, we get

Z(x; g) = (
√

|G|)1−N/2
N∏

i=1

√|Hi ∩ Hi+1|
|Hi |

×
∑

gi ∈ G

[gi ] = xi

δ

(
g −

N∑
i=1

gi

)
.

In the case of interest to us, |Hi | = √|G| for all i, so we can
simplify this a bit to

Z(x; g) = (
√

|G|)1−3N/2
N∏

i=1

√
|Hi ∩ Hi+1|

×
∑

gi ∈ G

[gi ] = xi

δ

(
g −

N∑
i=1

gi

)
.

It is not at all obvious that this expression is an integer for
all conceivable Lagrangian subgroups. We will check this in a
few examples below.

V. EXAMPLES

Let us compute the ground-state degeneracy in several
special cases. First, if H1 = · · · = HN = H , we get

Z(x; g) = δ

(
[g] −

∑
i

xi

)
.

Here [g] ∈ G/H is the equivalence class of g ∈ G. Thus if
only a single elementary boundary condition is involved, the
state space is at most one-dimensional, regardless of the choice
of boundary domains walls.

Another simple but interesting case is when two boundary
conditions alternate: H1, then H2, then H1 again, etc. Suppose
there is a total of 2k of boundary segments, k ∈ N, so that all
boundary domain walls are labeled by elements of the same
set G/(H1 + H2). Then we find

Z(x; g) = δ

(
[g]12 −

∑
i

xi

) ( |H1|
|H1 ∩ H2|

)k−1

.

where [g]12 ∈ G/(H1 + H2) is the equivalence class of g ∈ G.
In particular, if H1 ∩ H2 = 0 (i.e., H1 and H2 are complemen-
tary subgroups of G), the degeneracy is |H1|k−1, provided all
charges cancel. This agrees with the computation in [3,4].

Finally, let us consider the case of three boundary segments.
For simplicity, let us consider the case of U (1) × U (1) Chern-
Simons theory with

K =
(

0 k

k 0

)
. (19)

This TQFT is equivalent to a lattice model known as Kitaev’s
toric code [20]. In this case D = G = Zk × Zk . Lagrangian
subgroups in G can be described as follows. First one picks an
integer m which divides k. Integers divisible by k/m constitute
a subgroupZm ofZk . Then it is easy to check that the subgroup
of Zk × Zk given by

Hm = {(n1,n2)|n1 = 0 mod k/m, n2 = 0 mod m}
is Lagrangian, and therefore gives rise to a gapped boundary
condition. Let us now pick three integers m1,m2,m3 which
divide k. They correspond to three boundary conditions labeled
by subgroups Hmi

. Elementary boundary domain walls are
labeled by

xi ∈ G/(Hmi
+ Hmi+1 ), i = 1,2,3.
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H1

H2

H2

H1

FIG. 3. A nontrivial degeneracy on a triangle can be obtained
by starting with a square with an alternating pattern of boundary
conditions and folding along the diagonal.

A short computation shows that the disk partition function is

Z(x; g) = δ([g − x1 − x2 − x3]123).

where [g]123 denotes the equivalence class of g ∈ G in
G/(Hm1 + Hm2 + Hm3 ). Thus there is no degeneracy in this
case.

One should not think, however, that nontrivial degeneracy is
impossible with only three boundary segments. For example,
one can take the disk with four boundary segments such there is
a nontrivial degeneracy and fold it along a diameter (see Fig. 3).

This gives a theory with a doubled gauge group on a disk
with three boundary segments. All boundary conditions and
boundary domain wall are elementary, yet there is a nontrivial
degeneracy (the same one as before folding).

VI. DISCUSSION

We have derived a general and easy-to-use formula for
the ground-state degeneracy of Abelian FQH systems in the
presence of gapped boundaries. It would be interesting to
generalize this computation to non-Abelian topological phases
in (2+1)d systems. A continuum gauge theory description
of such phases it not known, in general, but there exists a
Hamiltonian lattice model [8,21]. It should be possible to
reduce it to 2d and compute the partition function in the
resulting 2d TQFT.
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