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Optical response of highly excited particles in a strongly correlated system
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We present a linear-response formalism for a system of correlated electrons out of equilibrium, as relevant for
the probe optical absorption in pump-probe experiments. We consider the time dependent optical conductivity
σ (ω,t) and its nonequilibrium properties. As an application we numerically study a single highly excited charged
particle in the spin background, as described within the two-dimensional t-J model. Our results show that the
optical sum rule approaches the equilibriumlike one very fast; however, the time evolution and the final asymptotic
behavior of the absorption spectra in the finite systems considered still reveal dependence on the type of initial
pump perturbation. This is observed in the evolution of its main features: the midinfrared peak and the Drude
weight.
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I. INTRODUCTION

Time-resolved pump-probe optical spectroscopy represents
a new powerful tool to study materials with strongly correlated
electrons and offers a direct approach to far-from-equilibrium
phenomena, probing in particular the relaxation and thermal-
ization processes [1–6]. It appears that strongly correlated
systems are in general characterized by very fast relaxation
processes, emerging from the inherent strong interactions.
Theoretical studies of nonequilibrium dynamics and transient
phenomena in correlated models confirm this, even in partic-
ular states as the Mott-Hubbard insulator [7–9].

In theory, probing the transient nonequilibrium state with
a weak electromagnetic pulse naturally leads to the linear-
response approach. The optical conductivity σ (ω,t) is the time
dependent dynamical quantity directly relevant to pump-probe
optical spectroscopy and represents the response to the probing
electric field in a nonequilibrium situation. Some care is
needed to define and properly extract the sum rules and a
possible dissipationless component—Drude weight (charge
stiffness). Recently, such a formalism has been proposed
for continuous correlated systems [10]. Adapted for the
application of the dynamical mean-field theory (DMFT), it
has been used for the analysis of the Hubbard model [8,11,12]
or with the emphasis on the description of time dependent
photoemission spectroscopy [13]. Another definition has been
used to examine the dynamics of the Hubbard-Holstein
model [14]. A stationary response, as a characteristic of
a nonequilibrium quenched state, has also been considered
recently and studied explicitly for a hard-core boson model
[15] and in connection with the fluctuation-dissipation relation
[16,17]. There are also studies in which the effect of the probe
field after the intensive pulse excitation is directly followed by
introduction of the (classical) driving time dependent electric
field [18].

The aim of this paper is to introduce the differential optical
conductivity σ (ω,t) representing the causal linear response of
the lattice current to an arbitrary electric-field pulse E(t ′ > t),
acting on a general nonequilibrium many-body wave function
|ψ(t)〉 within a tight-binding model of correlated electrons.
Such a formulation allows the definition and the consideration

of the optical sum rule at any time, as well as the possible exis-
tence of the Drude weight D(t) as the dissipationless response.

As a nontrivial example we test the formalism by numerical
investigation of a single highly excited charged particle (hole)
within Mott-Hubbard insulator, as represented by the two-
dimensional (2D) t-J model. It seems plausible that, in the
long-time and thermodynamic limit, anomalous σ (ω,t) should
approach the ground state (g.s.) response σ0(ω), since the
particle is expected to relax to the g.s. by emitting the extra
energy via relevant bosonic excitations, i.e., via magnons. On
the other hand, in a closed finite system one would expect the
response to approach a thermal equilibrium response σth(ω),
characterized by T > 0. Our numerical solutions indicate
that these presumptions are only partly realized for concrete
examples and that for the long-time response also the initial
state plays a role, clearly visible at least within the limitation
of our finite systems and finite evolution times.

The paper is organized as follows. In Sec. II we present the
linear response formalism for the optical conductivity σ (ω,t)
within the tight-binding model for the general nonequilibrium
many-body wave function and related density matrix. Since
the calculation of the time dependent σ (ω,t) in principle
involves a two-time evolution, implementation with a single-
time evolution is developed in order to reduce the numerical
complexity as described in Sec. III. Section IV is devoted
to the numerical study of a nontrivial test case, representing
the optical response of the excited particle in the strongly
correlated background, as given by the t-J model with a
single hole. Conclusions and open questions are discussed in
Sec. V.

II. NONEQUILIBRIUM OPTICAL LINEAR RESPONSE

In a general single-band tight-binding model of correlated
electrons (with charge e), assuming the system with periodic
boundary conditions (PBCs), the action of the electromagnetic
field can be introduced via the vector potential A(t) through
the usual gauge (Peierls) construction. The latter neglects
the interband tunneling in multiorbital models and the field-
induced distortions of the orbitals, but remains appropriate
for the single-orbital case and weak fields. We consider the
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tight-binding Hamiltonian (using � = 1) up to O(A3):

H [A(t)] = −
∑
i,j,s

tij exp[ieA(t) · Rij ]c†jscis + Hint

≈ H0 − eA(t) · j + e2

2
A(t) · τA(t), (1)

written with the particle current j and the stress tensor τ

operators:

j = i
∑
i,j,s

tij Rij c
†
jscis , τ =

∑
i,j,s

tij Rij ⊗ Rij c
†
jscis , (2)

where Rij = Rj − Ri . The electrical current

je(t) = −∂H/∂A(t) = ej − e2τA(t) (3)

is a sum of the particle current and the diamagnetic contri-
bution. We treat the case in which the unperturbed system is
described by a pure (nonequilibrium) many-body wave func-
tion (w.f.) |ψ(t)〉, with the time evolution operator U (t ′,t) =
exp[−iH0(t ′ − t)] corresponding to the time independent H0.
We use the standard formalism [19] to evaluate the linear
response of 〈j〉t ′ to a general A(t ′′) applied at t , whereas the
diamagnetic part is already linear in A(t ′). Introducing the
notation for expectation values 〈O〉t = 〈ψ(t)|O|ψ(t)〉 and
the interaction representation BI (t ′) = U †(t ′,t)BU (t ′,t),

〈je〉t ′ = e〈j〉t ′ − e2A(t ′)〈τ 〉t ′ + e2
∫ t ′

t

dt ′′χ (t ′,t ′′)A(t ′′),

χ (t ′,t ′′) = iθ (t ′ − t ′′)〈[jI (t ′),jI (t ′′)]〉t . (4)

Differential conductivity σ (t ′,t) is defined through the re-
sponse to electric field E(t̄):

δ〈je〉t ′ = V

∫ t ′

t

d t̄σ (t ′,t̄)E(t̄), (5)

V being the volume of the system. Taking into account A(t ′′) =
− ∫ t ′′

t
E(t̄)dt̄ and Eqs. (4) and (5) we get

σ (t ′,t) = e2

V

[
〈τ 〉t ′ −

∫ t ′

t

dt ′′χ (t ′,t ′′)

]
. (6)

For a nonstationary state there is no unique definition of the
frequency-dependent σ (ω,t) [8,10,15]. We choose a plausible
relation reflecting the causality and switching on of the field
at time t , i.e., E(t̄ < t) = 0:

σ (ω,t) =
∫ tm

0
ds σ (t + s,t)eiωs, (7)

where tm is the width of window in which we do the Fourier
transformation, so that formally tm → ∞ but is in practice
the maximum time of probe duration. With such a definition,
Eq. (7), we avoid the ambiguity of including times prior to the
pump pulse. The sum rule for so defined σ ′(ω,t) = Re σ (ω,t)
then follows directly from Eq. (7):∫ ∞

−∞
dω σ ′(ω,t) = πσ (t,t) = πe2

V
〈τ 〉t . (8)

It is evident that the sum rule, Eq. (8), is a time dependent
quantity, i.e., 〈τ 〉 evaluated at the time t when the probe field
is applied. Moreover, independent of the precise form of the

Fourier transform it remains proportional to the 〈τ 〉 at the time
held fixed in the transformation.

One can define also the Drude weight D(t) as the dissipa-
tionless component:

σ ′(ω,t) = 2πe2D(t)δ(ω) + σ ′
reg(ω,t),

D(t) = 1

2V tm

∫ tm

0
ds

[
〈τ 〉t+s −

∫ s

0
ds ′χ (t + s,t + s ′)

]
,

(9)

again for tm → ∞. Equation (9) is a generalization of the
equilibrium expression, D = (1/2V )[〈τ 〉 − χ ′(ω = 0)] [20].
In contrast to the sum rule, D(t) following from Eq. (9)
is expected to be dominated by t ′,t ′′ >> t in Eq. (6). Its
dependence on t is revealed if written in the basis of eigenstates
|φm〉 of H0. In the standard notation for matrix elements
〈φm|O|φn〉 = Omn and amplitudes 〈φm|ψ(0)〉 = am (t = 0
chosen arbitrarily, e.g., when the nonequilibrium state is
prepared), we can express D(t) in the eigenbasis, assuming
that there are no degeneracies:

D(t) = 1

V

∑
m

|am|2
⎡
⎣τmm

2
−

∑
n	=m

|jmn|2
(εn − εm)

⎤
⎦

+ 1

2V

∑
m,n	=m

a∗
man

jmn(jmm − jnn)

(εm − εn)
ei(εm−εn)t . (10)

As relevant for the isotropic cases D(t) = Dαα(t) is the
diagonal term, with j = jα . Obviously, the last term in
Eq. (10) provides dependence on t if nonzero. However,
it is expected to vanish if averaged over t [15], yielding
stationary D(t) = D0 which is dependent only on the (initial)
nonequilibrium state |ψ(0)〉 through am. Moreover, the first
two terms in Eq. (10) resemble the equilibrium expression
[21], with thermal weights substituted by projection weights
|am|2. However, the latter derivation is feasible only for the
time independent H0. One can express limiting D0 also for the
case with degeneracies, where it is of a more general form:

D0 = 1

V

∑
εm=εn

a∗
man

⎡
⎣τmn

2
−

∑
εl 	=εm

jmljln

(εl − εm)

⎤
⎦ , (11)

still being independent of the choice of the basis within the
degenerate sector.

We have so far considered the response of a pure state
|ψ(t)〉 and a t-independent unperturbed H0. The formalism can
be extended also to the more general density matrix as well
as the time dependent H0(t), e.g., representing the presence
of the pump. In this case, the response to the perturbation
V (t) = f (t)V for an ensemble of pure states or time dependent
H0(t) is derived by expanding the density matrix up to the first
order in f (t), ρ(t) = ρ0(t) + ρ1(t) + O(f 2), and using the von
Neumann equation ∂ρ(t)/∂t = −i[H0(t) + f (t)V,ρ(t)]. The
linear response of general operator B at time t ′ to perturbation
applied at t is then

δ〈B〉t ′ = Tr[ρ1(t ′)B]
(12)

= −i

∫ t ′

t

dt ′′f (t ′′)Tr[ρ0(t)[BI (t ′),V I (t ′′)]],
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ρ0(t) = U (t,0)ρ0(0)U †(t,0),
(13)

ρ1(t ′) = i

∫ t ′

t

dt ′′f (t ′′)U (t ′,t ′′)[ρ0(t ′′),V ]U †(t ′,t ′′),

where the time-evolution operator is U (t ′,t) =
T̂ [exp(−i

∫ t ′

t
H0(t ′′)dt ′′)]. In such a formulation the

linear response of the particle current to the field applied
at t , written with the density matrix for a single pure state
ρ0(t) = |ψ(t)〉〈ψ(t)| is

δ〈j〉t ′ = −i

∫ t ′

t

dt ′′( − eA(t ′′))Tr[ρ0(t)[jI (t ′),jI (t ′′)]]. (14)

Optical conductivity, possibly generalized also to an ensemble
of pure states, is then

σ (t ′,t) = e2

V

(
〈τ 〉t ′ − i

∫ t ′

t

dt ′′Tr[ρ0(t)[jI (t ′),jI (t ′′)]]

)
,

(15)

where now 〈τ 〉t = Tr[ρ0(t)τ ].

III. NUMERICAL IMPLEMENTATION

Let us discuss here the numerical implementation for
σ (ω,t) only for the isotropic system in the case of a single w.f.
|ψ(t)〉 and time independent H0. The apparent disadvantage
of the definition with Eq. (6) is that for a fixed t the evaluation
of χ (t ′,t ′′) via Eq. (4) requires the propagation U (t ′,t ′′) for
each t ′′. Finally, for the numerical calculation at chosen
tm, O(t2

m/�t2) operations are needed, with �t being the
integration time step.

Instead it is more efficient to calculate the integral inside
the matrix element, Eq. (4), performing discrete steps:∫ t ′

t

dt ′′U (t ′,t ′′)j |ψ(t ′′)〉 ≈ �t

nm∑
n=0

U
nm−n+1
� j |ψ(t + n�t)〉,

(16)

where nm = (t ′ − t)/�t − 1 and U� = U (t ′′ + �t,t ′′) =
Ũ (�t) propagation for �t . The sum Eq. (16) can be then
evaluated recursively:

|S0〉 = j |ψ(t)〉, |Sn〉 = j |ψ(t + n�t)〉 + U�|Sn−1〉, (17)

so that finally

σ (t ′,t) = (e2/V )(〈τ 〉t ′ + 2Im〈ψ(t ′)|j U (�t)|Snm
〉). (18)

Such a procedure reduces the number of operations to
O(tm/�t). We note that quite an analogous procedure can
be applied for other transient correlation functions or for the
time dependent H0(t).

IV. SINGLE EXCITED PARTICLE

In order to test the feasibility of the above formalism and
contribute to the discussion of transient optical response of
nonequilibrium strongly correlated systems, we investigate in
the following the case of a single excited charge carrier (hole)
Nh = 1, doped in an antiferromagnetic (AFM) Mott-Hubbard

insulator. We consider the standard single-band t-J model:

H0 = −th
∑

〈i,j〉,s
c̃
†
i,s c̃j,s + J

∑
〈i,j〉

(
Si · Sj − 1

4
ninj

)
, (19)

where c̃i,s = ci,s(1 − ni,−s) are fermion operators, projected
onto the space with no double occupancy, describing hopping
between the nearest-neighbor sites only. We consider in the
concrete example the 2D square lattice, relevant for cuprates,
with J/th = 0.4. Further on we use th = 1 as the unit of energy,
as well of time t0 = �/th = 1. Lattice spacing is set at a0 = 1
so that V = N , as well as e = 1.

The intention is to consider the situation relevant for the
pump-probe experiments on cuprates [1,2]. One can imagine
two different situations:

(1) First is the photodoping of the Mott-Hubbard insulator,
where a low concentration of highly excited charge carriers
(holons and doublons) is created within an otherwise insulating
AFM system. Both types of carriers would exhibit, at least in
the transient stage, an independent response to the probe pulse.
To simulate this situation we consider as the initial w.f. a single
hole localized on one site, |ψ(0)〉 being the eigenstate of the
model, Eq. (19), where effective th is put to zero.

(2) Another setting is a weakly doped AFM insulator,
represented by the g.s. of a single hole within the t-J model.
The effect of a strong pump pulse applied to it can be simulated
by introduction of a phase shift in the hopping term of
Eq. (19), changing th → t

ij

h = thexp(iθij ), where we perform
the maximum shift in the chosen direction x, i.e., θx = π . Both
scenarios correspond to the same change in the total kinetic
energy Ekin, calculated from the expectation value of the th
term in Eq. (19). As obvious for the initially localized hole
with th(t = 0) = 0, the excited state has Ekin(t = 0) = 0. For
the choice θx = π the effect of the particular phase shift is to
change the sign of hopping in the x direction. Due to rotational
invariance this again yields zero total kinetic energy.

Results for a single hole within the t-J model are obtained
via two numerical methods. One is the exact diagonalization
(ED) of small systems employing the Lanczos method, where
we study the 2D square lattices with N � 26 sites and
PBC. First we find the g.s. |ψ(0)〉. By solving the time
dependent Schrödinger equation, the time evolution of |ψ(t ′)〉
and evaluation of recursive relations, Eq. (17), are obtained
by employing the Lanczos basis [22,24]. Since the available
square lattices (N = 18,20,26) are in general not rotationally
invariant we perform the averaging of σ ′ = (σ ′

xx + σ ′
yy)/2 for

case 2 together with corresponding pulses θα = θx,θy .
Another method to evaluate σ (ω,t) is the diagonalization

within the limited functional space (EDLFS) [23,24] The
advantage of the EDLFS method in the equilibrium regime
follows from a systematical construction of states with distinct
configurations of local spin excitations in the proximity of
the hole. In this way (in contrast to the ED on a small
system) the method in principle deals with an infinite system.
In practice the effective size of the system is larger than in
ED, but still limited by the number of basis states taken into
account. The EDLFS remains efficient even when applied to
nonequilibrium systems, as long as the spin disturbance caused
by the local quench remains within the confines of generated
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EDLFS, Θx
ED
Ekin,x0
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0
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t

(b)

EDLFS, loc
ED
Ekin,x0

0 5 10 15 20

1

0
(a)

FIG. 1. (Color online) Sum rule 〈τ 〉 vs time t for J = 0.4 as
obtained using the ED on N = 26 sites as well as the EDLFS. Results
are presented for initial states of (a) the localized hole and (b) the
π -pulse excited hole. The g.s. E0

kin,x value is also displayed.

spin excitations [25,26]. In the considered case spin excitations
extend up to L = 16 lattice sites away from the hole.

First we analyze the time variation of 〈ταα〉, representing the
sum rule Eq. (8), which is for the tight-binding model Eq. (19)
related to the kinetic energy, 〈ταα〉t = −Ekin,α(t), where only
hopping in the α direction is taken into account. In Fig. 1
we present ED and EDLFS results for 〈τ 〉 calculated directly
from kinetic energy for |ψ(0)〉 corresponding to localized and
π -pulse excitations, respectively. Averaging 〈τ 〉 = (〈τxx〉 +
〈τyy〉)/2 is employed in ED calculations, whereas for EDLFS
〈τ 〉 = 〈τxx〉. For comparison we show also the g.s. E0

kin,x =
E0

kin/2 ∼ −1.4. From Fig. 1 it follows that for both types
of initial excited states the decay of 〈τ 〉 is very fast. The
corresponding short time td can be related to the formation
of the spin polaron and can be explained with the generation
of string states [27]. It is expected to scale as td ∝ (J/th)−2/3.

We confirm in Fig. 1 that both methods, the ED and
the EDLFS, give quite consistent results for 〈τ 〉t for short
times t < td ∼ 1.5 (for chosen J = 0.4). For intermediate
times td < t < ti ∼ 15 the decay of E0

kin,x evaluated with
ED is somewhat slower, which could indicate the influence
of finite-size and PBC effects. Namely, in small systems
considered with the ED, spin excitations populate the lattice
and consequently influence further hole relaxation. The spread
of spin excitation is expected to saturate in ti ∼ √

N/J ,
yielding an approximately stationary response afterwards.
Within the EDLFS with in principle an infinite lattice, such
effects are not present or appear only at later times due to
the restricted basis. More than an artifact, ED results on
small lattices should be relevant for the optical sum rules
of systems with finite density of carriers, while those from
EDLFS correspond to systems with vanishing density.

0.0 0.2 0.4 0.6 0.8 1.0

1.4

1.3

1.2

T

E k
in
2

loc
N 26, Θx

loc
N 20, Θx

g.s.

FIG. 2. Equilibrium kinetic energy Ekin/2 vs temperature T for a
single hole on a system with N = 26 sites. Dots mark Ekin(t → ∞)/2
for both types of excitations in N = 20,26 systems and g.s.

Although for both types of excitations Ekin(t = 0) ∼ 0, the
distinction in sum rules is apparent for times shorter than
t < td , featuring the fact that the state of the initially localized
hole has the rotational symmetry, whereas with the π pulse
this symmetry is broken, with Ekin,x(t = 0) = −Ekin,y(t = 0).

It is evident that for long times t > ti kinetic energy ap-
proaches or oscillates around a quasistationary value, denoted
by Ekin(t → ∞). Within the ED, the latter still somewhat
depends on the system size N . The larger the system under
consideration, the closer this value is to the g.s. E0

kin, as marked
in Fig. 2.

Since the ED simulates a fixed-size system, and the excited
state is quite far from the g.s., a plausible interpretation could
be investigated within the concept of thermalization, i.e.,
the approach to the equilibrium state with a finite effective
temperature Teff > 0.

One could argue that different Ekin(t → ∞) originate in
different Teff, depending on the type of quench and size of the
system. In a finite system Teff is set by the excitation energy
so that the canonical expectation value of the energy equals
the total initial energy 〈ψ(0)|H0|ψ(0)〉 = Etot. At N = 26 the
effective temperature is approximately Teff = 0.35,0.5 for the
initially localized hole and π -pulsed hole, respectively, and
increases as N decreases.

Our observation is that Ekin(Teff) is still lower than Ekin(t →
∞) for all finite systems considered, as seen in Fig. 2. This sug-
gests that the system cannot completely thermalize, possibly
due to the discreteness of spin excitations in finite systems.
In this connection we notice that the T > 0 calculation of
the same model, Eq. (19), with a single hole using the finite
temperature Lanczos method [24,28] surprisingly reveals that
Ekin(T ∼ J ) does not essentially differ from g.s. E0

kin, Fig. 2.
In Fig. 3 we finally present results for the time dependent

optical spectra per hole σ̃ ′(ω,t) = Nσ ′(ω,t) as obtained
by ED and EDLFS, respectively, following the described
procedure. The cases of initially localized and π -pulse excited
holes are compared. With respect to Fig. 1 chosen times
represent different evolution stages: (a) t ∼ 0 response of
the initial excited state |ψ(0)〉, (b) response at approximately
characteristic decay time t = 1.5 ∼ td , and (c) t = 10 ∼ ti
already relaxed but not yet fully stationary response. To mimic
the stationary response for finite systems, σ̃ ′(ω,t̄), obtained
by average over responses in interval t ∈ [20,60] � td , is
presented in Fig. 4 and compared with the g.s. σ̃0(ω) and with
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ED, Θx(c)
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Ω

Σ
'Ω
,t

EDLFS, Θx(d)

FIG. 3. (Color online) Time dependent optical conductivity
σ̃ ′(ω,t) (per hole) vs ω as calculated at different times t = 0,1.5,10
for (a) the initially localized hole with the ED on N = 26 sites, (b) the
localized hole with the EDLFS, (c) the π -pulse excited hole with the
ED, and (d) the π -pulse excited hole within EDLFS. For comparison
the g.s. σ̃0(ω) is shown. Broadening of spectra δω = 0.1 is used.

the thermal-equilibrium result σ̃th(ω) at effective Teff � J , all
obtained within the ED.

In the initial stage the response is very incoherent and for the
π pulse case even predominantly negative σ̃ ′(ω,t) < 0, which
is compatible with the sum rule 〈τ 〉t∼0 < 0 in Fig. 1. The latter
indicates a highly nonequilibrium state |ψ(0)〉 corresponding
to an inverse particle population [29].

With some quantitative difference between both methods,
within the g.s. σ̃0(ω) two features are well visible and of
particular interest. One is the midinfrared (MIR) peak at
ω ∼ 2.4J , which is the signature of the stringlike excited
particle states within the 2D AFM background. We see in
Figs. 3(a) and 3(b) that the MIR-like peak appears also in
σ̃ (ω,t) and stabilizes very fast at t ∼ td for the localized hole,
independent of the numerical method employed. On the other

g.s.
T 0.5
t

1 2 3
0

1

2

Ω

Σ
'Ω
,t

(b) ED, Θx

g.s.
T 0.35
t

0 1 2 3
0

1

2

Σ
'Ω
,t

(a) ED, loc

FIG. 4. (Color online) Long-time response σ̃ ′(ω,t̄) vs ω as cal-
culated with ED on N = 26, obtained by average over responses in
interval t ∈ [20,60] � td for (a) the initially localized hole and (b) the
π -pulse excited hole. Results are compared to the g.s. σ̃0(ω) and the
thermal σ̃th(ω) at corresponding effective temperatures T = 0.35,0.5.
Spectra are broadened with δω = 0.1.

hand, after the π pulse [Figs. 3(c) and 3(d)] the MIR peak
is less pronounced. Especially within the ED, σ̃ (ω,t > td ) is
closer to the thermal σ̃th(ω) at appropriate Teff = 0.5. In the
equilibrium at such high T > J the MIR peak [Figs. 3(c)
and 4(b)] is already smeared out due to thermally disordered
AFM spin background. Within the EDLFS results [Fig. 3(d)]
the MIR peak recovers better, which could be attributed
to a lower density of spin excitations in effectively bigger
systems.

The second feature pronounced within the g.s. is the Drude
weight D, i.e., peak at ω = 0, which accounts for ∼1/3 of
the weight in the sum rule at T = 0. It should acquire a
finite width in the equilibrium at T > 0 due to scattering
processes (i.e., in the strict sense D = 0 is expected for a
nonintegrable system). Although within both methods used
[Eq. (10) would require the full ED method] we cannot strictly
establish and determine the value of D(t) as defined in Eqs. (9)
and (10), it is evident that, with respect to the low-ω response
studied, excited particles reveal quite different behaviors.
Within the ED the π -pulse excited hole shows essentially
no Drude peak, i.e., no corresponding low-ω remainder at
t > 0. On the other hand, the initially localized hole displays
a substantial low-ω peak and presumably D(t) > 0 (note that
we use broadening δω = 0.1) at all t > 0, although the weight
is smaller than in σ̃0(ω). Using the EDLFS we notice a weak
remainder of the low-ω contribution even for the π pulse,
though much smaller than for the localized hole. These findings
indirectly support Eq. (10), that also the initial w.f. (and not
just its total energy) determines the limiting Drude weight
value D0.
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V. CONCLUSIONS

We have presented a formalism for the linear optical
conductivity response σ (ω,t) of a nonequilibrium (excited)
state of a strongly correlated system, where the probe pulse
is taken as a perturbation in the linear order. In the absence
of a unique approach we have chosen the definition reflecting
the onset of the probe electric-field pulse at time t , which is
in contrast to some other studies. Such an approach allows the
discussion of the optical sum rule as well as the dissipationless
Drude weight at any time t > 0. On the other hand, the
definition introduces a complication due to an additional time
integration which we circumvent by a particular numerical
implementation.

The presented test case of a single highly excited charge
carrier within the t-J model already shows several features
and opens questions relevant for the theoretical analysis of
the pump-probe spectroscopy results. Independently of the
initial state we observe a fast relaxation of several observables,
e.g., the kinetic energy and the optical sum rule, toward
the respective g.s. value. Still, more specific features of the
transient and long-time optical response, such as the MIR
peak and the Drude component D(t), appear nonuniversal. Our
results reveal that they do not depend merely on the excitation
energy, as, e.g., expected from the canonical thermalization,
but as well on the character and w.f. of the initial excited
state. The persistence of this feature in the thermodynamic

limit remains an open question. On one hand, it appears
plausible that in an infinite system the local state of the
quasiparticle will correspond to the ground state. Nevertheless,
this statement is, e.g., not evident for a quantum system with
gapped bosonic excitations. To this end our findings show a
lack of canonical thermalization, observed before in theoretical
[30,31] as well as experimental studies [32]. Since we address
excited systems, the concepts of thermalization and relaxation
to the g.s. response are only partly applicable, especially for
dynamical quantities, and remain the challenge also for further
studies. We should note as well that in the application of our
formalism and results to the pump-probe experiments some
care is needed when energy absorption of particular probe
pulses is measured, which cannot be directly compared to
time dependent σ ′(ω,t) calculated in the present study.
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