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Transient carrier dynamics in a Mott insulator with antiferromagnetic order
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We study transient dynamics of hole carriers injected into a Mott insulator with antiferromagnetic long-range
order. This “dynamical hole doping” contrasts with chemical hole doping. The theoretical framework for the
transient carrier dynamics is presented based on the two-dimensional t-J model. The time dependencies of
the optical conductivity spectra, as well as the one-particle excitation spectra, are calculated based on the
Keldysh Green’s function formalism at zero temperature combined with the self-consistent Born approximation.
In the early stage after dynamical hole doping, the Drude component appears, and then incoherent components
originating from hole-magnon scattering start to grow. Fast oscillatory behavior owing to coherent magnon and
slow relaxation dynamics are confirmed in the spectra. The time profiles are interpreted as doped bare holes
being dressed by magnon clouds and relaxed into spin polaron quasiparticle states. The characteristic relaxation
times for Drude and incoherent peaks strongly depend on the momentum of the dynamically doped hole and the
exchange constant. Implications for recent pump-probe experiments are discussed.
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I. INTRODUCTION

Ultrafast carrier dynamics in strongly correlated electron
systems has attracted significant attention because of the
number of time-resolved experimental techniques that have
been rapidly developed in the past decade. In contrast to
conventional metals and semiconductors, correlated electron
systems show a rich variety of competing phases, interactions,
and degrees of freedom. Intensive external stimuli, such as
a short laser pulse, or dc or ac electric fields, can trigger
the breaking of the subtle balance between them and often
induce some nontrivial transient states, which are never
realized in thermal equilibrium states. Numerous experiments
and theoretical analyses on transient carrier dynamics have
been done in several classes of correlated electron systems,
e.g., charge-ordered organic salts, spin crossover complexes,
magnetic oxides, multiferroics, and superconducting materials
[1,2].

It is widely recognized that one of the prototypical
and yet unrevealed issues in transient electron dynamics
is photoirradiation effects in a Mott insulator with antifer-
romagnetic long-range order (AFLRO). This is motivated
not only by the deep understanding of Mott insulators and
high-transition-temperature superconductivity, but also by a
search for drastic photoinduced nonequilibrium states [3–9].
The optical pump-and-probe experiment is a standard method
in which transient electron and hole dynamics excited across
a Mott gap are directly detected [10–22]. Ultrashort optical
pulses have revealed the real-time dynamics of electrons
and holes and their relaxations toward recombination and
thermalization. Recent pump-probe experiments in quasi-
two-dimensional Mott insulators, as parent compounds of
high-transition-temperature superconductivity, revealed that a
metallic Drude component appears just after photoexcitation
and decays within several tens of femtoseconds [23]. After
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several picoseconds, the midgap absorptions appear, and
two absorption peaks are separately identified as hole and
electron carrier contributions. These systematic experimental
observations require a detailed understanding of the carrier
dynamics doped temporally into a Mott insulator with AFLRO
[24].

In this paper, we examine the real-time dynamics of
hole carriers introduced into a Mott insulating state with
AFLRO. This doping is termed “dynamical hole doping,”
and the introduced holes are “dynamically doped holes,”
in contrast with chemically doped holes (see Fig. 1). The
concept of dynamical hole doping, not electron-hole pairs, not
only is advantageous for a simple theoretical setup, but also
has implications for recent optical pump-probe experiments,
where the dynamics of photodoped holes and electrons were
observed separately [23,25–28]. We present the theoretical
framework for the dynamically doped holes based on the
two-dimensional t-J model. We adopt the Keldysh Green’s
function formalism [29–31] and the self-consistent Born
(SCB) approximation [32,33], the latter of which is known to
describe well motions of chemically doped holes in a Mott
insulator with AFLRO. To examine real-time dynamics of
dynamically doped holes, the transient optical conductivity
spectra, as well as the one-particle excitation spectra, are
calculated. In the early stage after hole doping, only the
Drude component appears in the optical conductivity spectra,
and then incoherent peaks originating from hole-magnon
scattering start to grow. The intensities of these peaks during
the early stage are proportional to t2 and t3, where t represents
time. Fast oscillatory behavior, owing to coherent magnon,
and slow relaxation dynamics are confirmed in the spectra.
The time profiles are interpreted as the results of doped bare
holes being dressed by magnon clouds and relaxed into spin
polaron quasiparticles (QPs) in the steady state. We show that
the relaxation time scales strongly depend on the momentum of
the dynamically doped hole and the magnitude and anisotropy
of the exchange constant.

In Sec. II, the t-J model represented by spinless fermion
and spin-wave operators are introduced. In Sec. III, we present
the theoretical formalism for the real-time dynamics of doped
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FIG. 1. (Color online) Schematic of dynamical hole doping.

holes based on the Keldysh Green’s function and the SCB
approximation. Numerical results of transient hole dynamics
are given in Sec. IV. Section V is devoted to the conclusion.
In the Appendix, we present the dominant pole approximation
(DPA), adopted to analyze the numerical results in Sec. IV.

II. MODEL

We start from the t-J model in a two-dimensional square
lattice given by

H = −t0
∑
〈ij〉σ

(̃c†iσ c̃jσ + H.c.)

+
∑
〈ij〉

{
J‖Sz

i S
z
j + J⊥

2
(S+

i S−
j + S−

i S+
j )

}
, (1)

where c̃iσ = ciσ (1 − ni−σ ) is the annihilation operator for
an electron with spin σ (= ↑, ↓) at site i without double
occupancy, and Si is a spin operator with an amplitude
of S = 1/2. The transfer integral is represented by t0 to
distinguish it from the symbol for time. For convenience,
we introduce anisotropy into the exchange interaction as
a parameter α ≡ J⊥/J‖; α = 1 (α = 0) corresponds to the
Heisenberg (Ising) limit.

We assume an AFLRO state in the ground state, where
sublattices for up- and down-spins are termed A and B, re-
spectively. Spin operators are represented by magnon operators
introduced by the Holstein-Primakov transformation as S+

i =
(1 − a

†
i ai)1/2ai , S−

i = a
†
i (1 − a

†
i ai)1/2, and Sz

i = 1/2 − a
†
i ai

for sublattice A and in similar ways for sublattice B. Following
Refs. [32] and [33], the electron operator without double-
occupancy is given by the slave fermion representation as
c̃
†
iσ = hia

†
iσ with the constraint

∑
σ a

†
iσ aiσ + h

†
i hi = 1, where

hi is a spinless fermion operator for a hole. Up to the lowest
order of the 1/S expansion, where ai∈A↓ and ai∈B↑ are replaced
by

√
2S(= 1), the hopping term of the Hamiltonian is given as

Ht = −t0
∑

〈ij〉i∈Aj∈B

hih
†
j (a†

i↑ + aj↓) + H.c. (2)

The J term expressed by the bilinear form of the boson
operator is diagonalized by the Bogoliubov transformation.

By introducing the Fourier transformation, the Hamiltonian
is finally given by

Ht = zt0√
N

∑
k,q

h
†
khk−qαqMkq + H.c. (3)

for the t term, with coupling constant

Mkq = uqγk−q + vqγk, (4)

and by

HJ =
∑

q

ωqα
†
qαq (5)

for the J term. Here, αq is a boson operator for the magnon
introduced by the Bogoliubov transformation, and hq is the
Fourier transform of hi . We define the magnon dispersion
ωq = zJS(1 − δd )2νq , where δd is the hole density, S =
1/2, and νq = [1 − (αγq)2]1/2, with the form factor γq =
(cos qx + cos qy)/2 and the coordination number z (=4). The
factors uq and vq in Mkq are given by the usual expression
in the Bogoliubov transformation, defined by uq = [(1 +
νq)/(2νq)]1/2vq = −sgn(γq)[(1 − νq)/(2νq)]1/2. As is well
known, there is an absence of the kinetic term of

∑
〈ij〉 h

†
i hj ,

and the coupling Mkq between a fermion and magnons in the t

term is the source of the hole dynamics. Henceforth, we adopt
units of energy and time as t0 and t−1

0 , respectively.

III. FORMULATION

A. Initial state and Keldysh formalism

We explain the situation for dynamical hole doping and how
to observe transient states. First, a hole is introduced into the
Néel ordered state at half-filling by an external field at t = 0.
This state is adopted as an initial state and is simulated by

|i〉 =
∑
ki

f (ki)h
†
ki
|0〉, (6)

where |0〉 expresses the Néel state (termed the “vacuum” state).
The function f (ki) describes the momentum distribution of
a doped hole and its functional form depends on the actual
hole-injection method.

This initial state is time-evolved by the Hamiltonian Ht +
HJ given in Eqs. (3) and (5). At time t > 0, the expectation
value of an operator is defined as

〈O(t)〉 = 〈i|OH (t)|i〉, (7)

where OH (t) is its Heisenberg representation. To use Wick’s
theorem, we introduce the Keldysh’s closed-time contour
whose length is finite, as shown in Fig. 2. Then 〈O(t)〉 is
given by

〈O(t)〉 =
∑
ki

f (ki)
2〈0|TC

{
UChki

(0<
c )O(t<c )h†

ki
(0>

c )
}|0〉, (8)

FIG. 2. A Keldysh contour.
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with

UC = TC exp

( ∫
C

−iHt (t
′
c)dt ′c

)
, (9)

where all time-dependent operators are represented in the
interaction representation. The time variable on a Keldysh
contour is denoted tc with subscript c, and a projection of tc
onto the real-time axis is t . The superscript > (<) indicates
that the contour time is on the upper (lower) branch of the
Keldysh contour. The symbol TC is a Keldysh contour ordering
operator, and

∫
C

implies an integral along the contour. We have
relations 0<

c >K tc and 0>
c <K tc for any tc, where <K and >K

represent inequalities defined on the Keldysh contour. Wick’s
theorem and Feynman’s rules are applicable to this form of the
expectation value. We note that the imaginary contour from
t = 0 to −i/(kBT ), known as the Kadanoff-Baym’s L-shaped
contour, does not need to be taken into account in the present
formalism. This is because the initial state is explicitly given in
Eq. (6), and thermal equilibrium processes along the imaginary
contour are not necessary.

B. Green’s function

In the Keldysh formalism, the one-particle Green’s function
(nonequilibrium Green’s function) for holes is defined as

G(k; tc,t
′
c) = −i〈TC{hk(tc)h†

k(t ′c)}〉, (10)

which can be rewritten for the initial state introduced above as

G(k; tc,t
′
c) = −i

∑
ki

f (ki)
2〈0|

× TC

{
UChki

(0<
c )hk(tc)h†

k(t ′c)h†
ki

(0>
c )

}|0〉. (11)

The real-time Green’s functions are introduced by

Gij (k; t,t ′) = G(k; tai ,t ′aj ), (12)

where a1 and a2 take > and <. Here, G11 and G22 are the causal
and anticausal Green’s functions, respectively, and G12 and
G21 are the lesser and greater Green’s functions, characterizing
the particle distribution, respectively. From these components,
the retarded Green’s function is given by

GR(k; t,t ′) = G11(k; t,t ′) − G12(k; t,t ′)

= G21(k; t,t ′) − G22(k; t,t ′). (13)

The one-particle excitation spectra for holes are defined by

A(k; ω,t ′) = − 1

π
Im[GR(k; ω,t ′)], (14)

where we define the Fourier transform of the real-time Green’s
function given by

G(ω,t ′) =
∫

d(t − t ′)eiω(t−t ′)G(t − t ′,t ′). (15)

= +

+

dynamical
dope

+ +...

FIG. 3. (Color online) Feynman diagrams for one-particle
Green’s functions. Solid and dashed lines represent the hole Green’s
functions, g(k; t), and the magnon Green’s functions, d(k; t), respec-
tively, defined in the vacuum state.

In addition, we introduce one-particle Green’s functions
defined as expectations with respect to the vacuum state |0〉 as

g(k; tc,t
′
c) = −i〈0|TC{UChk(tc)h†

k(t ′c)}|0〉 (16)

for a hole and

d(q; tc,t
′
c) = −i〈0|TC{UCαq(tc)α†

q(t ′c)}|0〉 (17)

for a magnon. The real-time Green’s functions, g(k; t − t ′)
and d(q; t − t ′), are obtained by projections onto the real-time
axis and depend only on the time difference t − t ′. The lesser
component g12(k; t,t ′) = 0, because there are no holes in the
vacuum state. We show later that G(tc,t ′c) in Eq. (10) is given
by combinations of g(k; tc,t ′c) and d(k; tc,t ′c), and g(k; tc,t ′c)
is calculated by using the SCB approximation explained in
Sec. III D.

The Green’s function G(tc,t ′c) in Eq. (10) is a four-point
function, i.e., includes four fermion operators. The perturba-
tion expansion with respect to Mkq is adopted to evaluate
the Green’s function. This is a reasonable approximation in
the weak photodoped case where dynamically doped holes
are dilute and do not frequently come across holes injected by
probe photon. Figure 3 shows the Feynman diagrams in a series
expansion up to the second order of Mkq . The zeroth-order
terms, G1 and G2, are represented by products of g(tc,t ′c) as
G1 ∼ −ig(tc,t ′c)g(0<

c ,0>
c ) and G2 ∼ ig(tc,0>

c )g(0<
c ,t ′c). In the

second-order terms, G3 and G4, the two Green’s functions
are connected by the magnon Green’s function. Diagrams
for G1 and G3 represent “direct” processes, and G2 and
G4 represent “exchange” processes where a dynamically
doped hole is exchanged with an additionally introduced
hole. The real-time Green’s functions are obtained from the
nonequilibrium Green’s function on the Keldysh contour by
the standard analytical continuation. Details are given in, for
example, Refs. [29–31]. Here we exhibit an example; G3

defined on the Keldysh contour is given by

G3(k; tc,t
′
c) = −

∑
ki

f (ki)
2 z2Mk0Mki0

2

∫
C

dt2,c

∫
C

dt3,cg(k; tc − t2,c)g(k; t2,c − t ′c)g(ki ; 0′
c − t3,c)g(ki ; t3,c − 0′

c)

× (d(0; t2,c − t3,c) + d(0; t3,c − t2,c)). (18)
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The real-time Green’s function is obtained by projecting the contour times tc, t ′c, t2,c, t3,c onto the real times and by introducing
Keldysh indices. We have the explicit form

G3,ij (k; t,t ′) = −
∑
ki

f (ki)
2 z2Mk0Mki0

2

∫ t

t ′
dt2

∫ t

t ′
dt3

∑
α,β,i ′,j ′,i ′′,j ′′=1,2

δi ′j ′τ z
j ′αδi ′′j ′′τ z

i ′′βgii ′(k; t − t2)gj ′j (k; t2 − t ′)

×g2i ′′ (ki ; −t3)gj ′′1(ki ; t3)(dαβ(0; t2 − t3) + dβα(0; t3 − t2)), (19)

where τ z is the z component of the Pauli matrix. By summing up the Keldysh indices and using a relation in Eq. (13), we obtain
the retarded component GR

3,ij (k; t,t ′).
Explicit forms of the retarded components are given as

GR
1 (k; t,t ′) = gR(k; t − t ′), (20)

GR
2 (k; t,t ′) = 0, (21)

GR
3 (k; t,t ′) =

∑
ki

f (ki)
2 z2Mk0Mki0

2

∫ t

t ′
dt2

∫ t2

0
dt3g

R(k; t − t2)gR(k; t2 − t ′)|gR(ki ; t3)|2(dR(0; t2 − t3) + dR∗(0; t2 − t3)),

(22)

GR
4 (k; t,t ′) =

∑
ki

f (ki)
2 (−z2)

2

∫ t

t ′
dt2

∫ t2

t ′
dt3g

R(k; t − t2)gR(ki ; t2)gR∗(ki ; t3)gR(k; t3 − t ′)

× (
M2

k,k−ki
dR(k − ki ; t2 − t3) + M2

ki ,ki−kd
R∗(ki − k; t2 − t3)

)
. (23)

As shown in Eq. (20), G1 does not depend on the initial
state and is simply a one-particle Green’s function in a
Mott insulator, since additional doped holes do not interact
with a dynamically doped hole. We have GR

2 = 0, because
G2 includes the so-called electron line, g(0,t ′ > 0), which
vanishes in the t-J model at half-filling. The remaining terms,
G3 and G4, explicitly depend on double times, t and t ′, and
characterize the transient processes.

C. Optical conductivity

To calculate the optical conductivity in a transient state,
we set up the Hamiltonian H(A), where the electric field is
introduced as a Peierls phase in the t term of the Hamiltonian
defined in Eq. (3). The current operator is given as

j = −c
∂H(A)

∂ A
= − iet0

�

∑
〈ij〉

δij (a†
jh

†
i hj − h

†
jhiaj ), (24)

where A is a vector potential and δij is a vector connecting
nearest-neighbor sites i and j . Here, we take e = 1, c = 1, and
� = 1, for simplicity. By applying the Bogoliubov and Fourier
transformations, the current operator can be rewritten as

j = − 1√
N

∑
kq

V kqjkq, (25)

where we define

jkq = α†
qh

†
k−qhk + h

†
khk−qαq (26)

and

V kq = uqvk−q + vqvk, (27)

with vk = ∂εk/∂k and εk = −(zt0/2)(cos akx + cos aky).

The optical conductivity is formulated within a linear
response regime for an electric field E(t) = Ee−iνt for probe
photons, where ν is the photon frequency. Optical conductivity
is defined as the response function for an electric current
J(t) ≡ 〈 j (t)〉 at time t induced by an electric field E(t ′) at
time t ′. This is given as

∂Jα(t)

∂Eβ

∣∣∣∣
E=0

=
∫ t

−∞
dt ′σ (ν)

αβ (t,t ′)e−iνt ′ , (28)

where Eβ = [E]β . From Eq. (25), the left-hand side is divided
into two parts as

∂Jα(t)

∂Eβ

= − 1√
N

∑
kq

(
∂V α

kq

∂Eβ

〈jkq(t)〉 + V α
kq

∂

∂Eβ

〈jkq(t)〉
)

,

(29)

where V α
kq = [V kq]α . This is calculated from Eqs. (26) and

(27); the optical conductivity can then be explicitly given as

σ
(ν)
αβ (t,t ′) = − 1

ν
{δ(t − t ′)i〈Eαβ(t)〉+θ (t − t ′)〈[jα(t),jβ(t ′)]〉},

(30)

where Eαβ is the energy stress tensor defined by

Eαβ = zt√
N

∑
kq

M̃
αβ

kq (h†
khk−qαq + α†

qh
†
k−qhk), (31)

and

M̃
αβ

kq = δαβ

(
uqγ̃

α
k−q + vqγ̃

α
k

)
, (32)

with γ̃ α
k = (cos kα) /2. The first and second terms in Eq. (30)

represent the diamagnetic and paramagnetic components,
respectively. We assume no electric current before applying
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the electric field. The paramagnetic component is given in the
Keldysh formalism by

〈[jα(t),jβ(t ′)]〉 =
∑

a=<,>

(δa,< − δa,>)
〈
jα(t<c )jβ

(
t ′ac

)〉
. (33)

For convenience, we introduce the current-current response
function as

χαβ(t,t ′) = −iθ (t − t ′)〈[jα(t),jβ(t ′)]〉. (34)

We define the optical conductivity spectra at time t by
introducing the Fourier transformation as

σαβ(ω,t) =
∫ ∞

−∞
d(t − t ′)eiω(t−t ′)σ

(ν)
αβ (t,t ′). (35)

This has a physical meaning only at ω = ν, because

Jα(t) =
∫ t

−∞
dt ′σ (ν)

αβ (t,t ′)Eβe−iνt ′

= σ
(ν)
αβ (ω = ν,t)Eβ(t), (36)

where the relation σ
(ν)
αβ (t,t ′) = 0 for t − t ′ < 0 is used. The

real part of the optical conductivity is given by

Reσ (ω,t) = πδ(ω)Dαβ(t) − ω

ω2 + η2
Imχαβ(ω,t), (37)

with an infinitesimal positive constant η. The first term is the
Drude component, which can be divided into two parts as

Dαβ(t) = Ddia
αβ (t) + D

para
αβ (t), (38)

with the diamagnetic component given by

Ddia
αβ (t) = −〈Eαβ(t)〉, (39)

and the paramagnetic one by

D
para
αβ (t) = Reχαβ(ω = 0,t). (40)

We calculate the optical conductivity by the perturbation
expansions. Within the lowest-order term, the diamagnetic and
paramagnetic components are given by

Ddia
αβ (t) = 2

N

∑
ki ,q

f (ki)
2
∫

dt2M̃
αβ

ki ,q
Mki,qhki ,q(t,t2) (41)

and

χαβ(t,t ′) = − 2

N

∑
ki ,q

f (ki)
2V α

ki ,q
V

β

ki ,q
hq(t,t ′), (42)

respectively. Here we define

hki,q(t,t ′) = Im[gR∗(ki ; t)g
R(ki − q; t − t ′)

× gR(ki,t
′)dR(q; t − t ′)]. (43)

These two contributions are diagrammatically expressed by
Fig. 4.

It is worth noting that there is an uncertainly relation
between t and ω in the function Reσ (ω,t) introduced in
Eq. (35), where the linear response theory and the Fourier
transformation are utilized. Only for ω � t−1 is this function
Reσ (ω,t) recognized as a response function for the external
field with frequency ω. A numerical test for validity of
Reσ (ω,t) based on the linear-response theory is given in

dynamical
dope

FIG. 4. (Color online) Feynman diagram for the optical conduc-
tivity. Solid and dashed lines represent the hole Green’s function,
g(k; t), and the magnon Green’s function, d(q; t), respectively, defined
in the vacuum state; wavy lines represent the light.

Ref. [22]. In the pump-probe experiments on real materials,
there are several contributions to the damping factors in σ (ω,t),
such as impurities and vacancies, which are not taken into
account in the present formalism. These extrinsic factors
change the δ function for the Drude peak into a Lorentzian
peak �/(ω2 + �2), which is relevant as a response function
for a condition of t � 1/�.

D. Self-consistent Born approximation

As shown in Eqs. (20)–(23) and (41)–(43), the full Green’s
functions and the optical conductivity are represented by
gR(k; t). We evaluate gR(k; t) by using the SCB approximation,
which is known to describe well chemically doped hole
dynamics in AFLRO, in particular, for α ∼ 1. [32,33]

We iteratively solve the Dyson’s equation given by

gR
−1

(k; ω) = gR(0)−1
(ω) − �R(k; ω), (44)

where the self-energy is given by

�R(k; ω) = i
z2t2

N

∑
q

∫
dω′

2π
M2

kqg
R(k − q; ω − ω′)dR(q; ω′),

(45)

which is diagrammatically shown in Fig. 5. The bare hole
Green’s function is given by

gR(0)(ω) = 1

ω + iη
. (46)

For the magnon Green’s function, for simplicity, it is replaced
by the bare magnon Green’s function,

dR(q; ω) = 1

ω − ωq + iη
. (47)

Although the magnon Green’s function can be estimated by a
series expansion, the lowest-order self-energy of the bubble

FIG. 5. (Color online) Self-energy of a hole Green’s function
in the self-consistent Born approximation. Solid and dashed lines
represent the hole Green’s function, g(k; t), and the magnon Green’s
function, d(k; t), respectively, defined in the vacuum state.
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type vanishes, since the so-called electron line, where the
electron creation operator acts on a vacuum, disappears in
the t-J model.

IV. NUMERICAL RESULTS

In the numerical calculations, we adopt two-dimensional
square lattices with N × N sites, where N is taken to be 32
in most of the calculations (and 128 in Fig. 6). A typical
mesh number for energy is 512. We assume, for simplicity,
that the momentum in the dynamically doped hole has a
specific value k0, i.e., f (ki) = δkik0

√
δd in Eq. (6), where holes

with momentum ki of density δd are independently injected
into the system and do not interact with each other. We take
δd = 0.01, which is realistic as a photodoped carrier density
in optical pump-probe experiments [27,28]. All energies and
times in the numerical calculations are measured by t0 and t−1

0 ,
respectively. We adopt the first Brillouin zone for the original
square lattice—not the reduced one for the Néel state. We show
numerical results in a wide parameter range of the anisotropic
parameter α = J⊥/J‖. In particular, we adopt α = 0.2 and
0.8 as prototypical parameter values for the Ising-like and
Heisenberg-like cases, respectively, instead of α = 0 and 1.
This is because at α = 0, the transient carrier dynamics is
totally determined by the dispersionless magnons, and broad
incoherent spectral weights at α = 1 cause difficulty in data
analyses introduced later.

(a) α=0.8

(b) α=0.2

BZ

( ,0)

( , )(0, )

magnon 
side peak
in σ(ω)

high energy 
peaks in σ(ω)

FIG. 6. (Color online) One-particle excitation spectra before dy-
namical doping, a(k; ω) = −(1/π )ImgR(k; ω). Parameters are cho-
sen to be N = 128, J = 0.4, and damping constant η = 0.01. The
anisotropy parameter is α = 0.8 (a) and α = 0.2 (b). Arrows in
(b) represent examples of transitions characterizing peaks in optical
conductivity in transient states (see Sec. IV C).

A. Electronic state before dynamical doping

Before showing the transient electronic state, we first show
results for one-particle excitation spectra before dynamical
doping. The present results are consistent with those published
in Refs. [32] and [33]. Figure 6 shows contour maps of the
one-particle excitation spectra given by

a(k; ω) = − 1

π
Im gR(k; ω) (48)

in the k-ω plane. We chose the anisotropy parameter as
α(≡ J⊥/J‖) = 0.8 and 0.2 in Figs. 6(a) and 6(b), respectively.
Ladder-like multiple-peak structures are seen in the Ising-like
case [Fig. 6(b)], where low-lying peaks are separated by J 2/3,
as reported in Ref. [32]. In the case of large α, an incoherent
background and dispersive character owing to spin fluctuation
are seen. The lowest dispersive branch, centered at ω � −2,
is the QP band, where weak dispersion is seen along the
(π,0)-(π/2,π/2) line, and a shallow minimum appears at
(π/2,π/2); i.e., small hole pockets appear around (π/2,π/2).
The large QP dispersion in Fig. 6(a) implies that carrier
propagation in an AFLRO background is caused by spin
fluctuation.

Figure 7 shows α dependencies of the imaginary parts
of the self-energy at the QP peak for several values of J ,
i.e., −Im�(k; ωQP

k ) + η, where ω
QP
k is the QP band energy

at momentum k. Results at k = (π/2,π/2) and k = (0,0)
are shown in Figs. 7(a) and 7(b), respectively. Different α

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J=0.1
J=0.2
J=0.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J=0.1
J=0.2
J=0.4

(b) k=(0,0)
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FIG. 7. (Color online) Imaginary parts of the self-energy at the
QP band for several J , −Im�(k,ω

QP
k ) + η, where ω

QP
k is the QP band

energy at momentum k. The momentum as a parameter in the Green’s
function is chosen to be (a) k = (π/2,π/2) and (b) k = (0,0).
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dependencies are seen in the cases of k = (π/2,π/2) and k =
(0,0); −Im�(k; ωQP

k ) decreases (increases) with increasing α

at k = (π/2,π/2) [k = (0,0)], except in the vicinity of α = 1.
This opposite behavior implies that the coherent QP motion at
k = (π/2,π/2) is promoted by quantum spin fluctuations and
that the higher-energy carriers at k = (0,0) are incoherently
scattered by spin fluctuations.

B. One-particle excitation in transient states

In this subsection, numerical results of the one-particle ex-
citation spectra in the transient state are presented. As shown in
Sec. III B, the one-particle retarded Green’s function is given in
the perturbation expansion as GR(k; t,t ′) = ∑4

i=1 GR
i (k; t,t ′),

where GR
1 (k; t,t ′) = gR(k; t,t ′), which is the retarded Green’s

function without dynamical doping, and GR
2 (k; t,t ′) = 0. Then

we define the difference between G(k; ω,t ′) and gR(k; ω) as

δGR(k; ω,t ′) ≡ GR(k; ω,t ′) − gR(k; ω)

= GR
3 (k; ω,t ′) + GR

4 (k; ω,t ′), (49)

and the corresponding spectral weight as

δA(k; ω,t ′) = − 1

π
ImδGR(k; ω,t ′), (50)

where the sum rule∫ ∞

−∞
δA(k; ω,t ′)dω = 0 (51)

exists for any t ′. We have checked that Eq. (51) is satisfied in
the numerical calculations within numerical errors.

For the momentum k as a parameter of the one-particle
Green’s function and the momentum k0 of the dynamically
doped hole, we have some rules: that G3 = 0 when both k

and k0 are on the X-M line and that G4 = 0 when either k or
k0 is on this line. By taking into account these facts and the
QP dispersion, we consider the following three cases in the
numerical calculations:

(A) k = (0,0), k0 = (0,0),
(B) k = (0,0), k0 = (π/2,π/2), and
(C) k = (π/2,π/2), k0 = (0,0).
Let us begin with case A. Figure 8(a) shows the time de-

pendencies of δA(ω; t ′) in case A [k = (0,0), k0 = (0,0)]. The
parameter values are chosen to be J = 0.4 and α = 0.8. With
increasing elapsed time t ′ after dynamical doping, remarkable
changes appear around ω � −1.6, −0.5, and 0.4, which
correspond to the lowest three peak energies in ImgR(k,ω)
before dynamical doping [see Fig. 6(a)]. That is, the main
three peaks shift to the lower-energy side. In addition, small
peaks, indicated by black arrows in Fig. 8(a), show oscillatory
behaviors with time evolution. To examine the origin of these
transient changes in more detail, the calculated one-particle
excitation spectra, as well as the optical conductivity spectra,
are analyzed by using the DPA introduced in Ref. [32], where
peaks in ImgR(k; ω) and ImdR(k; ω) are represented by a series
of Lorentz functions. Details are presented in the Appendix.
As shown in Eq. (A3), δGR(ω,t ′) has poles at εi

k ± ωq=0,
in addition to εi

k originating from ImgR(k; ω). These newly
appearing peaks, located around the sum of the original QP
band energy and the magnon energy ωq , are termed “magnon
side peaks.”
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case C *0.2
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 0.25

 0.3
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t’=π
t’=3π
t’=5π

(a)

(b)

case A

FIG. 8. (Color online) Time dependencies of changes in the one-
particle excitation spectra, δA(k; ω). We chose t ′ = π , 3π , and
5π . (a) Results in case A [k = (0,0), k0 = (0,0)]. Black arrows
indicate “magnon side peaks” (see the text). (b) Results in case
B [k = (0,0), k0 = (π/2,π/2)] and case C [k = (π/2,π/2), k0 =
(0,0)]. Results in case C are multiplied by 0.2. The black arrow
indicates the “exchange peak” (see the text). Other parameters are
chosen to be N = 32, J = 0.4, α = 0.8, and η = 0.01.

To examine the oscillatory behaviors shown above, we
calculate the integrated spectral weight change given by

B(k; t ′) =
∫ 0

−∞
δA(k; ω,t ′)dω. (52)

Results in case A for several values of the anisotropy
parameter α are given in Fig. 9(a). Oscillations in B(k; t ′)
are clearly shown in the cases of large α, and the time period
decreases with decreasing α. From the DPA analyses, one finds
that the oscillations are characterized by Tsb ≡ 2π/ωq=0 ∝
1/(J

√
1 − α2) [see the exponential factor in Eq. (A3)]. For

large α, B(k; t ′) has almost a single-frequency component
with T −1

sb . This implies that the oscillating behavior originates
almost solely from the magnon side peaks [indicated by
arrows in Fig. 8(a)]. In contrast, multifrequency oscillatory
behavior for small α is attributed to the fact that other peaks
make relevant contributions to δA(k; t ′). One of the dominant
contributions originates from peaks at ω = (εb − εc + εd ) −
i(�b + �c + �d ) in Eq. (A3). These represent transitions
between the inter-ladder-type bands and are termed “exchange
peaks.”

Next, we show the results in other cases of momenta
k and k0. Results for δA(k; ω,t ′) and B(k; t ′) are given in
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FIG. 9. (Color online) Time dependencies of the integrated spec-
tral weight B(t) defined in Eq. (52). (a) Results in case A [k =
(0,0), k0 = (0,0)]. The anisotropy parameter is chosen to be α =
0.99, 0.8, 0.4, and 0.2. (b) Results in case B [k = (0,0), k0 =
(π/2,π/2)] and case C [k = (π/2,π/2), k0 = (0,0)]. Other parame-
ter values are chosen to be N = 32, J = 0.4, α = 0.8, and η = 0.01.

Fig. 8(b) and Fig. 9(b), respectively, in case B [k = (0,0),
k0 = (π/2,π/2)] and case C [k = (π/2,π/2), k0 = (0,0)]. As
shown in Fig. 8(b), in both case B and case C, dominant
changes in δA(k,ω) are shown as shifts of the main peaks
in ImgR(k,ω), and contributions from the magnon side peaks
are small. In case B, a small peak appears around ω � −3
(indicated by the black arrow); this is below the lowest QP band
before dynamical doping. Since a similar peak structure was
observed in the previous calculations in the case with chemical
doping [43], this is due to a carrier doping effect. For the results
of B(k; t ′) shown in Fig. 9(b), there are multifrequencies in
oscillatory behaviors for both case B and case C, unlike case
A with a large α. Damping of the oscillatory behavior is faster
in case C than in case B. This is interpreted from the imaginary
part of the self-energy before dynamical doping; that is, the
damping rate −Im�(k; ωQP

k ) at k = (0,0) is higher than that at
k = (π/2,π/2) for any value of α, as shown in Fig. 7.

C. Optical conductivity in transient states

In this subsection, numerical results for the transient optical
conductivity spectra after dynamical doping are presented. We
note that there are no finite values in the optical conductivity
spectra before dynamical hole doping in the t-J model. We
focus on the (xx) component of the optical conductivity
spectra.

Drude

side peak

high energy
peaks

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  1  2  3  4  5

t=1
t=5
t=25

Drude
side peak

high energy peaks

(a)

FIG. 10. (Color online) Transient optical conductivity spectra at
several times; t = 1 (red line), 5 (green line), and 25 (blue line).
The momentum of the dynamically doped hole is chosen to be k0 =
(π/2,π/2). (b) Contour plot of optical conductivity spectra in the
time-frequency plane. Other parameters are chosen to be J = 0.4
and α = 0.8.

First, we present results where the momentum of the
dynamically doped hole is chosen to be k0 = (π/2,π/2),
which corresponds to the lowest QP peak in ImgR(k; ω). In
Fig. 10(a), the time dependencies of the real parts of the optical
conductivity spectra are presented. Just after the dynamical
hole doping at t = 0, only the Drude peak is confirmed at
t = 1. After a lapse of time, subpeak structures appear and
grow around ω = 0.8, ω = 2.5, and other energies. The peak at
∼0.8 is termed the “side peak,” and other peaks, located around
2.5, 3.8, etc., are termed “high-energy peaks,” henceforth. As
explained later, the emergence of these peaks implies that the
dynamically doped hole is dressed by magnons. From the DPA
analyses, the Drude and finite-frequency peaks grow as t2 and
t3, respectively, as shown in Eq. (A15).

A contour plot of σ (ω,t) in the ω-t plane is presented
in Fig. 10(b). The time evolutions of the side peak and the
high-energy peaks are clearly shown. The origins of the side
peak and the high-energy peaks are clarified by using the
DPA. In Eq. (A14), these peaks are characterized by poles of
hk0,q , introduced in Eq. (43), at ω = ±(εb

k0−q − εc
k0

+ ωq) +
i(�b

k0−q − �c
k0

+ η), where εi
k and �i

k are, respectively, the
energy and a damping factor for the ith peak of ImgR(k; ω).
The side peak and the high-energy peaks originate from poles
with b = c and b �= c, respectively, and are attributed to the
intraband transitions inside the lowest-energy QP band and the
interband transitions between the ladder-like multiple bands,

125126-8



TRANSIENT CARRIER DYNAMICS IN A MOTT . . . PHYSICAL REVIEW B 89, 125126 (2014)

respectively [see Fig. 6(a)]. Thus, the energies of the side peak
and the high-energy peaks are mainly dominated by the band
widths of the QP band and the energy differences between the
ladder-like peaks, respectively. To clarify the role of magnons
in the optical conductivity in more detail, we introduce a
hypothetical situation in which the self-energy for the hole
Green’s function given in Eq. (45) is set to be 0 artificially. In
this case, the QP band in ImgR does not show dispersion, and
magnons only appear in the current vertex. We observe that the
high-energy peaks do not appear in the optical conductivity,
and the energy of the side peak depends only on the magnon
energy and amplitude of the current vertex. From these results,
the time evolution of the optical conductivity is interpreted
as the results of a dynamically doped hole being dressed by
magnon clouds evolving in time.

The detailed time evolution for each peak is examined
by introducing the integrated peak intensity around a peak
position. This is defined by

Ii(t) =
∫ ωi+δi

ωi−δi

dωReσ (ω,t), (53)

where the peak is identified by an index i, ωi is the peak
position at t = 100, and δi is the width in the integrated energy
region. Numerical values of δi are chosen to be the energy
where the peak intensities are almost 0. We define i = 0 and 1
for the Drude peak and the side peak, respectively, and i � 2
for the high-energy peaks. The time dependencies of Ii(t) are
shown in Figs. 11(a), 11(b), and 11(c) for i = 0 (Drude peak),
i = 1 (side peak), and i = 2 (high-energy peak), respectively.
Strong oscillatory behaviors are seen in all peaks, in particular,
rapid oscillations at small α. These are attributed to ladder-like
multiple peaks in ImgR(k,ω) and are identified as “coherent
magnon oscillations.”

Deferent α dependencies of the intensity are seen in the
Drude and other peaks; I0(t) [I1(t) and I2(t)] decreases
(increases) with increasing anisotropic parameter α. These
different α dependencies are interpreted as follows. As shown
in Eqs. (37)–(43) and Eq. (A14), the intensities of the side peak
and the high-energy peaks are given by the imaginary parts of
hki,q(t,t ′). Since poles are located at ω = ±(εbc + ωq) which
give a relation between the magnon and the hole momenta,
these intensities are sensitive to the maganon and hole band
dispersions. On the other hand, the Drude peak is given by
the real part of hki,q(t,t ′), which is related to the integrated
hki,q(t,t ′) in terms of energy. Therefore, the Drude peak
intensity is sensitive not to details of the hole and magnon
dispersions but to the coupling constants Mkq [Eq. (4)] and
V kq [Eq. (27)], which directly depend on α.

Next, slow dynamics, without fast oscillatory behavior,
is examined by integrating Ii(t) with respect to time since
dynamical doping as

Wi(t) = 1

t

∫ t

0
dt ′Ii(t

′). (54)

Figure 12 shows the results normalized by Wi(t) at t = 100;
i.e., W̃i(t) = Wi(t)/Wi(100). The anisotropy parameter is
chosen to be α = 0.01 and 0.99 in Figs. 12(a) and 12(b),
respectively. Each data set smoothly converges to 1 at large
t . That is, the dynamically doped hole gradually changes into
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FIG. 11. (Color online) Time dependencies of the peak
intensities Ii(t) defined in Eq. (53) for several values of the
anisotropy parameter α. (a) The Drude peak (i = 0), (b) the side peak
(i = 1), and (c) the high-energy peak (i = 2). Parameters are chosen
to be k0 = (π/2,π/2) and J = 0.4. Values for ωi and δi in Eq. (53)
are taken to be (ω0,δ0,ω1,δ1,ω2,δ2) = (0,0.01,0.78,0.03,2.57,0.02)
for α = 0.01, (0,0.01,0.81,0.07,2.60,0.05) for α = 0.33,
(0,0.01,0.83,0.07,2.58,0.12) for α = 0.66, and (0,0.01,0.84,0.05,

2.56,0.04) for α = 0.99.

a quasisteady state with coherent oscillations. The relaxation
times depend on the peaks and α; fast relaxations are seen in the
Drude peak (i = 0) with α = 0.01 and in the Drude and side
peaks (i = 0 and 1) with α = 0.99. We fit the time dependen-
cies of W̃i(t) by a simple exponential function 1 − exp(−t/τ ),
and we show relaxation times in Fig. 12(c). The α dependence
is notable in the high-energy peak (i = 2 and 3); the relaxation
is slow (fast) in the Ising-like (Heisenberg-like) case. As
explained previously, the high-energy peak is attributed to the
interband transition between the ladder-like multiple bands in
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FIG. 12. (Color online) Time dependencies of Wi(t) defined in
Eq. (54) normalized at t = 100, i.e., W̃i(t) = Wi(t)/Wi(100), for
each peak. The anisotropy parameter is chosen to be α = 0.01 (a)
and 0.99 (b). (c) Relaxation time as functions of α for each peak. The
parameter value is chosen to be J = 0.4.

ImgR(q,ω). The scattering probability is high for the small
energy difference between the bands for large α and low for
the large energy difference between the bands for small α. The
significant incoherent background in ImgR at large α induces
additional transition pathways.

Finally, we show results for other momenta of dynamically
doped holes. In Figs. 13(a) and 13(b), we present the optical
conductivity spectra Reσ (ω,t) for k0 = (0,0) and (π,0),
respectively. In both cases, the Drude peak, the side peak, and
the high-energy peaks are confirmed. The energy of the side
peak for k0 = (0,0) is lower than those for k0 = (π/2,π/2)
and (π,0). This is explained by the DPA as the energy of the
side peak being dominated by a pole at ω = εb

k0−q − εc
k0

+ ωq

FIG. 13. (Color online) Contour plots of optical conductivity
spectra in the cases of (a) k0 = (0,0) and (b) k0 = (π,0). Parameter
values are chosen to be J = 0.4 and α = 0.8.

with b = c, where εb
k0−q − εc

k0
is negative for any q in the case

of k0 = (0,0). This k0 dependence of the side peak energy is
remarkable in large α, where the dispersions of magnons and
holes are large.

Note that Fig. 13(b) looks similar to Fig. 10(b) for the side
peak and the high-energy peak. This is because the QP band
in ImgR(k,ω) is nearly degenerate along k = (π/2,π/2) and
(π,0). The most remarkable difference between Fig. 13(b) and
Fig. 10(b) is seen in the sign of the Drude weight, which is
negative in Fig. 13(b). The negative D, which is not realized
in equilibrium states, represents the emission of photons in
transient states. More detailed time profiles of D for several
k0 are presented in Fig. 14. Negative values for k0 = (π,0)
and (0,0) tend to be positive gradually. This negative value
is interpreted as a population inversion and light emission.
As shown in Fig 6(a), the second derivative of the QP band
dispersion with respect to the momentum, ∂2ω

QP
k /∂k2, is

negative at k = (π,0) and (0,0) and positive at k = (π/2,π/2).
This convexity of the QP band in ImgR(k; ω) for a dynamically
doped hole determines the sign of D.

V. CONCLUSION

In conclusion, we have studied real-time hole dynamics
injected into a Mott insulator with AFLRO. The transient
optical conductivity spectra and one-particle excitation spectra
are formulated by applying the Keldysh Green’s function
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FIG. 14. (Color online) Time dependence of the Drude weight
D(t) for several momenta of the dynamically doped holes. Parameter
values are chosen to be J = 0.4 and α = 0.8. Solid, dashed, and
dotted lines represent k0 = (π/2,π/2), k = (0,0) and k = (π,0),
respectively.

formalism and the SCB approximation to the two-dimensional
t-J model. Here we list the main results. In the early stage
just after dynamical hole doping, only the Drude component
appears, then the finite-energy incoherent components (termed
the side peak and the higher-energy peaks) gradually grow
[see Figs. 10(a) and 10(b)]. The side peak and higher-energy
peaks are identified as the intra- and interband transitions of
the ladder-type bands, respectively, associated with magnon
excitations. In the small-t region, the intensities of the Drude
and incoherent parts grow as t2 and t3, respectively. These
time evolutions imply that a dynamically doped bare hole
is gradually dressed by magnon clouds and changes into a
spin polaron QP state. The time profiles of the Drude and
incoherent peaks exhibit fast oscillatory components, i.e.,
coherent magnon oscillation, and slow relaxation dynamics
scaled by an exponential function (see Fig. 11). The fast
component is apparent in the small-α (≡J⊥/J‖) case (Ising-
like case), where the magnon dispersion is almost flat and
provides a single time scale. For the slow relaxation dynamics,
only the higher-energy peaks show a strong α dependence [see
Fig. 12(c)]. This is interpreted from the fact that the interband
hole transitions by magnons are effective in the large-α case
(Heisenberg-like case) where the magnon band width is large.

The present numerical calculations simulate the early stage
in time-resolved pump-probe experiments. When we take
t = 0.5 eV, the time scale t = 30 in the present calculation
corresponds to about 40 fs, which is a realistic time scale in
recent ultrafast optical experiments. Our calculations predict
a time lag for observation of the incoherent component of the
optical conductivity spectra associated with coherent magnon
oscillation. Purely electronic processes of dynamically doped
carriers are detected in careful measurements and analyses
of the early stage of time-resolved optical spectra, where the
dynamics of electron and hole carriers can be separated [23].
More direct tests of the present simulations will be performed
by the photocarrier injection into the heterostructure where
holes or electrons are selectively introduced into a sample
[25–28].

It is worth mentioning that the present formalism is also
applicable to real-time carrier dynamics doped into Mott

insulators with an orbital degree of freedom. There are numer-
ous studies of photoirradiation effects in orbitally degenerate
correlated electron systems [34–38]. A doped Mott insulator
with an orbital degree of freedom is described by the t-J type
model [39,40], where a similar decomposition of the restricted
hole operator [see Eqs. (3) and (5)] is introduced; doped
carrier dynamics can be represented by a spin- and orbital-less
fermion that interacts with the magnon and the “orbiton.” One
of the qualitative differences between an orbitally degenerate
Mott insulator and the present single-band Mott insulator in
this scheme is the fact that the occupied electron number
in a specific orbital is not conserved [40]. This fact brings
about a free kinetic term for fermions, Ht ∼ ∑

k h
†
khk , where

orbiton operators do not appear, in contrast to Eq. (3). Coupling
between spin and orbital degrees of freedom [40,41] and
static and dynamical Jahn-Teller effects [42] also provide
qualitatively different real-time carrier dynamics from the
present case of a Mott insulator with AFLRO.
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APPENDIX: DOMINANT POLE APPROXIMATION

In this Appendix, we present formalisms and results of
the DPA introduced in Ref. [32] and utilized in Sec. IV. As
shown in the results in Ref. [32], Ref. [33], and Fig. 6, the
calculated one-particle excitation spectra consist of a series of
multiple poles and incoherent background. We assume in this
approximation that the former are represented by Lorentzian
peaks and the latter is neglected. The hole Green’s function in
vacuum is given as

gR(k; t − t ′) = −i
∑

a

za
ke

(−iεa
k −�a

k )(t−t ′)θ (t − t ′), (A1)

where a superscript a identifies a peak, and za
k , εa

k , and �a
k are

the weight, the energy, and a damping factor of peak a with
momentum k, respectively. In the same manner, the magnon
Green’s function defined in vacuum is given as

dR(q; t − t ′) = −ie(−iωq−η) (t−t ′)θ (t − t ′), (A2)

where ωq and η are the energy and a damping factor of the
magnon, respectively.

In this approximation, GR
3 (k; ω,t ′), introduced in Eq. (22),

is explicitly obtained as

GR
3 (k; ω,t ′)

=
∑

a,b,c,d

∑
σ=±1

σCabcd

−εc
k0

+ εd
k0

− σωq=0 − i
(
�c

k0
+ �d

k0
− η

)
× 1

ω − εa
k + i�a

k
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×
{

exp
[
i
(
εc
k0

− εd
k0

) − (
�c

k0
+ �d

k0

)
t ′
]

ω − (
εb
k − εc

k0
+ εd

k0

) + i
(
�b

k + �c
k0

+ �d
k0

)
− e(−iσωq=0−η)t ′

ω − (
εb
k + ω0σ

) + i
(
�b

k + η
)} (A3)

=
∑

a,b,c,d

∑
σ=±1

σCabcde
(−iσωq=0−η)t ′

ω − εa
k + i�a

k

× Dσ
b

(
ω,�σ

cd,t
′) − Dσ

b (ω,0,t ′)
�σ

cd

, (A4)

where

Dσ
b (ω,z,t ′) = eizt ′

ω − (
εb
k + σωq=0

) + i
(
�b

k + η
) − z

(A5)

and

�σ
cd = −εc

k0
+ εd

k0
− ω0σ − i

(
�c

ki
+ �d

k0
− η

)
. (A6)

We also obtain GR
4 (k; ω,t ′), introduced in Eq. (23), as

GR
4 (k; ω,t ′) =

∑
a,b,c,d

∑
σ=±1

−σC̃σ
abcd

ω − εa
k + i�a

k

× e
{i(εc

k0
−εd

k0
)−(�c

k0
+�d

k0
)}t ′

ω − (
εb
k − εc

k0
+ εd

k0

) + i
(
�b

k + �c
k0

+ �d
k0

)
× 1

ω − (
εd
k0

+ σωk−k0

) + i
(
�d

k0
+ η

) . (A7)

Poles in ImgR(k; ω) are labeled by indices a, b, c, and d. We
introduce the constants

Cabcd = Mk0Mk00

2
za
kz

b
kz

c
k0

zd
k0

(A8)

and

C̃σ
abcd = M2

σ

2
za
kz

b
kz

c
k0

zd
k0

, (A9)

with

Mσ=1 = Mk,k−k0 , (A10)

Mσ=−1 = Mk0,k0−k. (A11)

The index σ represents the direction of the magnon propagator,
i.e., σ = 1 for d(q,t) and σ = −1 for d∗(q,t), and we have

d(0; t) + d∗(0; t) =
∑

σ=±1

(−i)σe(−iω0σ−η)t . (A12)

We note that GR
3 and GR

4 cancel with each other, when t ′ = 0
and k = k0.

Poles in G3(k; ω,t ′) and G4(k; ω,t ′) are classified as the
following three types:

(i) ω = εa − i�a , originating from the poles in gR(k; ω).
(ii) ω = (εb + ωqσ ), representing “magnon side peaks.”

These peaks oscillate by a factor e(−iσωq=0−η)t ′ and are
characterized by a period Tsb = 2π/ωq=0.

(iii) ω = (εb − εc + εd ) − i(�b + �c + �d ), termed “ex-
change peaks.” The time evoluton of these peaks is dominated

by the factor exp[−i{(εc
k0

− εd
k0

) − (�c
k0

+ �d
k0

)}t ′]. Decay and
oscillations are governed by τdecay = 1/(�c + �d ) and Tex =
2π/(εc − εd ), respectively, when the transition occurs between
different bands (c �= d).

As shown in Fig. 7, with decreasing J , the damping rate
τdecay decreases. When τdecay is smaller than the period Tex,
the exchange peaks decay rapidly. On the other hand, in the
case of large J where the ladder-type peaks are well separated,
τdecay is large, and the contribution from the exchange peaks is
not negligible.

The optical conductivity spectra are also evaluated in the
DPA. A part of the optical conductivity spectra, hk0,q(t,t ′)
defined in Eq. (43), is given as

hk0,q(t,t ′) = −
∑
a,b,c

za
k0

zb
l̄
zc
k0

∑
σ=±1

σ

2i
exp[(iσ εac − �ac)t]

× exp[(iσ εbc + iωq − γbc − η)(t − t ′)], (A13)

where l̄ = k0 − q, εac = εa
k0

− εc
k0

, εbc = εb
k0−q − εc

k0
, �ac =

�a
k0

+ �c
k0

, and γbc = �b
l̄

− �c
k0

. A Fourier transform of hq(t,t ′)
in terms of t − t ′ is obtained as

hk0,q(ω,t) =
∑
abc

za
k0

zb
l̄
zc
k0

2

∑
σ=±1

σe(iσ εac−�ac)t

× exp[(iω − iσ (εbc + ωq) − (γbc + η))t] − 1

ω − σ (εbc + ωq) + i(γbc + η)
,

(A14)

where poles exist at ω = ±(εbc + ωq) − i(γbc + η). The width
of the peak at finite frequencies is determined by the damping
factor γbc and dispersion of the excitation energy εbc + ωq .
Among several terms with respect to the indices abc, con-
tributions where a and c belong to the lowest QP band in
the one-particle excitation spectra are large, because of the
damping factors e−�act , which makes other terms small. We
classify the peaks at finite frequency in the optical conductivity
spectra as

(i) b = c, in which the peak is termed the “the side peak”;
and

(ii) b �= c, in which the peak is termed “the high-energy
peak.”

In case i, scatterings of the dynamically doped hole occur
from k0 to k0 − q inside the lowest QP band and induce a peak
in the optical conductivity spectra at around ω = ±(δε + ωq),
where δε is characterized by the band width of the hole. As a
dynamically doped hole is dressed by spin clouds, δε and the
energy of the side peak increase. In case ii, transitions of the
dynamically doped hole from the lowest-energy QP band to
the higher-energy bands occur.

From Eq. (A14), early time dynamics in the optical
conductivity spectra are estimated. By expanding the right-
hand side of Eq. (A14) with respect to t , we have

hk0,q(ω,t) =
∑
abc

zk0a
zl̄b zk0c

2
εact

2 + O(t3), (A15)

where the coefficient of O(t3) is a complex number and finite
for any ω. The Drude weight, being proportional to Re[hq(ω =
0,t)], obeys t2, and the finite-frequency component σ (ω �=
0,t), being proportional to Im[hq(ω �= 0,t)], obeys ∝ t3.
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