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Screened Coulomb interaction calculations: cRPA implementation and applications to dynamical
screening and self-consistency in uranium dioxide and cerium
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We report an implementation of the constrained random phase approximation (cRPA) method within the
projector augmented-wave framework. It allows for the calculation of the screened interaction in the same
Wannier orbitals as our recent DFT+U and DFT+DMFT implementations. We present calculations of the
dynamical Coulomb screened interaction in uranium dioxide and α and γ cerium on Wannier functions. We show
that a self-consistent calculation of the static screened interaction in DFT+U together with a consistent Wannier
basis is mandatory for γ cerium and uranium dioxide. We emphasize that a static approximation for the screened
interaction in α cerium is too drastic.
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I. INTRODUCTION

Because of the limited accuracy of available functionals,
density functional theory (DFT) fails for a large number of
correlated systems. There are numerous examples for which
DFT cannot describe either their ground state properties
or their excitation properties. Thus, in order to describe
many-body effects arising in the strongly correlated systems
containing, for instance, transition elements or f electrons,
theories were designed to take into account the interaction
among correlated orbitals explicitly. The DFT+U method [1]
or the combination of DFT with dynamical mean field theory
method (DFT+DMFT) [2,3] have been successfully applied to
a large number of systems in the last twenty years. In particular,
these methods have been particularly useful to study the
ground state and the photoemission spectra of Mott insulators
such as bulk actinide [4–11] and lanthanide oxide [11–16].
For instance, to date DFT+DMFT is the only method to
give a good description of photoemission spectra of both α

and γ cerium [17–22]. However, in these frameworks and
applications, the interaction among correlated orbitals, named
U , remained most often an input parameter.

As a consequence, there is a stringent need to calculate the
magnitude of the interaction U , in order to recover a truly ab
initio scheme. Methods were then proposed to evaluate U from
first principles. The constrained local density approximation
(cLDA) method [1,23] deduces the value of U from the
variation of energy with respect to the number of correlated
electrons on an atom. Later, Cococcioni et al. [24] generalized
this method to a non-basis-dependent scheme. Finally, the con-
strained RPA method [25,26] uses the linear response theory
to compute the value of the screened interaction. Screening
processes corresponding to electron hole transitions among the
correlated orbitals are however excluded from the calculation.
Indeed an exact many-body scheme would already contain all
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the screening processes associated with the degrees of freedom
involved in the calculation. Therefore, some transitions have
to be disregarded to avoid double counting. The cRPA scheme
very clearly defines which screening processes have to be
taken into account. The method has been implemented in
several electronic structure codes using the LMTO [25,26],
FLAPW [27–29], FPLMTO [30], plane wave [31,32], and
projector augmented-wave (PAW) [32] methods and applied
to different systems in the last few years [27–35]. An important
point emphasized in several works is that the calculation
of the cRPA screened interaction based on a previous DFT
calculation depends crucially on the definition of a many-body
model [29,35].

The many-body model is defined by a set of local orbitals
together with the interactions among them. A cRPA calculation
of a model would require first the definition of a set of
local orbitals, and second a consistently calculated screened
interaction. Whereas the choice of the angular momenta of the
selected orbitals unambiguously defines the angular part of the
local orbitals, the definition of the radial part is more subject to
variation. Generally, it relies on the use of localized Wannier
functions, which are built as a unitary transform of Kohn-Sham
orbitals in an energy window [36,37]. The key point is to
construct the model specific cRPA screened interaction.

It is especially important to study this dependence as a
function of the localization of the Wannier orbitals. Indeed,
correlated orbitals used in DFT+U and DFT+DMFT can
be formulated as Wannier orbitals with different energy
windows [11,38,39] depending on implementation choices.
Thus the coherence of the DFT+U /DFT+DMFT calculations
and of the cRPA calculation can only be guaranteed if both
methods use the same Wannier functions. Implementations
of DFT+U in popular codes very often use atomic orbitals
[40–42], whereas implementations of DFT+DMFT use Wan-
nier functions [11,38,39,43–45]. It is thus expected that the
value of U used in DFT+U and DFT+DMFT should differ.
Some works indeed discuss the calculation of U for a given
energy window [26,29,30,33,46], but there are no calculations
of a screened interaction in the same basis as the one used
in DFT+U codes. Even for DFT+DMFT calculation, the
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definition of an energy window is especially important for
systems with entangled correlated bands [26,33].

Moreover and especially for very localized systems, such
as Mott insulators, self-consistent calculations over U [34,47]
are desirable because the erroneous LDA or generalized gra-
dient approximation (GGA) band structures cannot correctly
describe the screening in these systems. The coherence of basis
between the DFT+U and the cRPA calculation is then of the
utmost importance. This is in particular the case for cerium
and uranium dioxide for which no self-consistent calculations
of U exist.

In this paper, we report an implementation of the cRPA
method using the PAW method in the ABINIT package [48–50].
The implementation is versatile enough to allow for the
calculation of screened interaction in both the same Wannier
basis as our recent DFT+DMFT implementation [11] and in
atomic orbitals and as in our DFT+U implementation [42].
Then we show that the self-consistent DFT+U calculation
of the screened interaction in the cRPA method in strongly
correlated systems is essential to describe the static and
dynamical screened interaction. We exemplify our study with
two important applications: UO2 and cerium.

II. THE CONSTRAINED RPA METHOD

As the cRPA method is described in details else-
where [25,26,29,35], we only sketch the most important points
here. The screened interaction is in general a four index matrix
that is defined as

Uσ,σ ′
m1,m3,m2,m4

(ω) = 〈
mσ

1 mσ ′
3

∣∣ε−1
r (ω)v

∣∣mσ
2 mσ ′

4

〉
, (1)

with v the bare Coulomb interaction and m1,m2,m3,m4 the
indices of the correlated orbitals.

In this paper, we use projected Wannier functions as defined
in Refs. [39] and [11]. Similar Wannier functions have been
used in cRPA calculations [29]. We first introduce the auxiliary
wave functions |χ̃Rσ

km 〉 as∣∣χ̃Rσ
km

〉 ≡
∑
ν∈W

∣∣	σ
kν

〉〈
	σ

kν

∣∣χR
km

〉
. (2)

For a given atomic site R, we call |χR
km〉 the Bloch transform

of isolated atom Kohn-Sham orbitals with projected angular
momentum m. |	σ

kν〉 are Kohn-Sham orbitals for k-point k,
band index ν, and spin σ . |χ̃Rσ

km 〉 is thus a weighted sum of
Kohn-Sham orbitals. This sum extends over a given number of
Kohn-Sham orbitals that can be defined by an index range or
alternatively by an energy windowW . The orthonormalization
of |χ̃Rσ

km 〉 leads to well defined Wannier functions |WRσ
km 〉,

unitarily related to |	σ
kν〉. In the limit of a large number of

Kohn-Sham bands, the projection in Eq. (2) becomes complete
and the Wannier functions |WRσ

km 〉 become equivalent to atomic
orbitals |χR

km〉.
The definition of U is very much similar to the Coulomb

integrals used in quantum chemistry, but with the screening of
the frequency dependent cRPA dielectric matrix εr (ω). This
dielectric matrix can be expressed as a function of the cRPA
noninteracting polarizability χr

0 (ω) and the bare interaction v

as (in the matrix notation)

εr (ω) = 1 − vχr
0 (ω). (3)

χr
0 contains all electron-hole screening processes except the

ones that are internal to the correlated orbitals of the model. It
can be conveniently written as

χr
0 (r,r′,ω) =

∑
k,k′,n,n′,σ

ψσ∗
nk (r)ψσ

n′k′(r)ψσ∗
n′k′(r′)ψσ

nk(r′) (4)

×w(k,k′,n,n′,σ )
f σ

n′k′ − f σ
nk

εσ
n′k′ − εσ

nk + ω + iδ
. (5)

In Eq. (5), n,n′ are band indices, k,k′ are k points in the
Brillouin Zone and fnk is the occupation number for band n,
spin σ and k point k.

If the correlated bands in the model are completely isolated
from the other ones, then we can assume that [25,26]

w(k,k′,n,n′,σ ) = 0 (6)

when (nk) and (n′k′) are both correlated bands and w = 1
otherwise. For example, a model could define correlated
orbitals as Wannier orbitals constructed only from the f bands.
Nevertheless, with this specific choice, the Wannier orbitals
have some weight on other orbitals: oxygen-p for oxides [38]
or spd for pure metals. The intensity of this weight depends
on the hybridization of f orbitals with the other orbitals. This
last definition of correlated orbitals is not the one used in
most implementations of DFT+U in modern codes [40–42].
In these implementations, correlated orbitals are most often
atomic orbitals which thus correspond to Wannier functions
|WRσ

km 〉 for a large window of energy [11].
If the bands are completely entangled or if one defines

Wannier functions |WRσ
km 〉 from a larger energy window, then

the preceding assumption of Eq. (6) cannot be made [26,33],
and some authors have proposed the more general assump-
tion [31,35]

w(k,k′,n,n′,σ ) = 1 −
[∑

m1

∣∣〈	σ
nk

∣∣Wσ
m1k

〉∣∣2

]

×
[∑

m2

∣∣〈	σ
n′k′

∣∣Wσ
m2k′

〉∣∣2

]
. (7)

If the correlated bands are not entangled and if the Wannier
functions are defined from these correlated bands only, then
Eq. (7) simply reduces to Eq. (6). Fully screened Coulomb
interaction W corresponds to w = 1.

In this paper, we use an implementation of the calculation of
the dielectric function in PAW [49,51–53]. From the screened
interaction expressed in the Kohn-Sham basis, we compute the
screened interaction in Eq. (1), using the Wannier functions as
defined in Refs. [39] and [11]. The weight of Wannier functions
necessary for Eq. (7) is evaluated within PAW following
Ref. [39].

Then the values of the famous Hubbard U and Hund J are
simply extracted by taking the average among the considered
localized orbitals:

U = 1

4

∑
σ,σ ′

1

(2l + 1)2

2l+1∑
m1=1

2l+1∑
m2=1

Uσ,σ ′
m1,m2,m1,m2

(8)

J = 1

4

∑
σ,σ ′

1

(2l + 1)(2l)

2l+1∑
m1=1

2l+1∑
m2=1(m2 �=m1)

Uσ,σ ′
m1,m2,m2,m1

. (9)
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Note that this definition of U is also sometimes re-
ferred to as the F 0 Slater integral. We emphasize that
this definition is different from the average of the diag-
onal elements of the Coulomb interaction matrix Udiag =
1
2

∑
σ

1
2l+1

∑2l+1
m1=1 Uσ,σ

m1,m1,m1,m1
(see, e.g., Ref. [31]). In partic-

ular diagonal elements are usually larger, and thus Udiag > U .
However our definition is consistent with the U used in the
DFT+U approach [54] and physically describes the average
interaction between electrons in all orbitals.

Appendix A gives the details of the implementation and the
peculiarities of the PAW formalism for the calculation of U .
Appendix B gives a benchmark of our implementation with
respect to recent calculations on SrVO3.

III. COMPUTATIONAL DETAILS

The calculations are performed within the projec-
tor augmented wave (PAW) method as implemented in
ABINIT [48–50]. The valence states include 2s,2p for oxygen,
5s,5p,4f,6s,5d for cerium, and 6s,6p,5f,7s,6d for uranium,
respectively. Two projectors per angular momentum are used,
and completeness of the projector basis is checked by increas-
ing their number. The parameters of calculation are chosen
such that the precision on the static values of U and J is better
than 0.2 eV. For UO2, we thus use a 4 × 4 × 4 k-point grid, and
energy cutoffs for the wave functions, the dielectric function,
and the bare Coulomb interaction are, respectively, 15 Ha,
5 Ha, and 35 Ha. 100 bands are sufficient for the calculation
of the polarizability. For cerium, we use a 8 × 8 × 8 k-point
grid and energy cutoffs for the wave function, the dielectric
function, and the bare Coulomb interaction are, respectively,
15 Ha, 10 Ha, and 35 Ha (for large values of the volume, a
4 × 4 × 4 k-point grid was sufficient). For the static screened
exchange J in cerium, a value of 120 Ha was however
necessary, but a 4 × 4 × 4 k-point grid is sufficient as well
as 100 bands for the calculation of the polarizability. This high
value of the cutoff originates from the calculation of oscillator
matrix elements in the PAW formalism (see Appendix A). A
smearing of the Kohn-Sham occupations of 0.1 eV is used.
For all systems, experimental structural parameters are used:
5.47 Å for UO2, 4.83 Å for α cerium, and 5.16 Å for γ cerium.

Unless specified, all DFT+U calculations use the full
localized limit (FLL) double counting correction [54]. A
discussion on the role of the double counting correction is
given in Appendix C. For UO2, DFT+U are performed for
simplicity in the ferromagnetic configuration, which requires
a symmetry breaking [55], and we use the correlated f density
matrix found in Ref. [9].

IV. DEFINITION OF THE MODELS FOR URANIUM
DIOXIDE AND CERIUM

The goal of this section is to define models of correlation
for uranium dioxide and cerium. For each model, one thus
defines an energy window that encompasses at least the bands
which have the same main character as the selected orbitals.
From the definition of the window energy, Wannier functions
of the correlated orbitals are built according to the scheme of
Ref. [39]. From the choice of the correlated orbitals, the cRPA
polarizability is built by excluding some screening channels

Γ Z U X Γ M A

-8
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4

8

ε nk
(e

V
)

0 5 10 15 20

total
5f

FIG. 1. (Color online) UO2 band structure for the DFT-LDA
nonmagnetic solution. The Fermi level is set to zero. The width of
the bands (in red) is proportional to the amplitude of the f character
for each band.

corresponding to correlated orbitals. We distinguish different
ways to exclude the screening according to Eq. (6) or to Eq. (7).

A. UO2

Figure 1 represents the LDA band structure of UO2. The
Op-like bands are located below the Fermi level in the energy
window [−8 eV, −4 eV]. Near the Fermi level, bands have
mainly a U f character and are nonentangled in this LDA
nonmagnetic calculation. As a consequence, one can define
several models following the literature [35], as listed below.
We give their energy window and screening channel excluded
from the polarizability in Table I:

(i) f model: The model is built from the Uf -like bands
only.

(ii) fp model: The model is built from the Uf -like and
Op-like bands.

(iii)f -fp model (a): As in the fp model, Wannier functions
are built from the Uf -like and Op-like bands. However, only
the f band transitions are removed from the polarizability,
using Eq. (6). It is equivalent to say that the constrained
polarizability is built from Eq. (7) with Wannier orbitals

TABLE I. Different models for the description of correlation
in UO2. From the top to the bottom, the f Wannier functions are
expected to be more and more localized. For the first three models
(resp. last four models), Eq. (6) [resp. Eq. (7)] is used to compute
χr

0 . The three models f -ext (ba), (bb), and (bc) use a fixed number
of bands (28, 38, and 48, respectively) that correspond to the energy
windows given.

Wannier functions

Excluded defined corresponding
Models screening channels with bands energy window (eV)

f f f [−1, 1.7 ]
fp f , O-p f , O-p [−8, 1.7 ]
f -fp (a) f f , O-p [−8, 1.7 ]
f -fp (b) f -Wannier weight f , O-p [−8, 1.7 ]
f -ext (ba) f -Wannier weight 5-28 [−8, 17.0]
f -ext (bb) f -Wannier weight 5-38 [−8, 30.0]
f -ext (bc) f -Wannier weight 5-48 [−8, 40.0]
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FIG. 2. (Color online) Band structure and density of states of γ

cerium in DFT-LDA.

constructed from Uf -like bands only. Thus from an ab initio
point of view, this scheme is not coherent.

(iv) f -fp model (b): Wannier functions are also built
from the Uf -like and Op-like bands. Nevertheless, in this
case, the cRPA polarizability is computed using Eq. (7) in
Eq. (5) [31,56]. This is a more general way of doing it
because it is applicable to any system, even when bands are
entangled. Furthermore the Wannier functions and the cRPA
polarizability are here consistently defined.

(v) f -ext model (b): the same as f -fp model (b) but
Wannier functions are defined with more extended windows
of energy that are listed in Table I.

B. Cerium

The LDA band structure of γ cerium is given in Fig. 2. One
can see that the f bands are largely entangled with s, p, and d

bands. The f , fp, and f -fp (a) models we defined for UO2

cannot be applied here. We give in Table II the list of models
that we will use in the next section.

The four models f -ext (b1), (b2), (b3), and (b4) use a
fixed number of bands (20, 30, 40, and 50, respectively) that
correspond to the energy windows given. The f -(W1) models
are built to select an energy window W1 to remove the f

bands contribution approximatively in the polarizability. The
f dt2g -ext model uses Wannier f functions constructed from
the specified energy window, and the excluded bands for the
polarizability are the f and dt2g bands. In this last model, as all

TABLE II. Different models for the description of correlation in
cerium (see text).

Wannier functions

Excluded defined corresponding
Models screening channels with bands energy window (eV)

f -ext (b1) f -Wannier weight 1-20 [−24, 27]
f -ext (b2) f -Wannier weight 1-30 [−24, 47]
f -ext (b3) f -Wannier weight 1-40 [−24, 57]
f -ext (b4) f -Wannier weight 1-50 [−24, 67]
f -(W1) α [−0.8,0.4] 1-20 [−24, 27]
f -(W1) γ [−0.63,0.37] 1-20 [−24, 27]
f dt2g -ext f dt2g bands 1-20 [−24, 27]

bands are entangled, we choose to remove the 7 f bands and
the 3 bands that are located just above as they are mainly of
dt2g character and are lower in energy than the deg orbitals.

V. UO2: RESULTS AND DISCUSSION

In this section, we present the static and dynamical cRPA
screened interaction in uranium dioxide. The third subsection
is devoted to the self-consistent calculation of the static
screened interaction.

A. Static screening

Table III gives the static values of bare v, fully screened W ,
and cRPA value U of the direct and exchange interactions as
defined in Eqs. (8) and (9).

1. Limiting cases: the bare and the fully screened interactions

We first focus on the bare value of the interaction as a
function of the definition of the Wannier function. Here the
screening is completely neglected, i.e., the dielectric matrix
is set to 1 in Eq. (1). As expected, the larger the window of
energy used to define Wannier functions (from the f to the
f -ext model), the larger the value of the bare interactions U

and J , ranging from 16.0 eV to 18.1 eV. Indeed, the larger the
energy window, the more localized the Wannier functions.

For the fully screened interaction, the value of the inter-
action is much reduced by the screening. However, the same
variation is logically observed as a function of the energy
window used to define Wannier functions.

TABLE III. Bare (v), fully screened (W ) and cRPA (U cRPA)
Coulomb interactions for UO2. In cRPA, the screening is computed
for the different models described in Table I. All calculations are
done in the nonmagnetic states for LDA, and ferromagnetic states for
LDA+U . The calculation done in the antiferromagnetic configuration
is indicated by †. Non-self-consistent (nsc) calculations of U use
LDA+U with U = 4.5 eV and J = 0.5 eV.

model U (eV) J (eV)

v f 16.0 0.5
v fp or f -fp (a,b) 17.1 0.5
v f -ext (ba) 18.1 0.5
W f 0.20 0.3
W fp or f -fp (a,b) 0.21 0.4
W f -ext (ba) 0.23 0.4
U cRPA f 3.4 0.4
U cRPA f -fp (a) 3.7 0.4
U cRPA f -fp (b) 2.0 0.4
U cRPA f -ext (ba) 1.0 0.4
U cRPA fp 6.2 0.4
U cRPA

nsc f -ext (ba) 5.0 0.4
U cRPA

nsc f -ext (bb) 5.3 0.4
U cRPA

nsc f -ext (bc) 5.5 0.4
U cRPA

sc f -ext (ba) 5.2 0.4
U cRPA

sc f -ext (bb) 5.7 0.4
U cRPA

sc f -ext (bc) 5.7 0.4
U cRPA†

sc f -ext (ba) 5.0 0.4
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2. cRPA interaction

We compare now the value of the cRPA interaction for the
different models. We take as a reference the value within
the f model, namely U (f ) = 3.4 eV. For the f -fp (a) model,
the polarizability is computed in the same way, but the Wannier
functions are more localized. Consequently the value for
this model is slightly larger, Uf -fp(a) = 3.7 eV. The relative
increase of the interaction when one goes from the f model
to the f -fp (a) is the same for the bare, fully screened, and
cRPA interactions.

Let us now compare f -fp (a) and f -fp (b) models to
highlight the impact of the change in the definition of the
polarizability, for a fixed Wannier function. One remarks
that the value for f -fp (b) is considerably smaller than for
the f -fp (a) model. The decrease originates from the large
hybridization between oxygen and uranium which creates a
residual oxygen contribution near the Fermi level and thus
a very efficient metallic screening. A similar effect has been
observed in transition metal oxides [35].

The model f -ext (b) corresponds to an even more localized
f -Wannier function, but the main effect is that the weight of the
Wannier function on Kohn-Sham bands around the Fermi level
decreases. Thus the remaining screening channels at the Fermi
level are more important, a larger metallic screening is created,
and the value of U is even more reduced. This model is the
most relevant because it can be applied for entangled bands and
is fully coherent with modern DFT+DMFT implementations.
Finally, the fp model is based on the same Wannier functions
as the f -fp (a,b) models, but the screening is much more
reduced because the particle-hole excitations inside the f -like
and p-like bands are removed.

For the sake of completeness, we have compared LDA
versus GGA calculations of U . The difference is weak, at most
0.2 eV. The magnetic state—nonmagnetic or ferromagnetic—
also has a weak effect, below 0.3 eV. The interest of doing
nonmagnetic calculations is that in this case and as shown in
Fig. 1, the seven f -like bands located near the Fermi level are
separated from other bands, so we can compare rigourously
the different models.

As a conclusion of this study, we performed calculations of
U in the DFT+U framework with U = 4.5 eV and J = 0.5 eV.
DFT+U gives a better description of the band structure of this
Mott insulator by opening a gap in agreement with photoemis-
sion spectra [5]. As a consequence, the low energy transitions
disappear in the polarizability. Thus, the screening is less
efficient and the value of the cRPA screened interaction is much
larger. It emphasizes the need for a better starting point than
LDA for the cRPA calculation. In order to fix this issue, we pro-
pose a self-consistent procedure [47] as discussed in Sec. V C.

B. Dynamical screening

We discuss here the frequency dependence of the screened
interaction. We plot in Fig. 3 the screened interactions as a
function of the frequency.

1. Fully screened interaction

We first discuss the frequency dependence of the fully
screened interaction. For this case, only the interaction

0 10 20 30 40
ω (eV)

0

5

10

15

U
(e

V
)

v [f-ext (b)]
W[f-ext (b)]
U [f]
U [fp]
U [f-ext (b)]
U [f-ext (b)]  LDA+U

FIG. 3. (Color online) Bare, fully screened, and cRPA partially
screened interactions, for different models, for uranium dioxide. The
calculations are performed in the LDA approximation or LDA+U

approximation (U = 4.5 eV and J = 0.5 eV).

computed with the Wannier functions built in the f -ext
(b) model is shown because the main features are mainly
independent from the Wannier function construction details.
Three peaks are located at 2.5 eV, 8.2 eV, and 16.3 eV
(called subplasmons in Ref. [35]). As we will show below
by comparing different models, these peaks reflect the shape
of the band structure.

2. f and f p models

By comparing W to U computed in the f model, one notices
that the peak at 2.5 eV comes from internal transitions of the
f bands. It is coherent with the width of the f bands which,
as seen on Fig. 1, is around 2.5 eV. Similarly, the comparison
of the U computed in the fp model shows that the peak at
8.2 eV comes from the p-f transitions.

3. f -ext (b) model

The cRPA screened interaction as computed in the f -ext(b)
model exhibits the three peaks also observed in the fully
screened interaction W. Similarly to what was observed for
transition metal oxides [35], and as discussed above, it comes
from the large hybridization between oxygen and uranium,
which produces a residual metallic screening in the cRPA
polarizability. As a consequence the first subplasmon is
observed, but its amplitude is much lower. Results for the
f -fp (b) model are very similar to the f -ext(b) thus have not
been reproduced here.

4. f -ext (b) model in LDA+U

In the DFT+U approximation, a gap is created inside the
band structure, thus the first subplasmon is suppressed. As a
consequence, the variation of U as a function of frequency
is weaker below 4 eV. It is a justification to use a static
approximation for the screened interaction.

C. Self-consistent calculation of U

The LDA and LDA+U calculations of the cRPA lead
to two different static and dynamical screened interactions.
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It is thus important to carry out the calculation of U

self-consistently [34,47]: First, a LDA+U calculation is
performed. Then, the band structure and wave functions are
used in a cRPA calculation to obtain a new value of U on a
given Wannier function. Then this value of U is injected into
another LDA+U calculation until convergence.

Such a scheme can be carried out with our present
implementation, but in order to guarantee the coherence of
the calculation, one needs to use the same correlated basis for
the calculation of the screened Coulomb interaction—Wannier
functions [11]—and the application of the Hubbard correction
to the Kohn-Sham Hamiltonian—atomic orbitals [42]. As
outlined in the Appendix B1 of Ref. [11], it is sufficient in
our implementation to use a large number of bands to define
Wannier functions, and a specific choice of the correlated
occupation matrix to satisfy the former condition (Eq. B.1
of Ref. [11]).

As the calculation is computationally expensive, we have
used different energy windows for the Wannier functions with
increasing width. We give in Table III the variation of the
self-consistent U as a function of the energy window of the
Wannier functions used in the cRPA calculation. For a large
energy window, the value of U and J converge to U = 5.7 eV
and J = 0.4 eV.

Our values of U and J are thus slightly larger than the
commonly used value U = 4.5 eV and J = 0.51 eV [57,58].
Yin et al. [10] used a related approach [27] to compute the
screened interaction in UO2. They find a value of 6 eV, only
slightly larger than ours. However, there are no details about the
correlated Wannier orbitals used in their calculations. The self-
consistent GW approach used to compute the interaction might
lead to a different band structure and thus a different screening
than in our scheme. It seems however more consistent to
compute the cRPA screened interaction with a DFT+U

scheme using the cRPA interaction than a GW scheme using
a fully screened interaction. The rather good agreement with
our calculation might possibly come from the fact that the
actual values of the cRPA interaction and the fully screened
interaction computed in DFT+U are very close because the f

screening is negligible.
To conclude, in order to use the f -ext (b) model, which

is the most general one, it is mandatory to carry out the
calculation of the cRPA screened interaction starting from a
DFT+U band structure [34,47] for Mott insulators. It is espe-
cially important because most DFT+DMFT implementations
use Wannier orbitals and thus are coherent with a screened
interaction computed in this model.

VI. CERIUM: RESULTS AND DISCUSSION

In this section, we present the static and dynamical cRPA
screened interaction in α and γ cerium. The third subsection is
devoted to a self-consistent calculation of the static screened
interaction.

A. Static screening

1. Bare interaction

Table IV gives the bare interaction as computed in the f -ext
(b1) model (see Table II). The values found for α and γ cerium

TABLE IV. Bare (v), fully screened (W ), and cRPA (U cRPA)
Coulomb interactions for different models for cerium in LDA
and LDA+U methods. The definitions of Wannier functions and
screening models are given in Table I. In [f -ext (bi)]i=1...4, the same
number of bands is used to build Wannier functions in α and γ

cerium. In [f -ext (b’1)], two more bands are used for the calculation
of γ cerium in order that the same energy window is used in both
phases. The last eight rows of the table give values of U obtained from
a cRPA calculation starting from a band structure obtained with the
LDA+U method. Unsc are non-self-consistently computed values of
U , starting from an LDA+U calculation with U = 6 eV and J = 0
eV. Usc are values of U computed self-consistently with a given
energy window to define the Wannier functions. The self-consistent
calculation would be completely coherent when the energy window
to define Wannier functions is large.

Bands for
γ α

model Wanniers U [eV] J [eV] U [eV] J [eV]

v f -ext (b1) 1-20 23.8 0.7 24.3 0.7
v f -ext (b2) 1-30 25.0 0.7
v f -ext (b3) 1-40 25.5 0.7
v f -ext (b’1) 1-22/20 24.2 0.7 24.3 0.7
W f -ext (b1) 1-20 0.4 0.5 0.6 0.5
U cRPA f -ext (b1) 1-20 0.7 0.5 0.9 0.5
U cRPA f -W1 0.5 0.5 0.7 0.5
U cRPA f dt2g-ext 1-20 3.8 0.6 3.8 0.6

LDA+U calculations
U cRPA

nsc f -ext (b1) 1-20 5.9 0.6 5.5 0.6
U cRPA

nsc f -ext (b2) 1-30 6.6 0.6
U cRPA

nsc f -ext (b3) 1-40 6.7 0.6
U cRPA

nsc f -ext (b4) 1-50 6.7 0.6
U cRPA

sc f -ext (b1) 1-20 5.3 0.6 0.9 0.5
U cRPA

sc f -ext (b2) 1-30 6.5 0.6 5.4 0.6
U cRPA

sc f -ext (b3) 1-40 6.7 0.6 5.5 0.6
U cRPA

sc f -ext (b4) 1-50 6.6 0.6 5.2 0.6

are large and in agreement with the values found by Sakuma
et al. [35]. We emphasize that the Wannier functions used in
this work are based on the same number of bands for α and
γ cerium. As a consequence, a slightly larger energy window
is in fact used for α cerium because the dispersion is more
important for a compressed volume. If we use the same energy
window, as in the f -ext (b’1) model, we find instead a value of
V for the γ phase similar to the value found for the α phase.
It thus shows that the difference comes from the difference in
Wannier functions. Anyway, this is a weak effect, at most 2%.

For γ cerium, we compute also the bare interaction in the
f -ext (b2) and f -ext (b3) models with an even more extended
window of energy to construct Wannier functions. We notice
an increase of the bare interaction when the energy window is
larger, because Wannier functions are more localized.

2. Screened interaction

We now discuss the value of W and U for a fixed volume.
As shown in Table IV, they are both small and their small
difference is only due to f -f transitions. These transitions
thus contribute to a reduction of 0.3 eV of U—for both phases.
In order to understand the origin of this small value of U and
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FIG. 4. (Color online) (Top) Band structure of fcc cerium for
different volumes. The characters of s, p, d , and f orbitals are
indicated by colored bands. (Bottom) Screened Coulomb interaction
as a function of frequency for different volumes.

W , we removed the transitions from all the f bands to the
three bands than are just above (mainly with dt2g character:
see Fig. 4). This is an approximated removal because bands
are entangled; it corresponds to the f dt2g model in Table II.
We find that removing all these screening channels increases
the value of the screened interaction from 0.7 eV to 3.8 eV.
So f -d transitions are a major source of screening. We note
that if we had removed only the f bands, which correspond
to the f -W1 model, the value of U would have been small
and not far from the value obtained in the f -ext (b1) model
(see Table IV). The comparison of U computed in the f -W1

model and the f dt2g model unambiguously demonstrate the
important role of the f -dt2g transitions.

Nevertheless, for large volume, the appearance of f bands
at the Fermi level is in disagreement with experimental
photoemission spectra [59,60]. This has been largely discussed
in the literature (e.g., Refs. [17,20]). We carried out the
calculation with the LDA+U approximation with U = 6 eV
and J = 0 eV [42]. It opens a gap inside the f orbitals, and
pushes them apart from the Fermi level. Consequently, the
screening processes associated with the f orbitals lose weight
and thus the value of the screened interaction is much larger.
A similar effect was observed by Karlsson et al. [47] for
gadolinium. Importantly, the calculated value of U depends
largely on the energy window, as shown by the results (ULDA+U

nsc
in Table IV) obtained using the f -ext (bi)i=1,2,3,4 models.

We also note, as underlined by Sakuma et al., that 5s and
5p orbitals contribute much to the screening. Without their

inclusion, the cRPA LDA+U value for the screened interaction
would be about 2 eV larger.

Nilsson et al. [61] have computed the LDA cRPA screened
interaction for α and γ cerium. They compute the polarizability
of the model using a disentangled band structure. Their
disentanglement relies on removing the coupling between
f and other orbitals. As a consequence, the screening is
reduced [61] and their value of U , computed from the LDA
band structure, is larger than ours. The self-consistency over
U might, however, resolve the discrepancy between the two
methods.

3. Screened interaction variation as a function of volume

We now compare the variation of W and U between the
two phases. As discussed above, in Sec. VI A 1, Wannier
functions in the f -ext (b) model are more localized in the
α phase because of the larger dispersion. So it should also
induce an increase of 2% in W and U . The differences
between the screened interaction in the α phase and in the
γ phase are, however, surprisingly much larger than 2% and
are, respectively, of 50% and 30% for W and U . As seen
in Table II f -d transitions are mainly responsible for this.
Indeed, the calculated value in the f dt2g model are such that
Uγ = 3.84 eV > Uα = 3.79 eV. It can be understood from the
evolution of the band structure as a function of the volume of
cerium, as plotted in Fig. 4. When the volume increases, the f

and d levels get closer to the Fermi level. As a consequence,
the screening corresponding to the transitions from f to d is
more effective.

The same effect holds for the LDA+U approximation.
Indeed the cRPA screened interaction is now larger in the
γ phase as expected: All the low-energy screening channels
involving f levels are now weaker because they are away from
the Fermi level.

B. Dynamical screening

We plot in Fig. 5 the dynamical screening computed with
different models for α and γ cerium. First of all, the fully
screened interaction exhibits three peaks located at 3, 11, and
21 eV (for α cerium), in good agreement with the results of
Sakuma et al. [62]. The peak at 21 eV comes from transition
from the localized 5p states as can be checked by removal of
these bands from the calculation of the polarizability. Below
3 eV, both the fully screened and the cRPA interaction—as
computed in LDA—are weak (below 2 eV). Above 3 eV,
the Coulomb interaction becomes larger. It can be understood
by looking at results from the LDA+U calculation. In this
calculation, one f band is pushed 2 eV below the Fermi level
whereas the other bands are pushed 2 eV above the Fermi
level [42]. The corresponding cRPA screened interaction no
longer shows a peak at 3 eV, because it was originating from
transitions involving f orbitals near the Fermi level.

We plot in Fig. 4 the evolution of the cRPA interaction as
a function of frequency for different volumes. All curves have
the same overall shape: a first domain (a) where the screened
interaction is weak (around 2 eV) then a domain (b) where the
interaction is larger (around 6 eV). The width of the domain (a)
decreases with the increase of the volume. This is coherent with
the argumentation outlined above in Sec. VI A. The screening
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FIG. 5. (Color online) Bare, fully screened, and LDA/LDA+U

cRPA partially screened dynamical interactions for α cerium (top)
and γ cerium (bottom).

which creates the domain (a) is due to the proximity of f and
d (mainly t2g) states near the Fermi level. So this screening
channel is effective only for a frequency lower than the f d

bandwidth. As shown in Fig. 4, as the volume increases, this
bandwidth decreases in agreement with the evolution of the
size of domain (a).

C. Self-consistent calculation of U

As for UO2, it is physically sound to carry out a self-
consistent calculation of U , especially in the γ phase,
because the LDA+U spectral function is qualitatively in good
agreement with the photoemission spectra [42]. Therefore we
can expect a better description of screening.

As discussed above, the coherence of the basis for the
LDA+U calculation and the Wannier functions has to be
preserved. We thus choose to compute the screened interaction
in an atomic basis [42]. As a consequence, a large window for
the Wannier function has to be used [11]. We thus carried out
the calculation for windows with increasing widths as shown
in Table IV. For the γ and α phases, U converges at a value of
6.6 eV and 5.2 eV. The value can be trusted for the γ phase,
because this phase is rather well described by LDA+U .

However for the α phase, such a description is no longer
valid, because the photoemission spectra [59,60] exhibits both

a large quasiparticle peak at the Fermi level and Hubbard
bands (see, e.g., Ref. [22]). As a consequence, neither LDA nor
LDA+U are able to describe the correct electronic structure. It
has direct implication for the calculation of U : A more correct
description of U in α cerium should be carried out with a
method which correctly computes the spectral function, such
as DFT+DMFT. We leave it for a future study.

VII. CONCLUSION

We report an implementation of the cRPA method in the
PAW based DFT/GW code ABINIT [48–50,53] using Wannier
orbitals. We show the application of the cRPA method to
uranium oxide, a Mott insulator, and α and γ cerium. We
find that the dynamical screened interactions are particularly
peaked because of interband transitions. Our main result is that
an accurate calculation of U for UO2 and γ cerium can only be
obtained by a self-consistent procedure with a coherent choice
of Wannier orbitals. We show results of the self-consistent
calculation to a static U using the DFT+U method. For α

cerium, we underline that a dynamical calculation of U would
be necessary and could be obtained by including the screening
as described in DFT+DMFT.
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APPENDIX A: EXPRESSION OF U

This Appendix gives the expression of U as a function
of oscillator strength M

n,n′
G (q,k). From Eq. (1), one has the

following expressions for U [29,31,32] and the oscillator
matrices M:

Um1,m2,m3,m4 (ω) = 1

cell

∑
q

w(q)
∑
GG′

M
m3,m1†
G (q)

×M
m2,m4
G′ (q)

4πε−1
GG′(q,ω)

|q + G′|2 , (A1)

M
m,m′
G (q) = 1

Nk

∑
k,n,n′

M
n,n′
G (q,k)Cnk−q†

m Cn′k
m′ ,

(A2)
M

n,n′
G (q,k) = 〈	k−qn|e−i(q+G)r|	kn′ 〉.

Cnk
m is the coefficient of the expansion of a Wannier function

on a Kohn-Sham orbital, w(q) is the weight of the q vector to
sample the Brillouin zone, Nk is the number of k vectors in the
Brillouin zone, and cell is the cell volume. The calculation
of the dielectric matrix is detailed in Refs. [53] and [49]. An
important point is that in the calculation of both the dielectric
matrix and the screened interaction, the calculation of the
oscillator matrix elements M

n,n′
G (q,k) in the PAW formalism
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TABLE V. Bare (v), and cRPA (U ) Coulomb interactions for
SrVO3 computed for different models compared to similar calcula-
tions of Ref. [29] and Ref. [32]. Notations for the models are taken
from Ref. [29] and [35].

Model Ref. [29] Ref. [32] This work

vdiag t2g-t2g 16.1 16.0 16.1
Udiag t2g-t2g 3.2 3.4 3.4
v d-dp (a) 19.5 19.4
U d-dp (a) 3.2 3.3
Udiag d-dp (a) 4.1 4.3
U dp 9.9 10.1

is required. For these two calculations, we use the scheme
of Arnaud and Alouani [51], as implemented [49,53] in
ABINIT [50]. It results from a direct application of Eq. (11)
in Ref. [63]to Eq. (A2). As underlined in Ref. [52], it might
require a high cutoff energy to compute the dielectric matrix,
because it involves the Fourier transform of a product of the
atomic wave functions, which are particularly localized for
cerium. We converged the projector basis in order to obtain
accurate results. This was checked in particular by the weak
dependence on the sphere radius of the PAW atomic data (at
most 0.1 eV).

APPENDIX B: BENCHMARK OF THE
IMPLEMENTATION ON SrVO3

This Appendix gives a comparison of bare and screened
interaction for SrVO3 between our calculation and results
obtained with the FLAPW basis by Vaugier et al. [29] and
with the PAW basis by Nomura et al. [32] (see Table V). For
our PAW calculations, the atomic data detailed in Ref. [39] are
used.

The energy cutoffs for the wave function, the dielectric
function, and the calculation of the bare interaction are 15, 7,
and 35 Ha, respectively. We use a 6 × 6 × 6 k-mesh grid. All

these parameters are sufficient to have a precision better than
0.1 eV on U and J .

For all cRPA interactions, we find a difference of at most
0.2 eV (6%) between our calculation and results from Vaugier
et al. and Nomura et al. This good agreement gives a further
validation of our implementation.

APPENDIX C: ROLE OF THE DOUBLE COUNTING
CORRECTION IN THE cRPA CALCULATION USING A

DFT+U BAND STRUCTURE

Whereas all results in Tables III and IV are obtained with
the FLL double counting correction [1,54,64], we give in
this Appendix results obtained with the around mean field
(AMF) double counting correction [64]. This is a priori less
justified than the FLL double counting correction because in
our DFT+U calculations electrons are not delocalized among
all f orbitals. For uranium dioxide (resp. γ cerium) using the
f -ext (ba) [resp. f -ext (b1)] model, we find U cRPA

nsc = 4.5 eV
(resp. 4.2 eV) instead of 5.0 eV (resp. 5.9 eV) for the FLL
double counting.

These differences can be understood from the analytical
expression of the DFT+U Kohn-Sham potential in AMF
(see, e.g., Ref. [42]): The Hubbard bands—and especially the
minority spin bands—are lowered in energy with respect to
FLL. It can thus be expected that the contribution of upper
Hubbard bands to the screening processes is larger, hence the
lower value of U .

For cerium (with only one correlated electron), the shift of
Hubbard bands is −1.5 eV, and even larger for the minority
bands. The value of U is thus greatly reduced. Moreover, the
cerium DOS hence obtained in AMF would badly compare
with experimental photoemission spectra [59,60]. As the FLL
DOS is better, we can roughly expect that the value of U

obtained in FLL is better. However, and more generally, this
comparison calls for a more general self-consistent scheme
with a more justified double counting correction such as in the
GW+DMFT [65,66] scheme.
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