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Magnetically induced femtoscale strain modulations in HoMn2O5
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X-ray scattering was used to investigate the magnetically induced ionic displacements in the low-temperature
commensurate ferroelectric/antiferromagnetic phase of the multiferroic HoMn2O5. The structural modulation
signal appearing at twice the magnetic wave vector km = ( 1

2 0 1
4 ) has been used, combined with symmetry

analysis, to determine a model for the ionic displacements up to a precision of 10−3 Å. The symmetry-breaking
operations that are associated to the active irreducible representation have been experimentally determined from
the analysis of the modulation modes. They reveal a lowering of symmetry to the polar point group m2m.
Calculations based on the determined model show that the magnetic structure along the c direction is stabilized
via nearest-neighbor and next-nearest-neighbor interactions through the rare-earth layer. We also show that by
knowing both the magnetic and the magnetically induced strain waves patterns, it is possible to remove any phase
ambiguity between the crystal and magnetic structures.
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I. INTRODUCTION

In all magnetic systems, the onset of magnetic order leads
to magnetostriction effects, which can also induce the onset
of charge modulation in materials [1]. Density waves in
the charge distribution could be due either to a periodically
distorted lattice, with each ion retaining its equilibrium charge,
often referred as strain wave, or by a periodic excess and
deficit of charge on the sites of an undistorted lattice (charge
density wave). Strain waves have been studied since the 1970s,
for example in chromium [2–4], and can provide a very
convenient tool for the study of magnetic domain populations
[5] as well as magnetic propagation vectors [6] or multi-k
structures [7]. In magnetoelectric multiferroic materials [8],
where magnetism and ferroelectricity coexist and couple, the
study of strain waves and their relation with the magnetic
structure can be of particular interest for the fundamental
understanding of ordering phenomena. The system presented
in this study belongs to the RMn2O5 family (R = rare-earth
or Y, Bi), whose members have a complex orthorhombic
crystal structure (space group Pbam). At low temperature,
they exhibit a rich magnetic phase diagram due to a complex
pattern of magnetic interactions. Upon cooling, at TN1 ∼ 40 K,
HoMn2O5 becomes antiferromagnetic with an incommensu-
rate (ICM) magnetic order, which locks into a commensurate
(CM) structure at TN ∼ 36 K, characterized by anomalies
in the dielectric constant and the presence of spontaneous
electric polarization. A further phase transition to a reentrant
incommensurate phase appears at TLT-ICM ∼ 18 K, which is
accompanied with an abrupt decrease of spontaneous polariza-
tion. Symmetric magnetic exchange has been recognized to be
the primary origin of the spontaneous electric polarization (P)
observed in the commensurate magnetic phases of RMn2O5

systems [9–11], although a smaller antisymmetric exchange
contribution has also been observed (R = Y, Ho, Tb) [12].

In this family of compounds, polar displacements due to the
structural relaxation induced by competing Heisenberg terms
(Jij Si · Sj ) and by Dzyaloshinskii-Moriya terms (Dij · Si × Sj)
in the magnetic Hamiltonian lead to small P values compared
to proper ferroelectrics. The ionic displacements due to
magnetostriction are predicted to be of the order 10−4 Å in
magnitude [13] and as such are not measurable by laboratory
crystallography instruments. A recent experiment to determine
the induced lattice distortions in the perovskite multiferroic
TbMnO3 has been successfully performed by Walker et al.
[14] by using a combination of electric and magnetic fields
(>2 T) to produce a single magnetic domain state and to
switch on the linear magnetoelastic coupling [15]. In these
conditions, an interference between charge and magnetic x-ray
scattering arose, which encoded the amplitude and phase of
the displacements. When combined with a theoretical analysis,
the data measured at the first harmonic km (km represent-
ing the magnetic propagation vector), which correspond to
the biquadratic coupling term in the free energy expansion
(km · kc)2, where kc represents the lattice modulation, allowed
Walker’s team to resolve the ionic displacements at the
femtoscale. Nowadays it is possible to determine femtoscale
distortions occurring at 2km originating from the third-order
linear-quadratic term k2

m · kc, using synchrotron radiation and
large area photon counting detectors. This approach can be
applied to all magnetic systems showing magnetostriction
effects or to materials where secondary order parameters lead
to subtle lattice distortions. The magnetostrictive interactions,
and therefore the corresponding displacements, are invariant
in a general reversal of the moments, and for a magnetic
structure with propagation vector km, the period of the charge
modulation is half the period of the magnetic modulation
[16,17]. In the RMn2O5 case, it has been shown that the kc

(kc = 2km) modulation is induced by the main (magnetic)
order parameter. In a previous experiment [18] the temperature
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dependence of the (4 4 0.5) satellite reflection was measured
and the quadratic law dependence with respect to a magnetic
(2.5 3 0.25) reflection agrees with the time-reversal symmetry
invariance requiring the lattice distortion L ∝ M2 at the lead-
ing term. Therefore the structural displacements induced by the
magnetic structure can be investigated by the modeling of such
satellite charge reflections. Here a systematic measurement of
those superlattice reflections was performed. A displacement
model to determine the modulation pattern arising from the
frustration of the underling magnetic structure was found.
The magnetic transition breaks the inversion symmetry and
in the CM phase the system goes into a polar group. Several
experiments support a lowering of symmetry at least to the
space group Pb21m, however as the distortions are tiny, no
direct evidence of a symmetry-breaking transition could be
obtained from x-ray diffraction till now [19,20].

II. EXPERIMENTAL

A high-quality single crystal (1 × 1 × 3 mm3) of HoMn2O5

grown using flux method [12] was used for the x-ray scattering
experiment, performed at the I16 beamline (Diamond Light
Source Ltd., UK) [21,22]. The sample was mounted on the
beamline κ diffractometer in a closed cycle refrigerator (CCR)
with base temperature of ∼5 K. The crystal was oriented with
the diffraction face perpendicular to the (110) direction. The
diffractometer was operated in the vertical plane scattering
mode with linear horizontal polarization of the incident beam
and the photon energy was tuned to 14 keV. This energy
was chosen in order to maximize the scattering volume and
the access to reciprocal space while still maintaining a good
detector efficiency of about 60% (320 μm thick Si sensors).
Two Rh coated mirrors were used to focus the beam to 30 ×
180 μm2 and high harmonic contaminations suppression. A
Dectris R© Pilatus 100K single-photon-counting area detector
has been used throughout the whole experiment. This detector
combines high resolution with extremely small point spread
and a large dynamic range (20 bits), essential requirements
to be able to collect weak superlattice reflections as well as
the strong Bragg charge reflections. At this energy, harmonic
contaminations can be omitted in the calculations: the mirrors
transmission for the second harmonic (E = 28 keV) is <1%
whereas the detector efficiency decreases to ∼10%. Moreover
the flux provided by the undulator will be much decreased
due to its optimization for 14 keV and of the peak intensity
of the flux provided by the synchrotron itself, which leads to
a further decrease of intensities of more than one order of
magnitude. Finally the ratio of the monochromator structure
factor for the Si333 and the Si111 is about half, while for
the Si222 is vanishingly small. We measured the integrated
intensities of 455 reflections at position (h,k,l + 1/2) in the
commensurate (CM) magnetic phase at T = 22 K. A dataset
in the paramagnetic phase at T = 45 K was also collected
using the same statistics for background subtraction. Due to
the CCR vibrations together with the sphere of confusion of the
κ diffractometer (∼80 μm3) and the possible nonhomogeneity
of the sample surface, it is possible to switch between
different grains or even probe several grains at the same time,
making the data analysis extremely challenging. Therefore
most care was given to probe the sample surface by collecting

85 reflections in a different position on the sample surface,
again both in the CM and in the paramagnetic phases, to be
used as a consistency check. Moreover we measured several
charge reflections with the purpose to determine the scaling
factor for quantitative analysis. The data were then corrected
for background and possible harmonic contaminations by
pixel-by-pixel subtraction of the high-temperature data and
then corrected for geometrical (self-)absorption and Lorentz
factor, multiplying them by the factor A(Q,ψ) · L(Q) =
[1 + sin α(Q,ψ)

sin β(Q,ψ) ] · sin 2θ (Q) where α(Q,ψ) and β(Q,ψ) are the
incident and exit angles with respect to the crystal surface,
with no need for polarization correction in this geometry. The
intensities were all treated as not equivalent, regardless of
symmetry operations. The corrected integrated intensities were
then used to analyze the distortion pattern with the FULLPROF

program suite [23], by using the propagation vector formalism,
in which the displacements for all sites are expanded in Fourier
series. For the superstructure with propagation vector kc, the
displacement un of an atom in the nth cell is calculated as:

un = Dn(−1)n. (1)

The components of the vectors D are defined in term of
Cartesian components Dx , Dy , Dz for each n, which are
sufficient to fully determine the superstructure. Constraints
exists between Dn for symmetry-related sites, these constraints
are determined by representation analysis and will be described
below.

III. RESULTS AND DISCUSSION

Superlattice reflections are typically weaker than the fun-
damental ones by a a factor larger than 106. The rocking curve
of a fundamental charge (8 8 2) and a very strong superlattice
(SL) (7 9 0.5) reflections are shown in Fig. 1. The FWHM for a
rocking curve on a typical superlattice reflection on HoMn2O5

is σ ∼0.03◦ (in θ ), value that is comparable to the FWHM
observed for the fundamental ones, hence the ionic displace-
ments show long-range order. The temperature dependence of
two superlattice reflections (7,9,0.5) and (6,7,−0.5) have been
collected in the temperature range 5 K < T < 45 K and is
shown in Fig. 2. The appearance of the kc reflections coincides
with the onset of the long-range magnetic order (TN1 ∼ 40 K),
which develops in a CM magnetic structure at ∼36 K where
an abrupt change of slope is observed. Further cooling in this

FIG. 1. (Color online) Peak profiles of the (7 9 0.5) and (8 8 2).
The line is a fit to the data with a Lorentian profile function.
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FIG. 2. (Color online) Temperature dependence of integrated in-
tensities of SL peaks: (6 7 −0.5) (top panel) and (7 9 0.5) (bottom
panel).

phase leads to the observation of maximum intensities at about
18 K for both measured reflections, followed by a decrease due
to the low-temperature CM to ICM magnetic phase transition.
These features are in very good agreement with previously
reported neutron and magnetization measurements [24]. The
change in the signal observed in the low-temperature phase
(T < TLT-ICM ∼) is also in agreement with the expectation of
a modified ionic displacements pattern due to the change in the
magnetic structure. At 14 keV, the separation between, e.g.,
(4.96 8 0.56) and (4.96 8 0.44) is � σ . This doesn’t allow a
complete deconvolution of the four split ICM peak positions
[although the separation between (0.96 0 0.56) and (1.04 0
0.44) is large, >5σ and can be separated]. The change in
intensity in this phase is smoother than the previously reported
one for the TbMn2O5 case [25] but in good agreement with
the previously reported data on HoMn2O5[18].

An initial attempt to use an unconstrained model to fit the
data has been performed but due to the large number of free

parameters, a stable fit could not be achieved: the completely
unconstrained model involves up to 97 free parameters:
32 atoms per unit cell with x,y,z displacements components
and a global scale factor. The latter has been determined with
the use of few charge reflections in the refinements, which
have been corrected for self-absorption. In order to reduce the
number of free parameters during data modeling, we used the
symmetry mode analysis method. The symmetry properties of
a distortion mode are characterized by an irreducible repre-
sentation (Irrep) of the high-symmetry space group, defining
the mode transformation properties under the operations of
this group. Therefore we first determined a basis of symmetry
modes of the parent phase (Pbam space group) compatible
with the low symmetry phase, and then we decomposed the
structural distortion as a sum of the contributions of all of
them. We used the computer program BASIREPS, part of the
FULLPROF suite, to perform the symmetry analysis [23] and
the programs ISOTROPY [26] and AMPLIMODES [27], the latter
from the Bilbao Crystallographic Server [28–30].

As shown in Table I, there are eight one-dimensional
Irreps allowed for the Pbam space group for the wave vector
kc = (0 0 0.5). For each Irrep, the number of free parameters
varies between 12 and 14. An initial least-square refinement
for each of the eight Irreps lead to very poor agreement factors.
The best fits (with a single Irrep) were obtained with Z+

1 and
Z−

4 with R(F ) = 51.6% and 39.6% respectively. However
a mixing of the two (Z+

1 and Z−
4 ), with a total of 16 free

parameters, leads to excellent agreement factors: R(F ) factor
and χ2 are 10% and 10.3 respectively. Figure 3 shows the
results of the final refinement, where the experimental structure
factors are plotted against the calculated ones. Moreover,
as a consistency check, we used the same model with no
free parameters to fit the reflections collected in a different
position on the sample surface, with excellent agreement.
It is therefore important to notice a single Irrep distortion
component is not sufficient to explain the full symmetry
break of the transformation. A combination of two distortions
belonging to different Irreps is indeed necessary. Z−

4 is the
main distortion mode associated with the principal magnetic
order parameter and has only four active symmetry operations:
twofold axis along b, which is compatible with the observation
of spontaneous electric polarization in the b direction in this
phase and two mirror planes (mxy and myz), while it doesn’t
contain inversion symmetry. Z+

1 is totally symmetric and is a
secondary order parameter; in this representation all symmetry

TABLE I. Action of the symmetry operations of the paramagnetic group on the distortion modes associated to different irreducible
representations. Symmetry operations are shown in the Seitz notation [31]. The Irreps symmetries are given in Miller and Love notation [32].

Symmetry Operations
Irreps {1|000} {200z|000} {20y0| 1

2
1
2 0} {2x00| 1

2
1
2 0} {1|000} {mxy0|000} {mx0z| 1

2
1
2 0} {m0yz| 1

2
1
2 0}

Z+
1 1 1 1 1 1 1 1 1

Z−
1 1 1 1 1 −1 −1 −1 −1

Z+
2 1 1 −1 −1 1 1 −1 −1

Z−
2 1 1 −1 −1 −1 −1 1 1

Z+
4 1 −1 1 −1 1 −1 1 −1

Z−
4 1 −1 1 −1 −1 1 −1 1

Z+
3 1 −1 −1 1 1 −1 −1 1

Z−
3 1 −1 −1 1 −1 1 1 −1
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FIG. 3. Results of the refinement with kc = (0 0 0.5) for the ionic
displacement for HoMn2O5 compound. The experimental structure
factors are plotted against the calculated ones. The agreement factors
are R(F ) factors and χ 2 are 10% and 10.3 respectively.

operations of the high symmetry space group are allowed.
Although Z+

1 is not related to the polar distortions, which are
expected to occur at the 	 point (not reported in this manuscript
due to the presence of charge peaks and multiple scattering
that make the measurement very hard to perform), Z−

4 and
Z+

1 together break inversion and the remaining symmetry is
consistent with the point group symmetry m2m, in agreement
with the previously suggested point group symmetry for the
low temperature CM/ferroelectric (FE) phase, magnetic point
symmetry m2′m [24,33].

Figure 4 shows the in-plane (ab) ionic displacements
pattern (Table II), where the arrows (magnified by 1000 to
be visible) represent the ionic displacements. The Ho ions
displace in the ab plane. This configuration is very stable
and even a refinement with no restraint on these sites leads
to the same configuration reported here (error bars ∼10−4).
The Ho displacement belongs to the Z−

4 representation. O2−
(labeled O2 in Table II) lie in the same mirror plane as Ho
ions and share the same in plane displacement as Ho (Wyckoff
label 4g), however because of the large difference in the x-ray

FIG. 4. (Color online) Representation of the observed ionic dis-
placements [kc = (0 0 0.5)] in HoMn2O5 with arrows (magnified by
1000). The structure is shown in one unit-cell, marked by thin black
lines, along the a and b axis. The projection is separately shown for
ionic displacements sites belonging to adjacent crystallographic cells
along the c direction. The purple (small and light gray), gray, and blue
(black) arrows represent ionic displacements on Mn, O2+, and Ho3+

sites respectively. Corresponding Mn-O polyhedra are also shown.

atomic form factors between these two species, only the a
component shows error bars smaller than the displacement
itself. The same is true for the Mn3+ ions and O2− (labeled
respectively Mn2 and O3 in Table II), lying in the mirror
plane at z = 0.5 (Wyckoff site 4h). In this case the error bars
are of the same order of magnitude of the displacements and
therefore we conclude no displacement on these sites can be
measured from the available data. A fit leaving the oxygens
sites, labeled O4 (general Wyckoff site 8i), to move freely lead
to good agreement factors, but constraining them with regard
to symmetry and in the basal plane, lead to a considerably
better fit and smaller error bars. The Mn4+ ions (Mn1) sitting
in the octahedral sites, displace mainly in the z direction, with
a smaller in-plane component, whereas the O1 sites show
very large in-plane components, roughly orthogonal to the
Mn3+-O-Mn3+ chains. The ionic displacements observed are
of the order of 10−3 Å with error bars in the Ho sites of 10−4 Å.

The out of plane component observed on the Mn4+ sites is
shown in Fig. 5, where the effect of the kc propagation vector is
shown by the alternating + + −− periodicity along c. Despite
the large number of reflections measured, due to the small

FIG. 5. (Color online) Representation of the observed ionic dis-
placements [kc = (0 0 0.5)] in HoMn2O5 with arrows (magnified
by 1000). The structure is shown in four unit cells, marked by thin
black lines (only one cell), along the a and c axis. The projection is
separately shown for ionic sites belonging to the first zigzag chain
(top) and the second chain (bottom). The purple (small and light
gray), gray, and blue (black) arrows represent ionic displacements on
Mn, O2+ and Ho3+ sites respectively. The green (light gray) horizontal
arrows inside the Mn4+ polyhedra represent the spin ordering of Mn4+

from reference [12]. Corresponding Mn-O polyhedra are also shown.
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TABLE II. Fourier coefficients (in Å) obtained from least-square refinements of the single crystal SL peaks for HoMn2O5 at T = 22 K (See
text for details). The Fourier coefficients for each site in the primitive unit-cell are given along crystallographic direction (x,y,z) and labeled D.
Error bars are given for all parameters within parenthesis.

Label Atom Position Dx Dy Dz

HO-1 Ho3+ (0.1371 0.1709 0) −0.00037(1) −0.00047(1) 0
HO-3 Ho3+ (0.3629 0.6709 0) 0.00037(1) −0.00047(1) 0
HO-4 Ho3+ (0.6371 0.3291 0) −0.00019(1) −0.00040(1) 0
HO-2 Ho3+ (0.8629 0.8291 0) 0.00019(1) −0.00040(1) 0
Mn1-1 Mn4+ (0.5 0 0.2551) 0 −0.00029(2) −0.00112(4)
Mn1-2 Mn4+ (0 0.5 0.7449) 0 0.00029(2) −0.00112(4)
Mn1-3 Mn4+ (0.5 0 0.7449) 0 0.00029(2) −0.00112(4)
Mn1-4 Mn4+ (0 0.5 0.2551) 0 −0.00029(2) −0.00112(4)
Mn2-1 Mn3+ (0.4119 0.3508 0.5) 0 0 0
Mn2-2 Mn3+ (0.5881 0.6492 0.5) 0 0 0
Mn2-3 Mn3+ (0.0881 0.8508 0.5) 0 0 0
Mn2-4 Mn3+ (0.9119 0.1492 0.5) 0 0 0
O1-1 O2− (0 0 0.2680) −0.00056(7) −0.0006(1) 0
O1-2 O2− (0.5 0.5 0.7320) −0.00056(7) 0.0006(1) 0
O1-3 O2− (0 0 0.7320) 0.00056(7) 0.0006(1) 0
O1-4 O2− (0.5 0.5 0.2680) 0.00056(7) −0.0006(1) 0
O2-1 O2− (0.1533 0.4499 0) 0.00032(8) 0 0
O2-2 O2− (0.8467 0.5501 0) −0.00032(8) 0 0
O2-3 O2− (0.3467 0.9499 0) −0.00032(8) 0 0
O2-4 O2− (0.6533 0.0501 0) 0.00032(8) 0 0
O3-1 O2− (0.1420 0.4344 0.5) 0 0 0
O3-2 O2− (0.8580 0.5656 0.5) 0 0 0
O3-3 O2− (0.3580 0.9344 0.5) 0 0 0
O3-4 O2− (0.6420 0.0656 0.5) 0 0 0
O4-1 O2− (0.3897 0.2118 0.2435) −0.00022(5) 0.00024(8) 0
O4-2 O2− (0.6103 0.7882 0.2435) −0.00022(5) −0.00024(8) 0
O4-3 O2− (0.1103 0.7118 0.7565) −0.00022(5) −0.00024(8) 0
O4-4 O2− (0.8897 0.2882 0.7565) −0.00022(5) 0.00024(8) 0
O4-5 O2− (0.6103 0.7882 0.7565) 0.00022(5) 0.00024(8) 0
O4-6 O2− (0.3897 0.2118 0.7565) 0.00022(5) −0.00024(8) 0
O4-7 O2− (0.8897 0.2882 0.2435) 0.00022(5) −0.00024(8) 0
O4-8 O2− (0.1103 0.7118 0.2435) 0.00022(5) 0.00024(8) 0

sensitivity of the x-ray to light elements, ionic displacements
of the oxygens sites show large error bars (�30%). However,
these displacements are essential to the model stability.

IV. MODEL FOR THE PROPAGATION ALONG THE C AXIS

In contrast with the complexity of the ionic displacement
pattern in the ab plane, the out of plane Mn4+ displacement
follows a simple ordering. This periodicity could be used,
together with the magnetic ordering information, to determine
the stabilization conditions for the magnetic propagation
vector kz = 1/4 and to find the relative phases of the magnetic
and crystal structures, effectively linking the magnetic and
the crystallographic structure by removing the inherent phase
ambiguity arisen from structural refinements alone. Here we
use an approach based on the linear-chain model, in which
only the c and a components, respectively of displacements
(δ) and magnetic nearest-neighbor (NN, J1, J2, where J1 is
the Mn4+-Mn4+ intracell exchange constant, J2 is the intercell
Mn4+-Mn4+ exchange) and next-nearest-neighbor (NNN, J3)
interactions are considered (Fig. 6) [34]. The Mn4+ in-plane

spins are defined as:

s1 = Scos(2πqzRL + φ)
(2)

s2 = Scos(2πqzRL + φ),

where RL is the unit cell index, qz is the magnetic propagation
vector component (along z) and φ is the phase between the
structure and the magnetic sublattice. φ being expressed in
radians, so it relates to the tabulated values as φ = 2π
 (

are site-dependent relative phases [12]). We can construct an
idealized one-dimensional model, coupled through nearest-
neighbor interactions (J1 and J2) and next-nearest-neighbor
interactions (J3).

J1 = J1

J2a = J2(1 − δ)

J2b = J2(1 + δ) (3)

J3a = J3(1 − δ)

J3b = J3(1 + δ),

125114-5
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FIG. 6. (Color online) Labeling scheme and relevant interactions
for the linear-chain model. Purple (dark gray) arrows represent ionic
displacements while green (light gray) arrows represent the spin
ordering from Ref. [12].

where the J2 and J3 exchange constants are split as function
of the ionic displacement δ. The total energy per unit cell is:

E = 1

N

∑

RL

J1s1 · s2 + 1

2
(J2as2 · s

′
1 + J2bs1 · s

′
2)

+ 1

2
(J3as1 · s

′
1 + J3bs2 · s

′
2), (4)

where the primed spins belong to the neighboring unit cells.
By replacing the expressions of the spins and the exchange

integrals in Eq. (4) and minimizing the energy with respect
to φ, we obtain the relative phases between the magnetic
sublattice and the crystal structure: the coupling of the ionic
displacements with J2 and J3 leads to the stabilization of
the magnetic structure at a phase φ = π/4 with respect to
the crystal structure (
 = 1/8). This phase allows for even
moment magnitudes throughout the system, in contrast for
example to a phase of 
 = 1/4, which leads to an alternating
stack along c of [+0 − 0] magnetic moments.

V. CONCLUSIONS

In this work we develop a method to measure and refine tiny
collective ionic displacements in a complex magnetic system.
Although the crystal studied is a multiferroic compound, this
method is not restricted to this class of materials. In fact no ex-
ternal perturbation (electric/magnetic field) was applied there-
fore no magnetoelectric domain has been selected. We have
demonstrated that very high precisions in the determination
of the magnetostriction induced ionic displacement pattern
(∼100 fm, light atoms) are achievable. Moreover this work
shows the first direct evidence of a subtle symmetry-breaking
transition in the CM magnetic phase of HoMn2O5. Finally, we
have also shown that by knowing both the magnetic structure
and the magnetically induced strain waves, it is possible to
determine the global phase between them removing any phase
ambiguity in the magnetic structure determination. These
high-accuracy measurements could be used to both validate
and challenge ab initio theoretical predictions of displacement
modes due to competing (super)exchange interactions in
(f electrons) frustrated magnetic materials.
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