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Theory of electronic relaxation in a metal excited by an ultrashort optical pump
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The theory of the electron relaxation in simple metals excited by an ultrashort optical pump is developed
on the basis of the solution of the linearized Boltzmann kinetic equation. The kinetic equation includes
both the electron-electron and the electron-phonon collision integrals and assumes that Fermi liquid theory
is applicable for the description of a simple metal. The widely used two-temperature model follows from the
theory as the limiting case when the thermalization due to the electron-electron collisions is fast with respect
to the electron-phonon relaxation. It is demonstrated that the energy relaxation has two consecutive processes.
The first and most important step describes the emission of phonons by the photoexcited electrons. It leads to
the relaxation of 90% of the energy before the electrons become thermalized among themselves. The second
step describes electron-phonon thermalization and may be described by the two-temperature model. The second
stage is difficult to observe experimentally because it involves the transfer of only a small amount of energy from
electrons. Thus the theory explains why the divergence of the relaxation time at low temperatures has never been
observed experimentally.
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I. INTRODUCTION

Investigations of ultrafast nonequilibrium dynamics in
metals, superconductors, and other strongly correlated systems
after excitation by an ultrashort laser pulse have attracted a lot
of attention during the last couple of decades. The particular
interest to this field of research is related to the possibility to
obtain unique information on the strength of electron-electron
(e-e) and of electron-phonon (e-ph) interactions in metals and
superconductors.

Up to now, detailed experimental data on relaxation
processes are available for metals [1–5], high-temperature
superconductors [6–13], and pnictide superconductors [14,15]
using standard optical pump optical probe technique. Recently,
a comprehensive analysis of experimental data on optical-
pump broad-band probe in high-temperature superconductors
has been performed [16]. Most of the data are analyzed in
the framework of the so-called two-temperature model (TTM)
[17,18] and e-ph coupling constants were obtained by using
Allen’s theory [19], which relates the e-ph relaxation time
with the second moment, λ〈ω2〉 = 2

∫ ∞
0 α2F (ω)ωdω, of the

Eliashberg function α2F (ω) [20,21]. The basic assumption
of the model is that electrons and phonons are in a ther-
mal quasiequilibrium (QE) at two different time-dependent
temperatures Te(t) and Tl(t), respectively. This assumption is
correct if the e-e thermalization occurs on a much shorter
time scale than the e-ph relaxation. Indeed, the QE electron
distribution function, characterized by the nonequilibrium
electronic temperature Te(t), nullifies the electron-electron
collision integral in the Boltzmann kinetic equation (BKE) and
the remaining e-ph collision integral leads to the thermalization
between electrons and phonons. However, this approach has
severe problems. The e-ph thermalization is τ−1

e-ph ∝ T 3/ω2
D

in the low kBT < �ωD limit and τ−1
e-ph ∝ ω2

D/T in the high
kBT > �ωD limit [19,22], where ωD is the Debye frequency,
and T is equilibrium temperature. As it was demonstrated
in Refs. [4,22,23] the e-e thermalization rate τ−1

e ∝ T 2/EF ,
where EF is the Fermi energy, is much smaller than the
electron-phonon thermalization rate in the temperature range

where most of the experiments are performed �
2ω2

D/EF <

kBT < �ωD(EF /�ωD)1/3. Therefore the main assumption of
the TTM is not justified.

Experimentally, it was demonstrated that the electron
distribution function of a laser-heated metal is a nonthermal
distribution on the time scale of the e-ph relaxation time [4].
It was shown that in Ag and Au, the intensity dependence of
the pump-probe signal as well as the temperature dependence
of the relaxation time are inconsistent with the TTM [4].
More convincing arguments against the TTM were obtained by
the direct measurements of the electron distribution function
using time-resolved photoemission spectroscopy [23–25]. The
interpretation of the photoemission spectra in terms of the
distribution function of electrons assumes that the matrix
element involved in the photoemission experiments and the
density of electronic states near EF are smooth functions of
energy [26]. In the case of ordinary metals, this assumption
is usually correct. In some metals, additional bands appear
in the spectra, but usually these bands have relatively large
excitation energy and do not influence the determination of
the energy dependence of the distribution function (see Fig. 5
in Ref. [24], for example). In the measurements [23–25],
the transient electron distribution function is not thermal and
has high-energy tails, which survive till the thermalization
occurs [23]. Moreover, in gold at about 400 fs after excitation,
about 30% of the pump energy is already in the phonon
subsystem [23], while the thermalization is observed only
after 1 ps. Therefore the transfer of energy from electrons to
phonons occurs much faster than the electronic thermalization.
A similar effect is observed in Ru [24]. It is estimated that 100
fs after the pump about 20% of quasiparticles are in the high-
energy tails of the distribution function. To account for this
effect, it was suggested that the electron distribution function
can be represented as a sum of thermal and nonthermal parts
[23,24]. It was also suggested to approximate the nonthermal
distribution function by a Fermi-Dirac function with reduced
amplitude and a nonphysical auxiliary temperature [24]. We
argue that such a decomposition is unphysical and cannot
describe the electron energy relaxation. Instead the distribution
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function should be determined as a solution of the complete
set of BKEs.

The accurate comparison of the TTM with experimental
data on Ag and Au is presented in Ref. [4]. It was experi-
mentally demonstrated that the relaxation time decreases with
temperature and does not show any pump intensity dependence
contrary to the TTM predictions. In order to account for
the discrepancy between the TTM and experimental data,
the nonthermal electron model was introduced. This model
represents the BKE for a nonequilibrium electron distribution
function with electron-electron and electron-phonon collision
integrals, while assuming that phonons are at equilibrium.
Numerical integration of the BKEs allowed to reproduce
experimental observations of the pump-probe experiments
on Ag and Au. Since experimental data do not demonstrate
any nonlinear effects as a function of the pump intensity
the integro-differential BKE for the electrons was reduced to
differential form [22]. The reduced equation is integrable and
has an analytic solution. As a result it was shown again that
the relaxation time should increase at low temperatures [22],
contrary to the experimental results [4].

Recent analysis of the pump-probe experiments on the
superconducting MgB2 [27] and La2−xSrxCuO4 [28] has
demonstrated that the superconducting order parameter is
reduced due to the nonequilibrium phonons generated by
the photoexcited carriers. It indicates that on the subpicosec-
ond scale the reabsorption of the nonequilibrium phonons
with the creation of low-energy electron-hole pairs is an
important process that influence the energy relaxation in
metals and superconductors. Note that within the nonthermal
electron model, used in Refs. [4,22], this mechanism of
relaxation is absent, because phonons are considered to be in
equilibrium.

In this paper, we develop the theory where both nonthermal
electron and phonon distribution functions are obtained by
solving of linearized BKE. The e-e collisions are described
on the basis of the theory, developed in Ref. [22], which
explicitly accounts for the conservation of energy. In Sec. II, we
derive general linearized BKE’s. Then the high-temperature
limit of the BKEs is derived for the Eliashberg function
α2F (ω) ∝ ω, which is valid for disordered simple metals,
where electrons interact with the acoustic phonons. By the
direct simulations of the linearized BKEs with the different
Eliashberg functions α2F (ω) ∝ ω2 (Debye model for the
acoustic phonons) and α2F (ω) ∝ δ(ω − ω0) (Einstein model
for the optical phonons), we demonstrate that the derived
Fokker-Planck equations describe well the energy relaxation in
the high- and low-temperature range. It was also demonstrated
that the energy relaxation is not sensitive to the particular
form of the Eliashberg function and is determined by the
second moment λ〈ω2〉 of α2F (ω). Note that recent results
on the time-resolved angle-resolved photoemission spec-
troscopy (tr-ARPES) indicate that the return to equilibrium
of electronic excitations is determined by the momentum and
energy-dependent equilibrium self-energy [29]. Therefore the
particular form of the Eliashberg function may be resolved in
the tr-ARPES experiments. The accurate solution of the BKE,
presented in Sec. IV, leads to a distribution function, which
is very similar to that observed in the time-resolved photoe-
mission experiments [23–25]. Then we show that the energy

transfer from the photoexcited electrons takes place on a much
shorter time scale than e-e and e-ph thermalization. Therefore
the main experimentally observed process is determined by
the emission of phonons by the photoexcited electrons and not
by the e-e or e-ph thermalization as assumed in the TTM

II. MAIN EQUATIONS

To derive linearized BKEs, describing both electron and
phonon distribution functions, we start from the general BKE
that takes both e-ph and e-e collision integrals into account.
According to Ref. [30], the applicability of the BKE in
metals is restricted by two inequalities. 1. kF � 1/l. Here,
kF is the Fermi momentum and l is the characteristic size
of inhomogeneity of the distribution function. In our case,
l is restricted by the penetration depths of light or the
thickness of the film. Both of them are larger than interatomic
distance and therefore this condition is fulfilled. 2. �/τ � EF .
Here, τ is the characteristic timescale of the changes of the
distribution function. Therefore the application of the BKE
for the description of the pump-probe experiments in metals is
justified on the time scale t > �/EF = 0.1 − 1 fs, well below
the time resolution of all known experimental data discussed
here. This quasiclassical description neglects any effects of
quantum coherence which are not important in the case of
simple metals. Therefore any effects related to the quantum
coherence and dephasing are out of scope of this paper. The
BKE for electrons reads

ḟζ = Ie-e + Ie-ph, (1)

where fζ is the electron distribution function, averaged over
the surface of constant energy,

fζ = 1

N (ζ )

∑
k

δ(ζk − ζ )fk, (2)

Note that this averaging is justified if the distribution function
depends only on the electron energy fk = fζk and does not
depend on the direction of the momentum k. For excitation
by a spatially uniform fast optical pulse, it is a reasonable
assumption. If the pulse did not penetrate the sample fully, the
drift and the field terms should be included in the equation.
In that case, the distribution function will be dependent on
the direction of k and the expansion defined by Eq. (2) is
not justified. In that case, more accurate expansions should be
applied [31]. Here, N (ζ ) ≈ N (0) = mkF /2π2

�
2 is the density

of electronic states per spin, m is the effective mass of electron,
and ζ is the electron energy counted from EF . The density of
states is a very weak function of energy and we assume that it
is constant. The e-e collision integral has the form

Ie-e =
∫ ∫ ∫

dζ ′dεdε′K(ζ,ζ ′,ε,ε′)δ(ζ + ε − ζ ′ − ε′)

×[fζ ′fε′(1 − fζ )(1 − fε) − fζfε(1 − fζ ′)(1 − fε′)]

(3)

with the kernel K(ζ,ζ ′,ε,ε′) defined as

K(ζ,ζ ′,ε,ε′) = 2π

�N (ζ )

∑
k,p,q

V 2
c (q)δ(ζk − ζ )

×δ(ζp − ε)δ(ζk+q − ζ ′)δ(ζp−q − ε′). (4)
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Here, Vc(q) is the Fourier component of the effective e-e
potential. Since we consider the relaxation of nonequilibrium
electron-hole excitations with energies less than EF , we
neglect all energy dependence of the kernel K(ζ,ζ

′
,ε,ε

′
) ≈

K ≈ πμ2
c/2�EF , where μc is the Coulomb pseudopotential

[22]. The electron-phonon collision integral reads

Ie-ph = 2π

∫
dω

∫
dζ ′Q(ω,ζ,ζ ′)

×{δ(ζ − ζ ′ − �ω)[(fζ ′ − fζ )Nω − fζ (1 − fζ ′ )]

+ δ(ζ − ζ ′ + �ω)[(fζ ′ − fζ )Nω + fζ ′ (1 − fζ )]}. (5)

Here, Nω is the phonon distribution function averaged over
the surface of constant frequency:

Nω = 1

D(ω)

∑
q

δ(ωq − ω)Nq, (6)

with the density of phonon states D(ω) = 9ω2/ω3
D in the

Debye approximation. This averaging is also possible if the
excitation pulse is spatially homogeneous and gradient terms
may be omitted in the kinetic equation for phonons. The kernel
of the e-ph interaction is defined as

Q(ω,ζ,ζ ′) = 1

�N (ζ )

∑
k,q

M2(q)δ(ζk−q − ζ ′)

× δ(ζk − ζ )δ(ωq − ω). (7)

Here, M(q) is the matrix element of e-ph interaction. Because
the characteristic energy of electron-hole excitations are much
less than the Fermi energy, we neglect the dependence of
Q(ω,ζ,ζ ′) on ζ,ζ ′. As a result the e-ph collision integral is
expressed in terms of the Eliashberg function [19,22]:

Q(ω,ζ,ζ ′) ≈ Q(ω,0,0) ≡ α2F (ω). (8)

The kinetic equation for the phonon distribution function Nω

reads [32]

Ṅω = 4π

∫ ∞

−∞
dζ ′

∫ ∞

−∞
dζQph(ω,ζ,ζ ′)[fζ (1 − fζ ′)

(1 + Nω) − fζ ′(1 − fζ )Nω]δ(ζ ′ − ζ + �ω). (9)

Note that here we neglect the anharmonic scattering of
phonons which may be important at high temperatures. Here,
we assume that the relaxation in the phonon subsystem
is described by the inelastic phonon-electron scattering. In
general, the anharmonic effects may lead to an additional
temperature dependence of the relaxation time at high tempera-
tures. The phonon-electron kernel Qph(ω,ζ,ζ ′) ≈ Qph(ω,0,0)
is expressed in terms of the Eliashberg function:

Qph(ω,0,0) = Q(ω,0,0)
N (0)

D(ω)
= ω2

Dβ

2�

α2F (ω)

ω2
, (10)

here

β = 2N (0)�ωD/9 ∼ �ωD/EF � 1. (11)

Since in most of the experiments the pump-probe response
is a linear function of the pump intensity [4,13], we linearize
the kinetic equations. The electron and phonon distribution
function have the following form:

fζ = f 0
ζ + φ(ζ,t), (12)

Nω = N 0
ω + η(ω,t), (13)

where φ(ζ,t) and η(ω,t) are small nonequilibrium corrections
to the equilibrium distribution functions of electrons f 0

ζ =
(eζ/kBT + 1)−1 and phonons N 0

ω = (e�ω/kBT − 1)−1, respec-
tively.

In order to simplify the following calculations, we introduce
the dimensionless electron energy

ξ = ζ/kBT (14)

and dimensionless phonon frequency

ν = �ω/kBT . (15)

Therefore the functions φ(ζ,t) → φ(ξ,t) and η(ω,t) →
η(ν,t).

Let us consider first the linearized e-e collision integral.
The linearized BKE was derived in Ref. [22] and reduced to
a differential form applying Fourier transform over energy ξ

(see also Ref. [31], where a similar equation is derived for
the e-e collision integral). This form of the collision integral is
very useful if we consider e-e collisions only. Consideration of
the e-ph interaction in the high-temperature limit leads to the
differential form of the collision integral as a function of energy
ξ . Therefore it is more convenient to rewrite the e-e collision
integral as a function of energy ξ . Indeed, the linearized e-e
collision integral has the form {Eq. (7) in Ref. [22]}

Ie-e = 1

π2τe

[
−φ(ξ,t)(π2 + ξ 2)

+ 3
∫ ∞

−∞
dξ ′φ(ξ ′,t)�(ξ,ξ ′)

]
, (16)

where τe = 2/K(πkBT )2 is the e-e thermalization time, and
the kernel �(ξ,ξ ′) = (ξ ′ − ξ ){coth[(ξ ′ − ξ )/2] + tanh(ξ/2)}.
At large |ξ − ξ ′| � 1 �(ξ,ξ ′) → |ξ − ξ ′|, therefore, we can
simplify the e-e collision integral:

Ie-e = 1

π2τe

{
−φ(ξ,t)(π2 + ξ 2)

+ 3
∫ ∞

−∞
dξ ′φ(ξ ′,t)�1(ξ − ξ ′) + 6

[
E1(∞) tanh

(
ξ

2

)

−E1(ξ ) − ξ (E0(∞) − E0(ξ ))
]}

, (17)

where the kernel �1(x) = |x| exp(−|x|/2)
sinh(|x|/2) and Eα(ξ ) =∫ ξ

0 dxxαφ(x,t). Eα(ξ ) represents the dimensionless density
(α = 0) and energy (α = 1) of nonequilibrium electrons with
the energy less than ξ . This form of the e-e collision integral
Eq. (17) is very easy to treat numerically since the integral part
represents a convolution of the distribution function φ and the
kernel �1.

Let us turn back to the e-ph collision integrals. Substituting
Eqs. (12) and (13) to Eqs. (1) and (9) yields

φ̇(ξ,t) = F1[φ] + F2[η]; (18)

η̇(ν,t) = F3[φ] + F4[η]. (19)
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Here, the expressions for F1 to F4 have the following form:

F1[φ] = −φ(ξ,t)

τ1(ξ )
+ 2πkBT

� cosh(ξ/2)

∫ ∞

−∞
dξ ′sign(ξ − ξ ′)

×α2F
(kBT |ξ − ξ ′|

�

)cosh(ξ ′/2)

2 sinh ξ−ξ ′
2

φ(ξ ′,t) + Ie-e,

F2[η] = 2πkBT

�

∫ ∞

0
dνα2F

(kBT ν

�

)

× sinh2(ν/2) tanh(ξ/2)

cosh( ξ+ν

2 ) cosh( ξ−ν

2 )
η(ν,t),

F3[φ] = 1

2τ2(ν)ν

∫ ∞

−∞
dξ ′φ(ξ ′,t)

sinh(ξ ′)

cosh( ν+ξ ′
2 ) cosh( ν−ξ ′

2 )
,

F4[η] = −η(ν,t)

τ2(ν)
.

The energy dependent electron-phonon relaxation rate τ1(ξ )−1

is defined as

τ1(ξ )−1 = 2πkBT

�

∫ ∞

0
dνα2F

(kBT ν

�

)

×
[

1

sinh
(

ν
2

)
cosh

(
ν
2

) + sinh2(ξ/2) tanh(ν/2)

cosh
(

ν+ξ

2

)
cosh

(
ν−ξ

2

)]
,

(20)

The frequency dependent relaxation rate of the phonons due
to the collisions with electrons τ2(ν)−1 has the form

τ2(ν)−1 = 2π�ω2
Dβ

kBT

α2F
(

kBT ν
�

)
ν

. (21)

Note that Eq. (19) for the phonon distribution function has
an analytical solution:

η(ν,t) = 1

2τ2(ν)ν

∫ t

0
dt ′ exp [(t ′ − t)/τ2(ν)]

×
∫ ∞

−∞
dξ ′φ(ξ ′,t ′)

sinh(ξ ′)

cosh
(

ν+ξ ′
2

)
cosh

(
ν−ξ ′

2

) . (22)

Substituting it into equation (18) leads to a single integro-
differential equation for the distribution function of electrons
φ(ξ,t). This equation allows only numerical analysis and
is therefore not very practical from the point of view of
the analysis of experimental data. On the other hand, some
assumption about the Eliashberg function and applying the
high-temperature expansion leads to more simple equation.
An important simplification is obtained if we consider the
model of a disordered metal with strong phonon damping.
The Eliashberg function in that limit has the following form
[33]:

α2F (ω) =
{

λω
2ωD

, ω < ωD,

0, ω > ωD.
(23)

This form of the Eliashberg function leads to a frequency
independent phonon-electron relaxation rate τ−1

2 = πλωDβ,
where the electron-phonon coupling λ is defined as

λ = 2
∫ ∞

0
dω

α2F (ω)

ω
. (24)

The above equations are valid for any temperature T . Since
most of the time-resolved photoemission experiments in
metals are performed at temperatures above 100 K in the next
section, we consider the high-temperature limit of the kinetic
equation Ref. [22].

III. HIGH-TEMPERATURE LIMIT

In the high-temperature limit kBT > ωD , the BKEs (18)
and (19) can be further simplified. Let us first consider
equation (19) for the phonon distribution function. In the
high-temperature limit, in the expression for F3[φ], we can
neglect ν under the integral over ξ ′. As the result the equation
for η(ν,T ) has the form

η̇(ν,t) = −η(ν,t)

τ2
+ 2I (t)

ντ2
, (25)

where the function I (t) is defined by the equation

I (t) =
∫ ∞

0
dξ tanh (ξ/2)φ(ξ,t). (26)

This function has a very simple meaning. It describes the rate
at which electrons are losing their energy to phonons {Eq. (36)
in Ref. [22]}. Equation (25) defines the frequency dependence
of the nonequilibrium phonon distribution function. Indeed, if
we substitute

η(ν,t) = 2p(t)/ν (27)

to Eq. (25), we obtain an ordinary differential equation for the
function p(t):

ṗ(t) = −p(t) − I (t)

τ2
. (28)

It means that at high temperatures, whereN 0
ω ≈ T/ω, phonons

are always described by the quasiequilibrium distribution
function and the function p(t) describes the time evolution
of the nonequilibrium phonon temperature. Substituting the
phonon distribution function Eq. (27) to the equation for
F2[η] leads to the generalized Fokker-Planck equation for the
nonequilibrium electron distribution function φ(ξ,t):

γ −1φ̇(ξ,t) = ∂

∂ξ

[
tanh

(ξ

2

)
φ(ξ,t) + ∂

∂ξ
φ(ξ,t)

]

+p(t) sinh(ξ/2)

2 cosh3(ξ/2)
+ γ −1Ie-e, (29)

where

γ = π�λ〈ω2〉
kBT

(30)

is the e-ph relaxation rate, and the e-e collision integral is given
by Eq. (17). The detailed derivation of the differential form for
F1[φ] is presented in Refs. [22,34].

Note that Eqs. (28) and (29) are derived for the case of
a disordered metal with electrons interacting with acoustical
phonons. In the Appendix, we present the results of the
numerical simulations of Eqs. (18) and (19) with three different
types of Eliashberg functions at high T > TD and low T < TD

temperatures, here, TD = �ωD/kB is the Debye temperature.
We demonstrate that Eqs. (28) and (29) describe the relaxation
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of the photoexcited electrons with the accuracy more than
10% in the whole temperature range provided that λ〈ω2〉 is
constant for different Eliashberg functions. It proves that Eqs.
(28) and (29) are useful because they are insensitive to the
approximations and assumptions that were used. It justifies
their applicability for the description of the energy relaxation
of optically excited electrons in a large variety of ordinary
metals in the whole temperature range.

Equations (28) and (29) describe the relaxation of both
phonon and electron distribution functions after perturbation.
These equations represent the generalization of the TTM. The
TTM may be derived from these equations in the limit when e-e
relaxation is much faster than e-ph relaxation, i.e., when γ τe �
1. It is easy to check that the equilibrium distribution functions,
corresponding to the simultaneous increase of the temperature
�T of electrons φ(ξ ) = �T

4T

ξ

cosh2 (ξ/2)
and phonons η(ν) = �T

T ν
,

represent a solution of Eqs. (28) and (29). Moreover, it is
easy to check that the energies accumulated in the phonon and
electron systems are proportional to the phonon and electron
specific heats. Indeed, the energy accumulated in the phonon
system is 3kB�T . The energy in the electronic system is
2π2N (0)k2

BT �T/3. Therefore the energies in the phonon and
electron systems are exactly proportional to their specific heats.

From Eqs. (28) and (29), we can define two dimensionless
parameters. The first parameter is

κ1 = γ τ2 = �λ〈ω2〉
λωDkBTβ

∼ EF /kBT � 1. (31)

The parameter κ1 describes the relative time of generation of
the electron-hole pairs at low energy by the hot phonons which
are created by electrons at large energies. This parameter is
explicitly related to the electronic Ce and phonon Cph specific

heats: κ1 = π2Cph

3Ce
. The second parameter is

κ2 = γ τe = 4�
2λ〈ω2〉EF

μ2
cπ

2(kBT )3
� 1. (32)

It describes the relative time of the electron thermalization due
to e-e collision. The ratio κ2

κ1 ∼ �
2λω2

D

μ2
c (kBT )2 does not contain small

parameter. The order of magnitude of these dimensionless pa-
rameters for ordinary metals follows from the ratio of specific
heats of electrons and phonons: κ1 ≈ κ2 ≈ π2Cph/3Ce ≈ 100.
Note that parameter κ1 is temperature-dependent.

IV. RESULTS

In this section, we discuss the results of the high-
temperature limit of the theory and demonstrate TTM results
obtained from the Eqs. (28) and (29) in the limit of the fast
e-e relaxation. We also show that the process of emission
of phonons dominates the relaxation in the low-temperature
limit as well. We assume that excitation of electrons with an
ultrashort laser pulse creates at t = 0 a broad nonequilibrium
distribution of photoexcited electrons. The width of the
distribution is of the order of the light frequency and is much
larger than the Debye frequency ωD . The initial distribution
function after the pump pulse is approximated by the formula

φ(ξ,0) = ξ

�3
exp(−ξ 2/�2). (33)

FIG. 1. Evolution of the nonequilibrium distribution function by
e-e collisions. The distribution function is an odd function with
respect to EF (ξ = 0). Inset demonstrates the time dependence
of the nonequilibrium electron density for three different photon
energies �.

Here, � the dimensionless excitation frequency which is
defined as frequency of light measured in units of kBT /�.
This formula preserves the energy per pulse for different
frequencies of excitation �.

Note that this formula is different from the standard
distribution of quasiparticles created by an optical pulse [35].
It has a characteristic energy which is of the order of the
frequency of excitation. This function allows the existence
of quasiparticles with the energy higher than �, but it is
decreasing very quick at ξ > �. In the Appendix, we present
the results of numerical simulations assuming different initial
distribution functions. The simulations show that irrespective
of the particular choice of φ(ξ,t = 0), the distribution function
becomes independent on initial conditions on the time scale
t ∼ 10−3τe. Therefore the particular choice of φ(ξ,t = 0) does
not influence the process of energy relaxation of photoexcited
electrons at the time scale longer than 10−3τe.

In Fig. 1, the time evolution of the electron distribution
function is presented in the absence of the e-ph interaction.
The evolution is characterized by the fast reduction of the
high-energy part of the distribution function and fast increase
of the distribution function at small energies ξ ∼ 1. As it
follows from Fig. 1, the high-energy tails of the distribution
functions disappear at the time scale determined by τe. This
is consistent with the previous analysis of the e-e relaxation
[22]. The time dependence of the density of nonequilibrium
electrons, presented in Fig. 1 (inset), shows that electron
thermalization occurs on the time scale of τe irrespective of
the photon energy �. The difference is important only on a
very short time scale for relatively low frequency � and is due
to the fact that the initial density of nonequilibrium electrons
depends on the pump frequency n(0) ∝ �−1, provided that the
energy per pulse is constant. Here,

n(t) =
∫ ∞

0
dξφ(ξ,t) (34)

is the dimensionless density of nonequilibrium electrons. The
dimensionless density n(t) is actually equal to the measured
density of nonequilibrium electrons expressed in units of
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FIG. 2. Time dependence of the distribution function in the TTM
limit κ1 = 20, κ2 = 0.75, and γ is the e-ph relaxation rate. Inset shows
time dependence of the electron energy.

N (0)kBT . Note that the scaling arguments presented in
Ref. [36] predict n(t) ∝ √

t . Our calculations do not support
this behavior. However, with the increase of � → ∞ the
dependence of n(t) becomes more and more similar to

√
t .

In order to demonstrate the relation of the TTM to Eqs. (28)
and (29), we consider the unphysical limit κ2 = γ τe � 1. This
limit corresponds to the case of the fast electron thermalization
with respect to e-ph relaxation. The time evolution of the
nonequilibrium distribution function φ(ξ,t) in this limit is
plotted in Fig. 2. As it follows from Fig. 2, at the time
scale t ∼ τe = κ2γ

−1 � γ −1, the high-energy part of the
nonequilibrium distribution function disappears and φ(ξ,t) =
�Te(t)

4T

ξ

cosh(ξ/2)2 . Here, �Te(t) is the change of the electron
temperature. This function nullifies the e-e collision integral
and further evolution of the distribution function φ is described
by the time dependence of �Te(t) as it follows from Fig. 2. The
ξ dependence of the distribution function at t > τe is always
the same φ(ξ,t) ∝ ξ

cosh(ξ/2)2 and the evolution with time is
described by the time dependent prefactor. Note that theory
is linear in the excitation intensity, and therefore �Te/T < 1,
therefore the time evolution of �Te(t) is described by the
linearized TTM. Note that for the case, presented in Fig.
2 κ1 = 20 � 1,κ2 = 0.75 the dimensionless energy density
�E ≈ 0.07 transferred from electrons to phonons during the
thermalization time t ∼ τe is much smaller than the energy
absorbed by electrons �E � E(t = 0) = 0.443. The dimen-
sionless energy accumulated by nonequilibrium electrons is
defined as

E(t) =
∫ ∞

0
dξξφ(ξ,t). (35)

Therefore �Te at t ≈ τe can be evaluated using the electronic
specific heat Ce�Te = Ee. Then thermalization between
electrons and phonons occurs on the time scale t ∼ π2/3γ

in accordance with the TTM. The distribution function at
t → ∞ corresponds to φ(ξ,t) = �T∞

4T

ξ

cosh(ξ/2)2 , where �T∞
is found from the equation �T∞(Ce + Cph) = Ee. Note that
the measure for electronic temperature in that case is not the
width of the distribution function but the value of φ(ξ,t) at
the maximum which is approximately equal to �T/4T . The
most important property of this limit is the absence of the

FIG. 3. Time evolution of the distribution function in the case
of a metal with κ1 = κ2 = 100. Inset shows time dependence of the
electron energy. By the time of the electron thermalization, 90% of
energy is in the phonon subsystem. γ is the e-ph relaxation rate and
τe = 100γ −1.

high-energy tails of the distribution function, which directly
follows from the fact that κ2 < 1.

Now let us consider the more realistic case κ1 = κ2 =
100 � 1. These parameters roughly correspond to the case
of metals like Au [23] or Ru [24]. The time evolution of the
distribution function is presented in Fig. 3. At the time scale
of t ∼ 15γ −1 � τe, the high-energy tail of the distribution
function disappears and the electron distribution function
can be approximated by the quasiequilibrium distribution
function characterized by the electronic temperature φ(ξ,t) =
�Te

4T

ξ

cosh(ξ/2)2 . The electronic temperature �Te is not defined
by the conservation of energy, because by the time of
“thermalization” about 90% of the energy has gone to phonons
(see inset of Fig. 3). The dimensionless energy accumulated
by nonequilibrium electrons is defined in Eq. (35). This is
consistent with the time resolved photoemission data on Au
[23] and Ru [24]. According to Ref. [24], the estimated
electronic temperature at the peak �Te ≈ 125 K is much
less than electronic temperature estimated from TTM �Te ≈
1200 K. The final stage of the relaxation in that case can
be characterized by the slight decrease of the electronic
temperature to its equilibrium value and can be described by
the TTM. Note, however, that the final stage of relaxation is
very difficult to observe experimentally, because it involves
the transfer of a very small amount of energy (less than 10%
of the pump energy) from electrons to phonons. The biggest
changes in the nonequilibrium distribution function take place
during the initial stage of relaxation where the TTM is not
applicable.

From these calculations, the following qualitative picture
of the relaxation of the photoexcited electrons emerges. The
pump pulse creates a broad distribution of electron-hole pairs
with large excitation energy. The high-energy electrons relax
to the low-energy scale ζ ∼ (�ωDEF )1/2 � kBT ,�ωD due to
e-e collisions. It happens on the time scale 〈ω〉/λ〈ω2〉. The
photoexited electron-hole pairs emit phonons immediately
after excitation. The emission rate is temperature independent
and is not affected by the Fermi distribution function, because
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FIG. 4. Temperature dependence of the energy relaxation time for
large κ1 → ∞ for different γ (TD)τe(TD) = 40 (solid line), 80 (dashed
line), and 120 (dotted line). TD = �ωD/kB is the Debye temperature.

the average energy of nonequilibrium electrons is large in
comparison with the phonon frequency and therefore the factor
(1 − fξ−ν) in the emission probability can be replaced by 1.
In the Appendix, it is shown that the Fokker-Planck equation
describes well energy relaxation in the low-temperature limit
as well (see Figs. 8–10). The absence of the divergence of the
relaxation time at low temperatures kBT < �ωD for different
e-e collision times is presented in Fig. 4. The relaxation time,
defined as the time when half of the energy is transferred from
electrons to phonons, is weakly temperature dependent at high-
temperature and temperature independent at low temperatures.
Note that electron-electron collisions have an important effect
on energy relaxation. When the electron-electron collision rate
increases, the high-energy excitations are decaying with the
creation of more low-energy electron-hole pairs. The energy
relaxation on the other hand is proportional to the number
of nonequilibrium electrons. Therefore when the e-e collision
rate increases the energy relaxation rate of the nonequilibrium
electrons increases as well. This is demonstrated in Fig. 4.
When the average energy of nonequilibrium electrons, because
of emission of phonons, is reduced to the scale ζ ∼ kBT ,�ωD

the (1 − fξ−ν) factor becomes important leading to the strong
slowing down of the relaxation, indicating the second stage
of relaxation. Since most of the energy is transferred to the
phonon subsystem before the time when the width of the
nonequilibrium distribution function becomes of the order of
kBT , the final and the longest stage of thermalization is difficult
to observe. In order to demonstrate that we multiply Eq.(29) by
ξ and integrate over ξ from 0 to ∞ with the following result:

Ė(t) = −γ [I (t) − p(t)]. (36)

E(t) is defined in Eq. (35). The e-e collision integral conserves
electron energy and therefore does not contribute to Eq. (36).
The first term in this equation describes the loss of the energy
due to generation of phonons. The second term describes the
reabsorption of phonons with the generation of low-energy
electron-hole pairs and slows down the relaxation. If κ1 � 1,
we can neglect the second term in this equation. When the
distribution function φ(ξ,t) is broad and has tails at ξ � 1,
tanh(ξ/2) in the integral Eq. (26) can be replaced to 1

FIG. 5. (Color online) Energy relaxation in metals with large
κ1 = 10000 and different e-e relaxation times given by τe = κ2γ

−1,
γ is the e-ph relaxation rate. Dashed lines represent the approximate
formula (37) (see the text).

and therefore I (t) ≈ n(t), where n(t) is defined in Eq. (34).
Therefore Eq. (36) indicates that energy loss by electrons is
proportional to the nonequilibrium electron density. In order
to illustrate these arguments, we plot in Fig. 5 the time
dependence of the electron energy for the case of large κ1

in comparison with the approximate formula:

E(t) = E(0) − γ

∫ t

0
dt ′n(t ′). (37)

As it follows from Fig. 5, this approximation describes well the
time evolution of the energy until t = (10–15)γ −1 when the
high-energy tails in the nonequilibrium distribution function
disappear. Note that the slope of the energy relaxation curve
at t = 0 is the same in both cases (see inset of Fig. 5)
because the number of photoexcited electrons is the same at
t = 0. The difference between the two cases is due to the
e-e collisions. Since for the case of κ2 = 50 the quasiparticle
multiplication is much faster the energy relaxation rate is
larger. This is demonstrated in Fig. 6. The characteristic
maximum in the quasiparticle density for the case of κ2 =
50 is approximately two times larger than for the case of
κ2 = 500. Therefore the relaxation rate is determined by the

FIG. 6. (Color online) Time evolution of nonequilibrium density
for the same case as Fig. 5.
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nonequilibrium quasiparticle density at relatively high energy
ξ > 1. The quasiparticle density strongly depends on τe.
Therefore analysis of the energy relaxation after the ultrashort
pump pulse allows one to obtain not only information about
the e-ph interaction constant, but also about τe and as a
consequence about the Coulomb pseudopotential μc.

The physical meaning of Eq. (36) is very simple. Every
nonequilibrium electron emits phonons with the temperature
independent rate τ−1

em = πλ〈ω2〉/〈ω〉. The formula for the
emission rate is valid in the low-temperature limit as well.
Indeed, if we consider the zero temperature limit T = 0 in
Eq. (5) and calculate the phonon emission rate, we obtain
the same expression for τem as in high-temperature limit (for
details of calculations see Ref. [37]). Since the emission rate
for nonequilibrium electrons is much larger than the ther-
malization rate in both low-temperature and high-temperature
limits, we conclude that low-temperature divergence of the
relaxation time will not be observed experimentally. Most of
the energy will be transferred to the phonon subsystem before
low-temperature relaxation processes become important. This
is confirmed by the comparison of the results of calculations
of the temperature dependent energy relaxation time using
the Focker-Planck equation (28) and (29) with the results
obtained from the kinetic equations (18) and (19) with different
Eliashberg functions (Fig. 10).

Note that the theory predicts the dependence of the
relaxation rate on the pump frequency � (Fig. 7). Indeed,
preservation of the energy per pulse leads to the increase of
the number of photoexcited electrons n ∝ �−1. If the pump
frequency is large enough, e-e collisions lead to the quick
disappearance of quasiparticles with the energy higher than
the threshold energy. The threshold energy is defined as the
energy where the lifetime of a nonequilibrium electron due
to e-e collisions becomes comparable with the lifetime due to
e-ph collisions. Therefore excitation with the light frequency
higher than this threshold energy does not lead to the pump
frequency dependence. The situation is different when the
pump frequency is below the threshold energy. In that case,
the e-e collisions are not important and the relaxation rate is
governed by the number of photoexcited electrons n ∝ �−1,
leading to the increase of the relaxation rate. This behavior is
demonstrated in Fig. 7.

Experimental measurements of time-resolved photoemis-
sion in metals [23,24] provide direct information about the
time-dependent nonequilibrium distribution function φ(ξ,t)
(see Fig. 7 in Ref. [24]). This can be directly compared
with the results of our calculations. One of the most striking
resemblance between our theory and the experiments is
the existence of the high-energy tails in the nonequilibrium
distribution function when a substantial amount of the energy
is already transferred to the phonon subsystem (Fig. 3). Very
often in the experimental analysis these high-energy tails are
interpreted as the nonequilibrium electron temperature �Te.
Usually, the results of the measurements of the nonequilibrium
distribution function fξ (t) = f 0

ξ + φ(ξ,t) are plotted on a
logarithmic scale as a function of the energy ξ and the
slope of fξ (t) defines the nonequilibrium electron temperature
�Te(t) [24,25]. In this analysis, a large part of the nonthermal
electrons is accounted for thermal. We suggest a different way
of defining the electron temperature. In Fig. 7 of Ref. [24], the

FIG. 7. (a) Energy relaxation and time dependence of (b) the
nonequilibrium density for different pump frequencies �. When the
pump frequency is relatively small the relaxation time depends on the
pump frequency.

nonequilibrium part of the electron distribution function φ(ξ,t)
is plotted for different time delays after pump. From this graph,
it is clear that at any time delay φ(ξ,t) << 1 and therefore
the condition for the linearization of the BKEs is fulfilled. If
φ(ξ,t) is described by the nonequilibrium temperature then
φ(ξ,t) = �Te(t)

4T

ξ

cosh(ξ/2)2 . The shape of φ in Fig. 7 of Ref. [24]
is similar to that described by this formula. The function
ξ/ cosh2(ξ/2) has a maximum at ξ ≈ 1.5–1.6, which is about
1. Therefore the electronic temperature can be defined directly
from the maximum of φ in Fig. 7 [24] �Te(t) = 4T φmax,
where φmax is the experimental value of the maximum of
φ(ξ,t). Therefore, after 100 fs, �Te ≈ 28 K contrary to the
estimate from the slope of the distribution function f (ξ,t)
�Te ≈ 125 K.

Another important consequence of the time-resolved pho-
toemission experiments is the possibility to evaluate the
electron energy and the number of the photoexcited electrons
and holes. According to our theoretical results the maximum in
energy and maximum in the density of photoexcited electrons
should be shifted in time with respect to each other (Figs. 5
and 6). If the pump pulse is much shorter than γ −1, the energy
has its maximum immediately after pump pulse, because the
photoexcited electrons cannot emit any phonon during the
short pulse. The high-energy photoexcited electrons reduce
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FIG. 8. Time evolution of the electron distribution function.
Dashed line is from the solution of the Fokker-Plank equation
(29) and solid line represents the solution of the linearized BKE
Eqs. (18) and (19) with the Eliashberg function defined by Eq. (A1);
γ (TD)τe(TD) = 40.

the energy due to e-e collisions leading to an increase in
the number of nonequilibrium electrons. The electron-hole
recombination is slow at the short time scale because the
number of nonequilibrium electrons within the energy interval
ξ < ωD is small when the pump frequency is large � �
ωD . It means that the number of photoexcited electrons
increases immediately after the pump. The maximum in the
nonequilibrium electron density occurs when the process of
electron multiplication due to e-e collisions is compensated by
the electron-hole recombination with the emission of phonons.
The time when the density of the nonequilibrium electrons has
its maximum indicates the end of the first stage of electron
thermalization. After that, the energy relaxation rate decreases.
The difference in the positions of maxima can be clearly seen
in Figs. 8 and 9 of Ref. [24].

FIG. 9. (Color online) Electron energy as a function of time,
calculated for different Eliashberg functions and at different tempera-
tures T = 2TD (upper series of curves), TD (middle series of curves),
and 0.3TD (lower series of curves). Solid line represents the Debye
model (A1), dashed line represents the Einstein model (A2), dotted
line represents the “dirty metal case” (23), and dashed-dotted line
represents the energy calculated using Fokker-Planck equation (29);
γ (TD)τe(TD) = 40. In the case of the Einstein model, TD = �ω0/kB .

Note that Eq. (36) allows the evaluation of the electron-
phonon coupling constant. If we evaluate the decay rate of the
electron energy experimentally and divide it with n(t) on a
short time scale after the maximum of the E(t) curve this ratio
should be constant and is exactly equal to γ . Note that the
determination of the coupling constant from the single color
pump-probe measurements only is problematic. The energy
relaxation rate depends on the e-e and e-ph coupling constants
as demonstrated in Figs. 4 and 5 and requires the knowledge
of both E(t) and n(t) dependencies. Therefore independent
measurements of the nonequilibrium density are necessary to
evaluate the electron-phonon coupling constant λ.

V. CONCLUSION

We have developed the theory of the electron relaxation
in metals excited by an ultrashort optical pump. The theory
is based on the solution of the linearized BKE, which in-
cludes the electron-electron and the electron-phonon collision
integrals. The well-known two-temperature model represents
the limiting case of the theory when thermalization due to
the electron-electron collisions is fast with respect to the
electron-phonon relaxation.

We have demonstrated that for realistic parameters the en-
ergy transfer from electrons to phonons occurs on a timescale
which is much faster than the electron thermalization. The
high-energy tails in the electron distribution function disappear
when most of the energy is already transferred to phonons as
it is observed in the time-resolved photoemission experiments
[23,24]. The reabsorption of nonequilibrium phonons slows
down the relaxation.

We have demonstrated that the relaxation of the photoex-
cited electrons occurs in two steps. The first and the most
important step represents the emission of phonons by the
nonequilibrium electrons. The rate of electron energy loss
at that stage is proportional to the density of nonequilibrium
electrons. The temperature dependence of the relaxation at this
stage is significantly different from the predictions of the two-
temperature model. The density of nonequilibrium electrons
is strongly influenced by the electron-electron collisions. It
makes the relaxation time-dependent on the pump frequency if
the pump frequency is smaller than some threshold frequency.
It also allows the evaluation of the electron-phonon coupling
constant λ from time-resolved photoemission data.

The second stage of the relaxation describes the electron-
phonon thermalization. This stage may be described approx-
imately by the two-temperature model. Since it involves a
small energy transfer (about 10% or less) from electrons to
phonons, it is difficult to observe experimentally. Our theory
explains one of the most severe problems of the theory why
the divergence of the relaxation time at low temperatures was
never observed experimentally.
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APPENDIX

In order to demonstrate that Eqs. (28) and (29) are inde-
pendent of the approximations that were made, we perform
extensive numerical simulations of Eqs. (18) and (19) in the
limit of large κ1 � 1 with three different Eliashberg functions:
the linear function of phonon frequency α2F (ω) ∝ ω, Eq. (23),
the Debye model

α2F (ω) =
{

λω2

ω2
D

, ω < ωD,

0, ω > ωD,
(A1)

and the Einstein model

α2F (ω) = λω0δ(ω − ω0). (A2)

Since the e-ph collision integral for all these cases is similar
to the e-e collision integral it is very easy to treat numerically.
The evolution of the nonequilibrium distribution function at
low temperature kBT = �ωD/4 is presented in Fig. 8. It is
easy to see that in the whole range of time the electron
distribution function calculated with Eqs. (18) and (19) with
the Eliashberg function (23) is almost undistinguishable from
the distribution function obtained by the solution of the
Fokker-Planck equation (28) and (29). In Fig. 9, we present
the electron energy as a function of time calculated on the
basis of Eqs. (18) and (19) for different α2F (ω) functions
defined by Eqs. (23), (A1), and (A2) in comparison with the
solution of the Fokker-Planck equation. Here, we keep λ〈ω2〉
constant for different Eliashberg functions. Again, the energy
relaxation is almost the same for different cases in the high-
temperature kBT > �ωD region and differs not more than by
10% at low temperatures kBT < �ωD . Note that the difference
between different models increases when almost all energy
is transferred to phonons and electron thermalization takes
place. It is because the Fokker-Planck equation overestimates
the thermalization rate in the low-temperature range. On the
other hand, the temperature dependence of the thermalization
rate for different types of Eliashberg functions is different.
In the case of the Eliashberg function defined by Eq. (23),
the thermalization time is proportional to τ ∝ T −2; in the
Debye model,τ ∝ T −3, and in the case of Einstein model
related to the e-ph interaction with optical phonons, it is
an exponential function of temperature τ ∝ exp(−�ω0/kBT ).
Therefore we can conclude that energy relaxation of the
photoexcited electrons is well described by the Fokker-Planck
equation (29) in the whole temperature region. The relaxation
does not depend on the particular form of the Eliashberg
function and is defined by the second moment of the Eliashberg
function λ〈ω2〉. The energy relaxation is not exponential,
therefore we define the relaxation time as the time at which
half of the absorbed energy is transferred from electrons to
phonons.

The temperature dependence of the energy relaxation time
is plotted in Fig. 10 for three different Eliashberg functions
and for the Fokker-Plank equation. As it is clearly seen from
this graph, there is marginal difference between these cases
at temperatures T > 0.2TD . Therefore the relaxation time is
independent of the particular form of the Eliashberg function. It
is determined by the second moment of the Eliashberg function
λ〈ω2〉 in this temperature range. It is almost independent of
the particular form of the α2F (ω) function and is not sensitive

FIG. 10. Temperature dependence of the energy relaxation time
calculated for large κ1 → ∞ for three different Eliashberg functions.
Dotted line with triangles represents the “dirty metal case” (23), solid
line with circles represents Debye model (A1), and dashed line with
squares represents the Einstein model (A2). Solid lines with diamonds
represents temperature dependence of the relaxation time for the
high-temperature Fokker-Planck equation (29); γ (TD)τe(TD) = 40.
In the case of Einstein model, TD = �ω0/kB .

to whether the acoustic or optical phonons dominate the the
relaxation, provided that λ〈ω2〉 is constant. Note that in the case
of tr-ARPES experiments, where the relaxation time may be
momentum dependent some of the features of the Eliashberg
function may be resolved [29].

In the low-temperature region, there is a very small increase
of the relaxation time for the Debye (2% at T = TD/20) and
for the Einstein(5% at T = TD/20) models for the Eliashberg
function. As it was mentioned in the introduction, the two-
temperature model becomes valid at very low temperatures.
Since the e-ph relaxation time increases exponentially with
decreasing of temperature τe-ph ∝ exp(�ω0/kBT ) in the case of
the interaction with optical phonons, the range of temperatures
where the two-temperature model is efficient may be relatively
broad T < TD/10. In the case of interaction with the acoustic
phonons, this range is more narrow. Therefore if the relaxation

FIG. 11. Time evolution of the nonequilibrium distribution func-
tion for different initial distributions of the photoexcited electrons.
Solid line corresponds to exponential distribution of the photoexcited
electrons and dashed line corresponds to φ(ξ,0) = 12(� − ξ )ξ/�4.
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is dominated by the interaction with the optical phonons it may
be possible to observe the increase of the relaxation time at low
temperatures. From an experimental point of view, this is very
unlikely because the interaction with the acoustic phonons will
dominate the relaxation at low temperatures.

In order to show that the results are independent of the
initial distribution function of the photoexcited electrons, we
present the results of the time evolution of the distribution
function for different initial conditions φ(ξ,0). In Fig. 11,
we plot the time evolution of the distribution function for

φ(ξ,0) = ξ

�3 exp(−ξ 2/�2) compared with the case where
φ(ξ,0) = 12(� − ξ )ξ/�4. The results clearly demonstrate
that the essential difference between these two cases survives
only on the time scale less than 10−3τee when the transfer of
energy from nonequilibrium electrons to phonons is negligible.
Therefore the particular choice of the initial distribution
function is not important. The only important parameter is the
characteristic energy scale of this distribution, which in both
cases is described by the characteristic frequency �, which is
related to the pump frequency.
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