
PHYSICAL REVIEW B 89, 125101 (2014)

Relaxation after quantum quenches in the spin-1
2 Heisenberg XXZ chain

Maurizio Fagotti,1 Mario Collura,2 Fabian H. L. Essler,1 and Pasquale Calabrese2

1The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, United Kingdom
2Dipartimento di Fisica dell’Università di Pisa and INFN, 56127 Pisa, Italy
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We consider the time evolution after quantum quenches in the spin- 1
2 Heisenberg XXZ quantum spin chain

with Ising-type anisotropy. The time evolution of short-distance spin-spin correlation functions is studied by
numerical tensor network techniques for a variety of initial states, including Néel and Majumdar-Ghosh states
and the ground state of the XXZ chain at large values of the anisotropy. The various correlators appear to
approach stationary values, which are found to be in good agreement with the results of exact calculations
of stationary expectation values in appropriate generalized Gibbs ensembles. In particular, our analysis shows
how symmetries of the post-quench Hamiltonian that are broken by particular initial states are restored at late
times.

DOI: 10.1103/PhysRevB.89.125101 PACS number(s): 02.30.Ik, 05.70.Ln, 75.10.Jm, 67.85.−d

I. INTRODUCTION

Recent years witnessed great advances in our understanding
of isolated nonequilibrium many-particle quantum systems,
mainly triggered by ground-breaking experiments with ultra-
cold, trapped atoms [1–5]. One of the most celebrated results
is that expectation values of local observables generically
approach stationary values at late times in the thermodynamic
limit, in spite of the time evolution being unitary and the entire
system concomitantly always being in a pure state (assuming
that it started out in a pure state). There is compelling
evidence that these stationary values can be predicted by
statistical ensembles without having to solve the complicated
nonequilibrium dynamics.

For nonintegrable models, the appropriate statistical en-
semble is expected to be the standard Gibbs distribution with
an effective temperature fixed by the value of the energy in
the initial state [6]. For integrable models, the existence of
local conservation laws strongly constrains the dynamics, and
it has been proposed [7] that stationary values are described
by a generalized Gibbs ensemble (GGE). By now, rather
convincing evidence supporting this proposal has accumulated
[8–27], but a general proof is still outstanding. Whereas in
equilibrium integrability may be viewed chiefly as powerful
tool for obtaining exact solutions of paradigmatic models,
out of equilibrium it is an essential physical feature. For
models that can be mapped to free fermions or bosons, the
stationary behavior as well as essentially the full dynamics has
been obtained analytically [10–14,17,25,26]. Unfortunately,
the methods applicable to these cases do not generalize to
interacting integrable models, i.e., models with momentum-
dependent (dressed) scattering matrices.

A crucial next step is therefore to calculate expectation val-
ues of local observables in the stationary state after a quantum
quench in interacting integrable models, assuming that local
properties can be described by an appropriate GGE. This task
has recently been undertaken by several groups using different
integrability-based techniques [8,24,27–31]. In some of these
works, specific predictions for stationary values of local
observables have been made. Given the underlying assumption
of relaxation to a GGE, these predictions need to be checked
by independent methods such as numerical simulations.

Here, we focus on the nonequilibrium dynamics of the XXZ
spin chain described by the Hamiltonian

H (1)(�) = 1

4

L∑
�=1

σx
� σ x

�+1 + σ
y

� σ
y

�+1 + �
(
σ z

� σ z
�+1 − 1

)
,

(1.1)
� = cosh(η) > 1.

We will consider a variety of initial states and consider the
question as to whether the dynamics of local observables
exhibits relaxation to a stationary state compatible with a GGE.
The latter is of the form

ρGGE = 1

ZGGE
exp

(
hSz −

∑
l=1

λlH
(l)

)
. (1.2)

Here, Sz = 1
2

∑
� σ z

� is the z component of total spin, H (1) is
the Hamiltonian, and H (l) are local [11] integrals of motion that
fulfill [H (m),H (n)] = 0 and are obtained by taking logarithmic
derivatives of the transfer matrix of the six-vertex model
[32]. The Lagrange multipliers h and λl are fixed by the
requirement that the expectation values of the conservation
laws are the same at time t = 0 and in the stationary
state

lim
L→∞

〈�0|Sz|�0〉
L

= lim
L→∞

Tr [ρGGESz]

L
,

(1.3)

lim
L→∞

〈�0|H (l)|�0〉
L

= lim
L→∞

Tr
[
ρGGEH (l)

]
L

.

We stress that locality of the integrals of motion is the
key feature which sets integrable models apart from generic
ones. In fact, any quantum mechanical Hamiltonian H has
as many integrals of motions as there are basis states in
the Hilbert space, as the one-dimensional projectors Pn =
|ψn〉〈ψn| on energy eigenstates are in involution and commute
with H . However, they are not local. The GGE built with
all the Pn’s is by definition equivalent to the so-called
diagonal ensemble, which describes the infinite time average
of arbitrary observables (including nonstationary ones) in a
finite volume (assuming that spectral degeneracies do not play
a role).

1098-0121/2014/89(12)/125101(25) 125101-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.125101


FAGOTTI, COLLURA, ESSLER, AND CALABRESE PHYSICAL REVIEW B 89, 125101 (2014)

The last few months have witnessed considerable progress
in developing analytic approaches to the quench problem in
the XXZ spin chain [8,24,33–35]. In this paper, we follow
the route developed by two of the present authors [8], which
allows us to calculate short-distance spin-spin correlation
functions in the appropriate GGEs. As compared to other
methods, the approach of Ref. [8] works directly in the
thermodynamic limit at finite-energy density compared to the
ground state of the post-quench Hamiltonian. Here, we extend
the calculations of Ref. [8] to a variety of initial states not
previously considered. We also provide the details of how
to treat initial states of matrix-product form, which may be
known only numerically from a ground-state tensor network
computation.

A. Symmetry restoration after quantum quenches

A key issue we will be investigating is that of symmetry
restoration. The post-quench Hamiltonian exhibits a number
of symmetries such as follows:

(1) U(1) rotations around the z axis in spin space:

σ±
� −→ e±iϕσ±

� , σ±
� = σx

� ± iσ
y

�

2
. (1.4)

(2) Translational invariance:

σα
� −→ σα

�+1. (1.5)

(3) Bond-inversion symmetry PB :

σα
� −→ σα

L+1−�. (1.6)

(4) Site-inversion symmetry PS :

σα
� −→ σα

L+2−�. (1.7)

The local conservation laws of the XXZ chain, and hence the
GGE (1.2), share the first two of these symmetries. However,
the higher conservation laws can be odd under the inversion
symmetries. For example,

H (2)(�) ∝
∑

�

εαβγ σ
β

� σ
γ

�+2σ
α
�+1[� + (1 − �)δα,z] (1.8)

is parity odd. The same is true for all H (2n). By construction of
the GGE, stationary values of local observables will exhibit the
first two symmetries, provided that the GGE indeed describes
the late-time behavior after the quench. This implies that if we
start out in an initial state that breaks the U(1) or translational
symmetry, they must be restored in the course of the unitary
time evolution. The situation is different for PB,S : these are
not necessarily restored. However, for the initial states that are
invariant under at least one of the reflection symmetries, they

will be. This can be seen by noting that as |�0〉 is even and
H (2n) is odd under the symmetry, we have

〈�0|H (2n)|�0〉 = 0. (1.9)

The constraints (1.3) are then fulfilled by setting all Lagrange
multipliers λ2n to zero, as can be checked by taking the traces
in a basis of simultaneous eigenstates of the Hamiltonian and
parity. In other words, the GGE only contains the parity-even
conservation laws H (2n+1) in this case, which implies the
restoration of the reflection symmetries in the stationary
state. All initial states studied below by means of numerical
tensor-product methods are of this kind.

II. GENERALIZED GIBBS EXPECTATION VALUES
BY THE QUANTUM TRANSFER-MATRIX METHOD

In a recent paper, Fagotti and Essler [8] developed an
approach for calculating expectation values of local operators
in generalized Gibbs ensembles describing the stationary states
for quenches from matrix-product states. Here, we summarize
some key results. The density matrix (1.2) can be viewed
as describing a thermal (Gibbs) ensemble for an integrable
Hamiltonian with long-range interactions. For a given set
of Lagrange multipliers {λj }, it is then straightforward [8]
to generalize the quantum transfer-matrix approach [36] for
calculating thermal expectation values to (1.2) (some remarks
regarding the structure of the largest eigenvalue of the quantum
transfer matrix in our cases are given in Appendix A). In
particular, we may use the explicit expressions for short-
distance correlators given in Ref. [37], which involve three
functions ϕ(μ), ω(μ1,μ2), and ω′(μ1,μ2) that encode the
necessary information on the density matrix. Examples are〈

σ z
1 σ z

2

〉 = cth(η)ω + ω′
x

η
,

(2.1)〈
σx

1 σx
2

〉 = − ω

2 sinh(η)
− cosh(η)ω′

x

2η
,

where ω = ω(0,0), ω′
x = ∂xω

′(x,y)|x,y=0. Determining the
Lagrange multipliers by solving the system (1.3) is a difficult
problem [24]. In Ref. [8], a method was introduced that
avoids having to calculate them explicitly by working with
the generating function

��0 (λ) = −i
∑
k=1

(
η

sinh η

)k
λk−1

(k − 1)!

〈�0|H (k)|�0〉
L

. (2.2)

Given ��0 (λ), the largest eigenvalue of the quantum transfer
matrix, and concomitantly the generalized Gibbs ensemble, is
obtained by solving the system of nonlinear integral equations

ln b(x) − ln b̄(x) + h = [(k+ + k) ∗ ln(1 + b)](x) − [(k− + k) ∗ ln(1 + b̄)](x),

g+
μ (x) = −d(x − μ) +

[
k ∗ g+

μ

1 + b
−1

]
(x) −

[
k− ∗ g−

μ

1 + b̄
−1

]
(x),

g−
μ (x) = −d(x − μ) +

[
k ∗ g−

μ

1 + b̄
−1

]
(x) −

[
k+ ∗ g+

μ

1 + b
−1

]
(x),
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4k(μ) + 4i

η
��0 (−2μ/η) = −

∫ π
2

− π
2

dx

π
d(x)

(
g+

μ (x)

1 + b
−1(x)

+ g−
μ (x)

1 + b̄
−1(x)

)
,

4mz =
∫ π

2

− π
2

dx

π

(
g+

0 (x)

1 + b
−1(x)

− g−
0 (x)

1 + b̄
−1(x)

)
, (2.3)

where mz is the magnetization per site in the initial state, and

[f1 ∗ f2](x) =
∫ π

2

− π
2

dy

π
f1(x − y)f2(y),

d(x) =
∞∑

n=−∞

e2inx

cosh(ηn)
, k(x) =

∞∑
n=−∞

e2inx

e2η|n| + 1
,

k±(x) = k(x ± i[η − ε]). (2.4)

Here, ε is a positive infinitesimal. The first three equations
of (2.3) have the same form as for the equilibrium problem
at finite temperature [37], while the last two equations are
different and encode the quench setup and the associated
constraints on the expectation values of the higher integrals
of motion (1.3). In general, the system (2.3) has to be solved
numerically by iteration, and some details on how to do this
are presented in Sec. II D. The structure of (2.3) is such that the
second and third equations can be straightforwardly inverted
(as they are linear) in order to express g±

μ as functions of b and b̄.
The first equation of (2.3) is nonlinear, but nonetheless can be
used to express b̄ in terms of b. The last equation, which is more
conveniently analyzed in Fourier space, can finally be inverted
to obtain the remaining unknown b. The three functions ϕ(μ),
ω(μ1,μ2), and ω′(μ1,μ2) that enter the expressions for the
spin correlation functions are

ϕ(μ) =
∫ π

2

− π
2

dx

2π

(
g−

−iμ(x)

1 + b̄
−1(x)

− g+
−iμ(x)

1 + b
−1(x)

)
,

ω(μ1,μ2) = −4k(iμ1 − iμ2) + K̃2η(iμ1 − iμ2)

−
[
d ∗

(
g+

−iμ1
(x)

1 + b
−1(x)

+ g−
−iμ1

(x)

1 + b̄
−1(x)

)]
(−iμ2),

ω′(μ1,μ2) = −4η�(iμ1 − iμ2) + ηK̃2(μ1−μ2)(iη)

−
[
d ∗

(
g′+

−iμ1

1 + b
−1 + g′−

−iμ1

1 + b̄
−1

)]
(−iμ2)

− η

[
c− ∗ g+

−iμ1

1 + b
−1

]
(−iμ2)

− η

[
c+ ∗ g−

−iμ1

1 + b̄
−1

]
(−iμ2), (2.5)

where

K̃η(x) = sinh η

cosh η − cos(2x)
, c±(x) = ±

∞∑
n=−∞

e±ηn+2inx

2 cosh2(ηn)
,

�(x) =
∞∑

n=−∞

sgn(n)e2inx

4 cosh2(ηn)
, �±(x) = �(x ± i[η − ε]),

(2.6)

and the auxiliary functions g′±
μ (x) are solutions to the integral

equations

g′+
μ (x) = −ηc+(x − μ) + η

[
� ∗ g+

μ

1 + b
−1

]
(x)

− η

[
�− ∗ g−

μ

1 + b̄
−1

]
(x) +

[
κ ∗ g′+

μ

1 + b
−1

]
(x)

−
[
κ− ∗ g′−

μ

1 + b̄
−1

]
(x),

g′−
μ (x) = −ηc−(x − μ) + η

[
� ∗ g−

μ

1 + b̄
−1

]
(x)

− η

[
�+ ∗ g+

μ

1 + b
−1

]
(x) +

[
κ ∗ g′−

μ

1 + b̄
−1

]
(x)

−
[
κ+ ∗ g′+

μ

1 + b
−1

]
(x). (2.7)

The method proposed in Ref. [8] for computing spin-spin
correlations functions then consists of three main steps:

(1) Calculate the generating function ��0 . While this is
difficult in general, it was pointed out in Ref. [8] that it can
be done efficiently for initial states that are of matrix-product
form.

(2) Solve the system (2.3) of nonlinear integral equations
for the auxiliary functions b(x) and b̄(x).

(3) Use the auxiliary functions to determine the functions
ϕ(μ), ω(μ1,μ2), and ω′(μ1,μ2) and in turn the spin-spin
correlation functions.

In the next section, we provide the details of how to
calculate ��0 for translationally invariant initial states of
matrix-product form. The generalization to certain initial states
that break translational invariance, e.g., states with Néel order,
is considered in Sec. II B. In Sec. II D, we present an efficient
numerical algorithm for solving our system of nonlinear
integral equations.

Readers not interested in details pertaining to the computa-
tion of the generating function (2.2) and the numerical solution
of the system of nonlinear integral equations (2.3) may proceed
directly to Sec. III.

A. Generating function for translationally invariant
matrix-product initial states

Our starting point is the following representation of the
generating function derived in Ref. [8]:

��0 (λ) = lim
L→∞

1

L

∂

∂x

∣∣∣∣
x=λ

Tr〈�0|VL(x,λ) . . . V1(x,λ)|�0〉,

(2.8)
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where Vj (x,λ) are 4 × 4 matrices with entries [Vj (x,λ)]ab
cd that

are operators acting on the two-dimensional quantum space on
site j :

[Vj (x,λ)]ab
cd = [L(x; σj )]ab[M(λ; σj )]cd . (2.9)

Here, L is the L operator of the XXZ model [32] and M is
the corresponding matrix associated with the inverse transfer
matrix, i.e.,

L(λ; σ ) = 1 + τ zσ z

2
− i

sin
(

ηλ

2

)
sinh

(
η − i

ηλ

2

) 1 − τ zσ z

2

+ sinh(η)

sinh
(
η − i

ηλ

2

) (τ+σ− + τ−σ+),

M(λ; σ ) = 1 + μzσ z

2
+ i

sin
(

ηλ

2

)
sinh

(
η + i

ηλ

2

) 1 − μzσ z

2

+ sinh(η)

sinh
(
η + i

ηλ

2

) (μ+σ+ + μ−σ−), (2.10)

where the Pauli matrices τα and μα act on distinct auxiliary
spaces, which we denote by T and M, respectively, while
σα act on the “quantum space” at a given site of the lattice.
The trace in (2.8) is over the tensor product T ⊗ M ∼ C4

of auxiliary spaces, i.e., Tr(M) = ∑
a,b Maa

bb . A pictorial
representation of transfer matrices underlying the construction
of the generating function is shown in Fig. 1.

Denoting the two possible spin states at site j (correspond-
ing to spin up and spin down in the z direction, respectively)
by |±〉j , we can construct a basis of the Hilbert space H of our

FIG. 1. (Color online) Pictorial representation of the transfer
matrices underlying the construction of the generating function
��0 (λ). The “two-layer” transfer matrix shown in panel (c) is formed
by multiplying the transfer matrices made from the L operators
L(λ; σ ) and M(λ; σ ) shown in panels (a) and (b).

L-site lattice by {|s1s2 . . . sL〉 = ⊗L
j=1|sj 〉 , s� = ±}. The most

general translationally invariant matrix-product state then can
be expressed as

|�0〉 =
∑
s1=±

. . .
∑
sL=±

TrA
[
A(s1)A(s2) . . . A(sL)

]|s1 . . . sL〉

≡ TrA[|�̂A〉], (2.11)

where A(±) are matrices acting on some auxiliary space A,
which we take to be isomorphic to Cm for some integer m.
The normalization condition 〈�0|�0〉 = 1 implies that

‖[A(+)]∗ ⊗ A(+) + [A(−)]∗ ⊗ A(−)‖op = 1, (2.12)

where ‖ . . . ‖op is the operator norm, i.e., the absolute value of
the maximal eigenvalue, which we assume to be nondegener-
ate. It is customary to restrict the form of the matrix-product
state by replacing the condition (2.12) with the stronger
requirement

A(+)[A(+)]† + A(−)[A(−)]† = I, (2.13)

and we adopt this convention in the following. In order to
calculate ��0 (λ), we require

Tr〈�0|VL(x,λ) . . . V1(x,λ)|�0〉
= TrT ⊗M⊗Ā⊗A〈�̂Ā|VL(x,λ) . . . V1(x,λ)|�̂A〉. (2.14)

As a consequence of translational invariance of (2.11) we have

〈�̂Ā|VL(x,λ) . . . V1(x,λ)|�̂A〉 = [U (x,λ)]L, (2.15)

where

U (x,λ)

=
∑
s=±

〈s|
⎡⎣∑

α,β=±
eαβA(α) ⊗ (A(β))∗ ⊗ L(x; σ ) ⊗ M(λ; σ )

⎤⎦|s〉.

(2.16)

Here, A(±) act on A, (A(±))∗ on Ā, and we defined

e++ = I + σ z

2
, e+− = σ+, e−+ = σ−, e−− = I − σ z

2
.

(2.17)

By construction, the matrix U (x,x) has an eigenvalue equal to
1. The corresponding right eigenvector |1; R〉 is independent of
x, η, and A(±) and can be determined explicitly. If the matrices
A(±) satisfy (2.13), it has the form

|1; R〉 = |↑〉T ⊗ |↑〉M + |↓〉T ⊗ |↓〉M√
2

⊗
⎛⎝ m∑

j=1

|aj 〉A ⊗ |āj 〉Ā

⎞⎠ , (2.18)

where the vectors {|a1〉, . . . ,|am〉} form an orthonormal basis of
A and |āj 〉 = |aj 〉∗. In contrast, the left eigenvector of U (x,x)
corresponding to the eigenvalue 1 depends in a nontrivial way
on x, η, and the initial state. In order to proceed, we assume
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that the eigenvalue 1 of U (x,x) is nondegenerate, and that
there exists an eigenvalue u(x,λ) of U (x,λ) that smoothly
approaches 1 in the limit λ → x. The generating function is
then simply equal to

�(λ) = ∂

∂x

∣∣∣∣
x=λ

u(x,λ). (2.19)

In practice, the eigenvalue u(x,λ) can be calculated in closed
form only for very simple initial states. To deal with more
general cases, the following representation of the generating
function turns out to be very useful:

�(λ) = Tr[adj[U (λ,λ) − I]∂x |x=λU (x,λ)]

Tr[adj[U (λ,λ) − I]]
. (2.20)

Here, adj[M] denotes the adjugate, i.e., the transpose of the
matrix of cofactors of the matrix M . The representation (2.20)
can be established as follows. Since u(x,λ) is eigenvalue of
U (x,λ), we have

det |u(x,λ)I − U (x,λ)| = 0, ∀ x,λ. (2.21)

The derivative with respect to x is related to the adjugate by
Jacobi’s formula

∂x det |u(x,λ)I − U (x,λ)|
= Tr[adj[u(x,λ)I − U (x,λ)]∂x[u(x,λ)I − U (x,λ)]]. (2.22)

By virtue of (2.21), the derivative of the determinant vanishes,
so that in the limit λ → x we arrive at

0 = ∂xTr[adj[I − U (λ,λ)][u(x,λ)I − U (x,λ)]]λ=x. (2.23)

Combining (2.23) with (2.19), we obtain (2.20).

1. Explicit expressions for �(λ)

In order to determine our generating function from (2.20),
we require the two quantities U (λ,λ) and ∂x |x=λU (x,λ). It is
convenient to employ (2.10) in order to rewrite U (x,λ) in the
form

U (x,λ) = 1

e
iη(λ−x)

2 sinh
(
η − iηx

2

)
sinh

(
η + iηλ

2

) (I, e−iηx/2I, e−iηxI)V̄

⎛⎝ I
eiηλ/2I
eiηλI

⎞⎠, (2.24)

where V̄ is a (12m2) × (12m2) matrix independent of x and λ, and the identities I are 4m2 × 4m2 matrices. The two matrices we
need in order to calculate the generating function can be expressed as

U (λ,λ) = 2

cosh(2η) − cos(ηλ)
(I, e−iηλ/2I, e−iηλI)V̄

⎛⎝ I
eiηλ/2I
eiηλI

⎞⎠,

∂x

∣∣
x=λ

U (x,λ) = iη

1 − e−2ηeiηλ
U (λ,λ) − iη

cosh(2η) − cos(ηλ)
(0, e−iηλ/2I, 2e−iηλI)V̄

⎛⎝ I
eiηλ/2I
eiηλI

⎞⎠. (2.25)

Instead of working with U (λ,λ) and ∂x |x=λU (x,λ), it is
convenient to consider the matrix-valued functions

P (λ) = eiηλ[cosh(2η) − cos(ηλ)][U (λ,λ) − I],

Q(λ) = (eiηλ − e−2ηe2iηλ)[cosh(2η) − cos(ηλ)]∂x |x=λU (x,λ).

(2.26)

The generating function is related to these functions by

��0 (λ) = 1

(eiηλ − e−2ηe2iηλ)[cosh(2η) − cos(ηλ)]

× Tr{adj[P (λ)] Q(λ)}
Tr{adj[P (λ)]} . (2.27)

It follows from (2.24) that P (λ) is a polynomial (with matrix-
valued coefficients) of degree four in the variable ei

ηλ

2 , and
its adjugate is a polynomial of degree 4(4m2 − 1). Hence, the
latter is fully determined by evaluating it at 16m2 − 3 different
values of λ, which we choose as

λj = 4πj

η(16m2 − 3)
, j = 0,1, . . . ,16m2 − 4. (2.28)

The adjugate matrix then takes the form

adj[P (λ)] = 1

16m2 − 3

16m2−4∑
n,�=0

adj [P (λ�)] ei
nη(λ−λ�)

2 , (2.29)

which allows us to obtain adj[U (λ,λ) −I]/Tr[adj[U (λ,λ) −I]]
with a numerical effort that scales as m8. Similarly, the function
Q(λ) is a fifth-degree polynomial in ei

ηx

2 , and hence can be
expressed as

Q(λ) = 1

6

5∑
j,n=0

Q(κj ) ei
nη(λ−κj )

2 , κj = 2πj

3η
. (2.30)

Given an initial matrix-product state of the form (2.11), we
numerically compute the matrices adj [P (λ�)] and Q(κj ) either
exactly or to very high precision, and then use (2.29) and (2.30)
to obtain the functions adj [P (λ)] and Q(λ). In this way, we can
extract the value of the finite number of free parameters of the
representation (2.27) for the generating functions. We stress
that the functional form of ��0 (λ) is fixed by the structure
of the matrix-product state, and potential inaccuracies of the
computation are therefore practically independent of λ.
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2. Numerical computation of the generating function

The method discussed in the previous section is most
appropriate for exact matrix-product states. In the following,
we will be interested in situations where the initial state is only
approximately of matrix-product form. An example would be
the ground state of the Heisenberg chain for large anisotropy �.
In such cases, we resort to a faster, fully numerical computation
of the generating function by means of the representa-
tion (2.20). Employing a singular value decomposition we
have

U (λ,λ) − I = U(λ)D(λ)V†(λ), (2.31)

where U(λ) and V(λ) are unitary matrices and D(λ) is a
positive-semidefinite diagonal matrix. As U (λ,λ) has a non-
degenerate eigenvalue equal to 1, the adjugate of U (λ,λ) − I
is of rank one, so that the singular value decomposition
becomes

adj[U (λ,λ) − I] = det+|D(λ)|�vR(λ)�v†
L(λ). (2.32)

Here, det+ denotes the pseudodeterminant, i.e., the product
of the nonzero eigenvalues, and �vR/L(x) are the normalized
right and left singular vectors corresponding to the unique
nonzero singular value. The generating function takes the
form

��0 (λ) = �v†
L(λ)[∂x |x=λU (x,λ)]�vR(λ)

�v†
L(λ)�vR(λ)

(2.33)

and, for a given λ, can be straightforwardly computed with a
computational effort that scales as m6 (using the detailed struc-
ture of the matrices, it is in principle possible to significantly
reduce the numerical complexity [38]). Compared to (2.27),
the representation (2.33) is numerically better behaved. On
the other hand, the representation (2.27) has the advantage of
providing the exact form of the generating function. In order to
solve the system (2.3) of nonlinear integral equations, we will
require the values of �(λ) in a complex domain. For the initial
states we consider this domain is the strip |Im(λ)| < 1. As �(λ)
is a 2π

η
-periodic function, it can be conveniently expanded in

a Fourier series

��0 (λ) = iη
∑

n

ωne
iηnλ. (2.34)

In practice, we retain only a finite number of Fourier
coefficients, which we determine using (2.33).

B. Initial states that break translational invariance

In the previous section, we showed how to determine
the generating function for translationally invariant matrix-
product initial states. Here, we consider generalizations to cer-
tain simple classes of states that break translational invariance.

1. States with Néel order

In the ground state of XXZ chain at � > 1, translational
invariance is broken spontaneously, and in order to describe
interaction quenches H (1)(�0) → H (1)(�) in the antiferro-
magnetic phase, we therefore need to generalize the analysis of
Sec. II A. The spontaneous breaking of translational symmetry
to translations by two sites can be addressed by employing a

simple unitary transformation

H (1)(�) −→
[∏

�

σ x
2�

]
H (1)(�)

[∏
�

σ x
2�

]

= 1

4

L∑
�=1

σx
� σ x

�+1 − σ
y

� σ
y

�+1 − �
(
σ z

� σ z
�+1 + 1

)
.

(2.35)

In the limit of large �, the ground states of the transformed
Hamiltonian are ferromagnetic with all spins up or down,
respectively. Spontaneous symmetry breaking selects one of
them, but crucially the resulting ground state is translationally
invariant, and can be approximated by a matrix-product
state of the form (2.11). Reversing the unitary transforma-
tion, we are led to consider matrix-product states of the
form

|GS; �0〉 =
[∏

�

σ x
2�

] ∑
s1,...,sL

TrA
[
A(s1) . . . A(sL)

]|s1 . . . sL〉

≡
[∏

�

σ x
2�

]
|�0〉. (2.36)

The corresponding generating function is then

�|GS,�0〉(λ) = lim
L→∞

1

L

∂

∂x

∣∣∣∣
x=λ

Tr〈GS; �0|

×VL(x,λ) . . . V1(x,λ)|GS; �0〉, (2.37)

where Vn(x,λ) are given in (2.9). The evaluation of (2.37) can
be reduced to the same calculation as in the translationally
invariant case by noting that

Tr〈GS; �0|VL(x,λ) . . . V1(x,λ)|GS; �0〉

= Tr〈�0|
[∏

�

σ x
2�

]
VL(x,λ) . . . V1(x,λ)

[∏
�

σ x
2�

]
|�0〉

= Tr〈�0|ṼL(x,λ) . . . Ṽ1(x,λ)|�0〉, (2.38)

where

(Ṽj (x,λ))ab
cd = [τ xL(x; σj )]ab[μxM(λ; σj )]cd . (2.39)

In order to derive (2.38), we have used the property

[L(x; σ )M(λ; σ ),σ xτ xμx] = 0, (2.40)

which follows from the definitions (2.10) of L and M . We
note that the simple reduction (2.38) does not generalize
straightforwardly to states with Néel order in a direction tilted
away from the z axis.

2. Matrix-product states obtained via DMRG

Matrix-product states obtained by density-matrix renor-
malization group (DMRG) methods on open chains lack
translation invariance. Such computations typically result in
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states of the form

|MPS〉 =
[∏

�

σ x
2�

] ∑
s1,...,sL

TrA
[
Ã

(s1)
1 Ã

(s2)
2 . . . Ã

(sL)
L

]|s1 . . . sL〉,

(2.41)

Ã
(sj )
j = PjA

(sj )P −1
j+1, |2j − L| � L, (2.42)

where, in the bulk of the system, the matrices Pj are often
diagonal with elements ±1. In the following, we will assume
this property to hold. The “gauge transformation” (2.42)
obscures translational invariance, and in order to apply our
method for calculating the generating function we would like
to make the state manifestly invariant. By virtue of (2.42), the
state (2.41) has the same bulk properties as[∏

�

σ x
2�

] ∑
s1,...,sL

TrA[A(s1)A(s2) . . . A(sL)]|s1 . . . sL〉, (2.43)

which can be dealt with by the method outlined in Sec. II B 1.
This leaves us with the problem of how to obtain the matrices
A(±) for a state of the form (2.41) and (2.42). This can be
done by picking a site j̄ that is sufficiently far away from the
boundaries. The matrix

B (s) = Ã
(s)
j̄

Pj̄Pj̄+1 (2.44)

is related to A(s) by the similarity transformation B(s) =
Pj̄A

(s)Pj̄ (note that P 2
j = I), and can be used to replace A(s)

in (2.43). Since both Pj̄−1Pj̄ and Pj̄Pj̄+1 are simple diagonal
matrices with elements ±1, i.e., at most 2m unknowns, the

(approximate) m × m matrix equation [cf. (2.42)]

Ã
(s)
j̄−1 ≈ Pj̄−1Pj̄ Ã

(s)
j̄

Pj̄Pj̄+1 (2.45)

can generally be used to extract both Pj̄Pj̄+1 and Pj̄−1Pj̄ .
Knowing Pj̄Pj̄+1, (2.44) gives B(s) in turn, and therefore we
obtained a translation-invariant representation of the state.

C. Closed-form expressions for the generating function
of some simple initial states

We have calculated ��0 (λ) analytically for a variety of
initial states, which are invariant under translations by n

sites. The case n > 1 is dealt with by a straightforward
generalization of Eq. (2.15), in which the matrix U (x,λ) is
associated with a block of n adjacent spins. Among the states
we considered are as follows:

(1) Néel state in the z direction (in spin space) |↑↓↑↓ . . .〉:

�|↑↓↑↓...〉(λ) = iη

2

sinh(2η)

cosh(2η) + 1 − 2 cos(ηλ)
. (2.46)

(2) Néel state in the x direction |→←→← . . .〉:

�|→←→←...〉 = iη

2

sinh(η)

2 cosh(η) − 1 − cos(ηλ)
. (2.47)

(3) Ferromagnet along the x direction |→→ . . .〉:

�|→→...〉 = iη

2

sinh(η)

2 cosh(η) + 1 + cos(ηλ)
. (2.48)

(4) Majumdar-Ghosh dimer product state |MG〉 = ∏L/2
j=1

|↑〉2j−1⊗|↓〉2j −|↓〉2j−1⊗|↑〉2j

2 :

�|MG〉 = iη sinh(η)

2

4 cos(ηλ)[sinh2(η) − cosh(η)] + cosh(η) + 2 cosh(2η) + 3 cosh(3η) − 2

4[cosh(2η) − cos(ηλ)]2
. (2.49)

We note that |MG〉 is one of two ground states of the Hamiltonian

HMG = J1

∑
j

Sj · Sj+1 + J1

2

∑
j

Sj · Sj+2. (2.50)

(5) Ferromagnetic domain state |FD〉 = |. . . ↓ . . . ↓︸ ︷︷ ︸
s

↑ . . . ↑︸ ︷︷ ︸
s

↓ . . . ↓︸ ︷︷ ︸
s

↑ . . . ↑︸ ︷︷ ︸
s

. . .〉:

�|FD〉 = iη

2s
coth(η) tanh

[
s

2
ln

(
cosh(2η) − cos(ηλ)

1 − cos(ηλ)

)]
. (2.51)

(6) Tilted ferromagnet |θ ; ↗↗ . . .〉 = eiθ
∑

j S
y

j |↑↑ . . .〉:

�|θ ;↗↗...〉 = iη sinh η sin2 θ

[cos(2θ ) + 3] cos(ηλ) + 4 cosh η + 2 sin2 θ
. (2.52)

This state has a magnetization per site in the z direction of cos θ
2 .

(7) Tilted Néel state |θ ; ↗↙ . . .〉 = eiθ
∑

j S
y

j |↑↓ . . .〉:

�|θ ;↗↙...〉 = iη sinh η{2 sin2 θ cos(ηλ) + cosh η[cos(2θ ) + 3]}
D(θ )

,

D(θ ) = −2 sin2 θ cos(2ηλ) + 2 cos(ηλ)

[
−2 cosh2

(η

2

)
cos(2θ ) + cosh η − 3

]
+ 2 cos(2θ ) cosh η − 2 cosh η + 4 cosh(2η) + cos(2θ ) + 3. (2.53)

125101-7



FAGOTTI, COLLURA, ESSLER, AND CALABRESE PHYSICAL REVIEW B 89, 125101 (2014)

TABLE I. Symmetries on the various initial states.

State U(1) mz Translations Site inversion Bond inversion

1. |↑↓ . . .〉 Yes 0 By 2 sites Yes No
2. | →← . . .〉 No 0 By 2 sites Yes No
3. | →→ . . .〉 No 0 Yes Yes Yes
4. |MG〉 Yes 0 By 2 sites No Yes
5. |FD〉 Yes 0 No No No
6. |θ ; ↗↗ . . .〉 No 1

2 cos θ Yes Yes Yes
7. |θ ; ↗↙ . . .〉 No 0 By 2 sites Yes No

These initial states break some of the continuous or discrete
symmetries of the post-quench Hamiltonian discussed in
Sec. I A. Table I summarizes their symmetry properties.

D. Numerical solution of the system
of nonlinear integral equations

The system (2.3) of nonlinear integral equations generally
needs to be solved by iteration. A convenient limit in which
this can be done “by hand” is the case of a “small” quench for
mz = 0 considered in Ref. [8]. This corresponds to the regime
|b|,|b̄| � 1 because in the relevant domain |Im[x]| < 1, the
generating function �(x) is close to the analogous quantity
evaluated in the ground state of the post-quench Hamiltonian
(and concomitantly the expectation values of the integrals of
motion deviate only slightly from their ground-state values).
At the lowest order in the iteration, one finds [8]

b(x) ≈ b̄(x) ≈ ρ(1)(x)

=
i
η
��0

(− 2x
η

+ i
) + i

η
��0

(− 2x
η

− i
) + sinh(η)

cosh(η)−cos(2x)

d(x)
,

(2.54)

where d(x) has been defined above in (2.4). For more general
quenches, the system (2.3) needs to be solved numerically,
and we now provide some details about how this can be done.
We find it convenient to work in the Fourier space, where
(2.3) turns into a nonlinear system of equations for the Fourier
coefficients of b and b̄. Since the latter are generally smooth
functions, a good approximation can be achieved by retaining
only a finite number ∼nmax of Fourier coefficients (the error
being exponentially small in nmax). Although formally there
is no problem in writing the equations in different ways, in
practice the objects defined in each step of the process must
have Fourier coefficients that can be safely neglected at high
frequency. This is an important point to which we return later.

We start by introducing some useful notations. We denote
by [f ] the Toeplitz matrix with elements

[f ]�n =
∫ π

2

− π
2

dx

π
e−2i(n−�)xf (x). (2.55)

By extension, [f ]0 is the vector of Fourier coefficients

[f ]0
n =

∫ π
2

− π
2

dx

π
e−2inxf (x). (2.56)

In these notations, we have, e.g.,

[d]�n = 1

cosh[η(n − �)]
. (2.57)

We further introduce the following matrices constructed from
the Fourier coefficients of k(x), k±(x), and d(x) [cf. (2.4)],
respectively,

K�
n = δ�

n

e2η|n| + 1
, (K±)�n = δ�

ne
∓2ηn

e2η|n| + 1
,

(2.58)

D�
n = δ�

n

cosh(ηn)
, (IH)n� = δ−�

n .

We note that in these expressions round brackets have no
special meaning. We further define two matrices G± with
elements

(G±)αn = χ∓1
∫∫

[−π/2,π/2]2

dx dμ

π2
e−2inx−2iαμg±

μ (x), (2.59)

where χ is a real, positive parameter that equals 1 if mz = 0.
Finally, we parametrize the auxiliary functions b(x) and b̄(x)
as follows [8]:

1

1 + b
−1(x)

= χρ(x)eζ (x)/2,

(2.60)
1

1 + b̄
−1(x)

= χ−1ρ(x)e−ζ (x)/2.

The system (2.3) of nonlinear integral equations can then be
recast in the compact form

χ = 1

2mz − 1

∑
α

(G+)α0 ≡ − 2mz + 1∑
α(G−)α0

, (2.61)

[ζ ]0
n = 2e−η|n| sinh(ηn)[ln(1 − χ sgn(n)esgn(n)ζ/2ρ)]0

n, (2.62)

[ρ]0 = 2[1/d] IH�−(�− + �+)−1�+IH [d] [ρ(1)]0, (2.63)

G± = −[e∓ζ/2](�T
±)−1IHD, (2.64)

where �± are the transposes of the matrices

�T
± = (χ±1[e±ζ/2] − K[ρ])(χ±1[e±ζ/2] − (K + K∓)[ρ])−1

× (χ∓1[e∓ζ/2] − (K + K±)[ρ]) + K±[ρ]. (2.65)

An approximate solution of (2.61) can now be obtained as
follows:
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(1) The system (2.61) is finitized by constraining the
indices of the infinite-dimensional matrices and vectors to be
contained in the set n ∈ [−nmax,nmax].

(2) The resulting nonlinear equations are solved by it-
eration. In each step, only a single function is updated, in
particular, the second (third) equation of (2.61) is used to
iterate ζ (ρ). Each equation is solved separately by iteration in
order to reach an intermediate accuracy goal, which is updated
only after all unknowns have met the same criterion.

Some comments are in order. In all quenches we considered,
the density ρ(1)(x) given in (2.54) is a smooth function.
Hence, the elements of the vector [ρ(1)]0 “decay exponentially
from the center,” i.e., only the elements [ρ(1)]0

n with n ≈ 0
are significantly different from zero. The same holds true
for the vector IH[d][ρ(1)]0. In order to be able to neglect
the high-frequency contribution and approximate [ρ(1)]0 by
a vector with a finite number of elements, the matrix
�− (�− + �+)−1 �+ (cf. the third equation) should not have
large elements that connect high-frequency components with
low-frequency ones. This is indeed what we observe in all cases
considered. This justifies our finitization procedure for all
quantities appearing in (2.63). Similarly, we find that finitizing
the matrix G± in (2.64) induces only exponentially small (in
nmax) errors in (2.61). Equation (2.62) is more problematic.
Although in all cases we considered we succeeded in obtaining
solutions such that the function ζ (x) is smooth, in the
course of the computation the function inside the logarithm
can develop zeros, with catastrophic consequences. This can
be controlled using under-relaxation and/or preconditioning
the equation (the appropriate transformations are quench
dependent).

In order to obtain results for short-distance correlation
functions, we require expressions for the auxiliary functions
g′±

μ (x) defined in (2.7). In Fourier space, Eqs. (2.7) take the
form

G′
± = [e∓ζ/2][χ∓1[e∓ζ/2]

−K[ρ] − K∓[ρ](χ [e±ζ/2] − K[ρ])−1K±[ρ]]−1

× [M± − K∓[ρ](χ±1[e±ζ/2] − K[ρ])−1M∓], (2.66)

where

(G′
±)αn = χ∓1

∫ π
2

− π
2

dx

π

∫ π
2

− π
2

dμ

π
e−2inx−2iαμg′±

μ (x),

(M±)αn = η[sgn(n)eη|n| ∓ e±ηn]

2 cosh2(ηn)
δ−α
n (2.67)

+ ηχ∓1 sgn(n)e−η|n|

2 cosh(ηn)
(G±)αn.

1. Simplifications for parity-symmetric states

Parity-symmetric initial states have the property

�(−x) = �(x), (2.68)

which leads to a number of simplifications. From (2.54), it
follows that

[ρ(1)]0
n = (

[ρ(1)]0
n

)∗ = [ρ(1)]0
−n, (2.69)

which in turn permits a solution of (2.61) in terms of real
[ρ]n, [ζ ]n, and χ . If the magnetization mz vanishes, additional
simplifications occur:

(i) The parameter χ is equal to 1.
(ii) [ρ]0

n = [ρ]0
−n = ([ρ]0

n)∗, i.e., IH[f (ρ)]IH = [f (ρ)].
(iii) [ζ ]0

n = −[ζ ]0
−n = ([ζ ]0

n)∗, i.e., IH[f (ζ )]IH = [f (−ζ )].
(iv) �− = IH�+IH, M− = −IHM+IH, G− = IHG+IH,

and G′
− = −IHG′

+IH.
In particular, we no longer require the equation for χ and

we can write the second equation of (2.61) as follows:

[ζ ]0
n = 2 tanh(ηn)

1 + κ tanh(η|n|)
[

ln
(
e(κ−1) ζ

2 − ρe
κζ

2
)]0

|n|, (2.70)

where κ is an auxiliary parameter aimed at stabilizing the
iterative process and/or enhancing the convergence rate (notice
that the solution does not depend on κ).

2. Results for some initial states

In this section, we present results of the numerical solution
of our system (2.3) of nonlinear integral equations for several
quenches with mz = 0. We focus on the auxiliary functions
ρ(x) and ζ (x) defined in (2.60). Let us define

E(x) = sinh η

2

∑
j=0

λj+1

(
sinh η

2

d

dx

)j

d(x)

≡ [k ∗ ln(1 + b)](x) − [k− ∗ ln(1 + b̄)](x) − ln b(x),

(2.71)

where the second equality is a by-product of the integral
equations [8]. We note that if the Lagrange multipliers fulfill
certain conditions (cf. Ref. [39])which in particular should
lead to E(x) being positive, E(x) can be interpreted as a dressed
energy associated with the “Hamiltonian” characterizing the
GGE density matrix (1.2):

HGGE =
∑
�=1

λ�H
(�). (2.72)

Having possible interpretations of this kind in mind, we quote
the analogous result for the Gibbs ensemble at temperature T

as a point of reference [36]:

EGibbs(x) = 1

T

sinh η

2
d(x). (2.73)

By construction, this is proportional to the usual zero-
temperature dressed energy of the Heisenberg XXZ chain [40].
Following, we compare ρ(x) and ζ (x) to the corresponding
functions that solve the equilibrium finite-temperature
nonlinear integral equations [37]. The latter can be obtained
by replacing the fourth equation of (2.3) by (2.71), with
EGibbs(x) of Eq. (2.73) taking the place of E(x); the temperature
T is fixed via the requirement that the average energy in the
Gibbs ensemble associated with the post-quench Hamiltonian
is equal to the energy in the initial state after the quench

〈�0|H (1)|�0〉 = Tr[e−H (1)/T H (1)]

Tr[e−H (1)/T ]
. (2.74)

Figures 2–7 show results obtained from a numerical solution
of the system (2.3).
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FIG. 2. (Color online) Interaction quench from �0 = ∞. The auxiliary function ρ(x) vanishes at x = 0, π

2 . The dashed lines show ρ (left)
and ζ (right) at a temperature T corresponding to the expectation value of energy in the initial state. The shape of the auxiliary functions does
not change significantly if �0 is taken to be large but finite.

In all quenches we considered, E(x) is very different from
EGibbs(x). This agrees with general expectations based on
Ref. [39]. A peculiar feature arising in many quenches (see,
e.g., Figs. 2–6) is the presence of zeros in ρ(x), which are
associated with logarithmic singularities of E(x). Ultimately,
such singularities are a consequence of the long-range nature of
HGGE for these quenches, i.e., the magnitudes of the Lagrange
multipliers λ� decay very slowly with �. Very similar singular
behavior has previously been reported in HGGE after quenches
in models that have free fermionic spectra. In these cases, the
singular behavior was traced back to the fact that the initial
state is an eigenstate of (generally nonlocal) conservation laws
[12,41]. Such a relation holds true for the XXZ chain as well:
the appropriate (nonlocal) charges are given by

Q(k) = 1

sinh η

∑
j=0

1

j !

[(−2k − iη

sinh η

)j

+
(−2k + iη

sinh η

)j]

× H (j+1)

L
+ sinh η

cosh η − cos(2k)

≡ i

ηL

[
τ ′
(

−2k

η

)
τ−1

(
−2k

η

)
+ τ ′

(
2i − 2k

η

)
τ−1

×
(

2i − 2k

η

)]
+ sinh η

cosh η − cos(2k)
. (2.75)

Here, τ is the transfer matrix of the XXZ model

τ (i + λ) = TrT

⎡⎣∏
j

L(λ; σj )

⎤⎦ , (2.76)

where the L operator L(λ; σj ) is defined in (2.10) and T
denotes the auxiliary space (on which the τα act). The additive
constant and the normalization have been chosen in such a way
that

〈�0|Q(k)|�0〉 = ρ(1)(k)d(k), (2.77)

where ρ(1) is defined in (2.54). Therefore, the “small-quench
limit” of Ref. [8] corresponds to the regime 〈�0|Q(k)|�0〉� 1.

FIG. 3. (Color online) Quench from the tilted Néel state |π/6, ↗↙ . . .〉. The auxiliary function ρ(x) vanishes at x = 0, π

2 .
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FIG. 4. (Color online) Quench from the Néel state in the x direction |→←→← . . .〉. The auxiliary function ρ(x) vanishes at x = 0.

Using the identity

1

2

∑
j=0

1

j !

[(−2y − iη

sinh η

)j

+
(−2y + iη

sinh η

)j]

×
(

sinh η

2

d

dx

)j

d(x) = πδ(x − y), x,y ∈
(

−π

2
,
π

2

)
(2.78)

one then finds

HGGE

L
∼

∫ π
2

− π
2

dk

π
E(k)

(
Q(k) − sinh η

cosh η − cos(2k)

)
. (2.79)

This is to be interpreted as the density matrices corresponding
to the operators on the two sides of the equation yielding
identical local properties. If E(k) diverges at a particular value
k0, the Lagrange multiplier of the conserved charge Q(k0) is
infinite, which implies that only a subspace of the Hilbert space
contributes to the generalized Gibbs ensemble.

In the transverse-field Ising chain, the long-time behavior
of transverse correlations [11] after a quench of the transverse
field is determined precisely by the degrees of freedom that

are almost “frozen” by the above mechanism. In particular,
transverse correlations decay at late times such as t−3/2 rather
than the naive expectation t−1/2 because the Bogoliubov modes
with momenta 0 and π are removed by the aforementioned
projection mechanism: the initial state is an eigenstate of
the conserved charges Q0 = α

†
0α0 and Qπ = α†

παπ . These
observations suggest the possibility that in the XXZ case zeros
in ρ(x) might affect the late-time behavior of observables in a
similar fashion.

III. NUMERICAL RESULTS

In this section, we present extensive numerical studies of
the quench dynamics of the XXZ chain with � > 1 by means
of the time-dependent density matrix renormalization group
(tDRMG) [42] and infinite time-evolving block-decimation
(iTEBD) [43] algorithms. The latter has the advantage of
working directly in infinite systems avoiding both finite-size
and revival effects. However, since as well known, the main
limitation to the working of both algorithms is the fast growth
of the entanglement entropy after a global quantum quench,
for any practical purpose the two techniques are equivalent.
The tDMRG computations are performed on finite chains of

FIG. 5. (Color online) Quench from the ferromagnetic state in the x direction |→→ . . .〉. The auxiliary function ρ(x) vanishes at x = π

2 .
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FIG. 6. (Color online) Quench from the ground state of the Majumdar-Ghosh model. The auxiliary function ρ(x) vanishes at x = 0.

L spins (L is taken to be even) with open boundary conditions

H = J

L−1∑
j=1

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

)
. (3.1)

In the following, we will set J = 1. The late-time behavior of
short-range correlators will then be compared with the GGE
predictions obtained from the numerical solution of the system
of nonlinear integral equations reported in Sec. II. Depending
on the initial state, the relevant generating function (2.2) is
computed either numerically or analytically.

A. Details of the tDMRG analysis

When necessary, the algorithm initially performs a static
subroutine which selects the initial state |�0〉 as the ground
state of a given Hamiltonian. In the decimation process of
this static subroutine, we keep a number of states such that
the energy precision is at least of the order of 10−12. Sub-
sequently, we perform the evolution using the time-adapting
block-decimation procedure implemented both in tDMRG and
iTEBD codes. In the tDMRG code, we always use open

boundary conditions. We use the second-order (and in some
cases the fourth-order) Suzuki-Trotter decomposition of the
evolution operator with time step dt which varies in the range
[5 × 10−3,5 × 10−4]. We checked the stability of the results
with the change of dt in order to be sure that no systematic
errors are introduced by time discretization. In the tDMRG
code, for each time step, the local evolution operator is applied
sequentially on each bond starting form the left boundary of
the chain and going to the right border and coming back.
We adapt in time the number of states used to describe the
reduced Hilbert space retaining at each local step all those
eigenvectors of the reduced density matrix corresponding
to eigenvalues larger than λmin ∈ [10−18,10−20], up to a
maximum value χMAX ∈ [300,1000] (clearly the effective
maximal value used by the algorithm strongly depends on
the simulation parameters). For the iTEBD, thanks to the
invariance under two-site shift, we need only to apply the local
evolution operator twice (on the odd and on the even bounds,
see Ref. [43] for details). In this algorithm, the number of states
is kept fixed to χMAX from the beginning of the simulation.

In order to check the GGE predictions, we focus our
attention on the following two-point spin-spin correlation

FIG. 7. (Color online) Quench from the s = 2 ferromagnetic domain state |. . . ↑↑↓↓↑↑↓↓ . . .〉. The effective temperature of the Gibbs
ensemble is infinite, as one can immediately infer from 〈H (1)〉 = 2−LTr[H (1)].
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functions:

Sα
j,j+� = 〈�0(t)|σα

j σ α
j+�|�0(t)〉, � = 1,2,3, α = x,y,z.

(3.2)

Here, σα
j ≡ 2Sα

j are Pauli matrices. The iTEBD algorithm
operates directly in the thermodynamic limit and hence the
choice of j in Sα

j,j+� (i.e., the location of the first spin in the
two-point function we are computing) is irrelevant in the sense
that any breaking of translational invariance is entirely induced
by the initial state and not due to finite-size effects. This is
not the case for tDMRG simulations, which are performed in
finite systems (of total even length L). Thus, in order to avoid
spurious boundary effects for the largest possible time, we
measure the correlators in the middle of the chain, i.e.,

Fα1 ≡ Sα
L
2 , L

2 +1
, Fα2 ≡ Sα

L
2 , L

2 +2
,

(3.3)
Fα3 ≡ Sα

L
2 −1, L

2 +2
, α = x,y,z.

A list with explicit results for the expected stationary values of
(3.3) is presented in Appendix B. Even for correlators in the
middle of the chain, boundary effects will start to be felt after
a certain time. Such unwanted effects are easily detected, e.g.,
by checking when the entanglement entropy of the left half
stops growing linearly in time. In all the plots reported in the
following, only data unaffected by such boundary effects are
presented.

After having under control all other sources of system-
atic errors (i.e., discretization of time and finite sizes), the
only limitation of the numerical algorithms is given by
the finite number of states kept in the decimation. Indeed,
the computational complexity of the time evolution of a quan-
tum system on a classical computer using any algorithm based
on matrix-product states (including tDMRG and iTEBD) is
essentially set by the growth of the bipartite entanglement.
In general for a global quantum quench, the entanglement
entropy is expected to grow linearly with time [44]. In Fig. 8,

we report the growth of the half-system entanglement entropy
with time for some representative initial states and evolving
with the XXZ Hamiltonian for � = 2: in all cases, we have an
asymptotic linear increase, but the slope varies considerably
from quench to quench. Consequently, as the entanglement
increases, we have to increase exponentially with time the
dimension χ of the reduced Hilbert space in order to optimally
control the truncation error. In spite of the adaptive choice of
χ , the truncation procedure remains the main source of error
of the algorithm.

For most of the quenches studied in the following we have
used both algorithms and checked that the data are equivalent.
However, for the largest times reported, the simulations are
numerically demanding and we have chosen one of the two
algorithms to avoid costing duplications. In the main text, we
will discuss the numerical data without specifying every time
the used algorithm which will be reported only in the caption
of the figures.

B. Tilted Néel state

We first consider the evolution from a Néel state pointing
in an arbitrary direction in the xz plane, i.e., from the initial
state

|θ ; ↗↙ . . .〉 = eiθ
∑

j S
y

j |↑↓ . . .〉. (3.4)

The Néel state in the z direction (θ = 0◦) respects the
U(1) symmetry of the Hamiltonian and leads to isotropic
correlations in the transverse directions, i.e., Sx

j,j+k = S
y

j,j+k .
Results for quenches from this state to H (1)(� = 2) and
H (1)(� = 4) are presented in Figs. 9 and 10, respectively.

We observe that all correlation functions appear to relax
to time-independent values, which are compatible with the
predictions of the GGE. The quench originating from the
Néel state has been thoroughly analyzed previously, and
our results are in perfect agreement with those reported
in Ref. [45]. In particular, the oscillatory behavior during

0 2 4 6 8
0

1

2

3

4

  = 3
MG
UP, 

 = 2

S

t

0

0 2 4 6 8
0

1

2

3

4
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MG
UP, 

 = 4

S

t

0

FIG. 8. (Color online) Time evolution of the half-system entanglement entropy for quenches starting from several initial states considered
in the text to XXZ chains with � = 2 (left) and 4 (right), respectively.
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FIG. 9. (Color online) tDMRG results on a chain of L = 64 sites for a quench from a Néel state along the z direction (i.e., with θ = 0◦)
to � = 2. Left panel: transverse spin correlations [Sx

j,j+k = S
y

j,j+k as the initial state respects the U(1) spin-rotational symmetry of H (1)(�)].
Right panel: longitudinal correlations. The dashed lines indicate the GGE predictions, which are seen to be approached fairly quickly. The
dotted lines are the thermal expectation values (at the finite temperature given by the energy of the initial state) which are well separated from
the GGE.

relaxation reflects the presence of multiple frequencies, with
the principal frequency proportional to the anisotropy [45] �.
Hence, the larger the value of �, the easier it is to observe
the relaxation because the oscillations around the asymptotic
value are faster. In the figures, we also report the Gibbs values
at temperatures fixed by the initial-state energies. It is evident
that, in some cases, these values are well separated from the
GGE ones and those are the ideal candidates to distinguish the
two ensembles in real experiments.

Next, we consider quenches from Néel states where the
order parameter points along an arbitrary direction, a situation
which to the best of our knowledge has not been previously
considered in the literature. This case presents a very interest-
ing difference compared to the Néel state in the z direction:

for any nonzero tilt θ the initial state breaks the rotational
symmetry in the xy plane of the XXZ Hamiltonian. This
means that transverse correlations in the x and y directions
are no longer required to be equal by symmetry, and at
short times they are indeed generically quite different. On
the other hand, in the GGE the U(1) symmetry is restored. It
is therefore important to understand on what time scales the
symmetry restoration occurs. In Figs. 11–14, we report results
for quenches from tilted Néel states at angles θ = 10◦, 20◦,
and 30◦, respectively. In all cases, the transverse correlations
are seen to relax in an oscillatory manner to stationary values
compatible with restoration of the spin-rotational symmetry
around the z axis. As in the θ = 0 case, the oscillations
are irregular (indeed even more irregular than before), which

0 2 4 6 8 10
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0

0.5

1
|Neel,θ    = 4θ

t
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FIG. 10. (Color online) Same as Fig. 9, but with � = 4.
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FIG. 11. (Color online) Quench from a Néel state with θ = 10◦ to � = 2,4,8 (from left to right). Top row: transverse correlations
〈σ x

j σ x
j+k〉t (solid lines) and 〈σ y

j σ
y

j+k〉t (symbols) for distances k = 1,2,3. The rotational symmetry in the xy plane is restored at t ≈ 2. Bottom
row: longitudinal correlations for distances k = 1,2,3. All correlators approach the GGE predictions (dashed lines) at late times.

indicates the presence of multiple frequencies. The principal
frequency again appears to be proportional to the anisotropy
�. As a result, it is easier to observe the relaxation for large �

because the oscillations around the asymptotic value are faster.
In fact, for � = 2, the correlations do not look particularly
stationary even at the latest times accessible to us because
they oscillate around their asymptotic values with a very large
period.

Another interesting issue is the influence of the strength
of the U(1) symmetry breaking in the initial state: clearly

increasing θ leads to a stronger breaking of the symmetry,
and the naive expectation would be that this results in a slower
relaxation to a stationary regime. Interestingly, this expectation
is not entirely borne out by the numerical results: a comparison
of Figs. 11–14 indicates that the symmetry is restored (in the
sense that Sx

j,j+k becomes approximately equal to S
y

j,j+k) on a
time scale that appears to not be strongly θ dependent. From a
computational point of view, decreasing the values of θ leads
to an increase in the required computational resources because
the entanglement entropy grows more quickly (cf. Fig. 8).
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FIG. 12. (Color online) Same as Fig. 11, but with initial state with θ = 20◦.
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FIG. 13. (Color online) Same as Fig. 11, but with initial state with θ = 20◦.

This makes the simulations increasingly difficult for initial
states aligned closer to the x̂ axis.

C. Majumdar-Ghosh dimer product state

We now turn to time evolution starting in the Majumdar-
Ghosh ground state

|MG〉 =
L/2∏
j=1

|↑〉2j−1 ⊗ |↓〉2j − |↓〉2j−1 ⊗ |↑〉2j

2
. (3.5)

This quench exhibits very interesting physical features,
but is also quite demanding numerically (for � larger

than �1.4) because of the fast growth of the entangle-
ment entropy (cf. Fig. 8, where the entanglement growth
is comparable with the Néel state with θ = 30◦). The
state (3.5) breaks translational invariance, while the GGE
is translationally invariant. This implies that translational
symmetry should get restored. In order to analyze this
symmetry restoration, we compute correlators with even and
odd parities using tDRMG, i.e., 〈MG(t)|σα

L/2σ
α
L/2+k|MG(t)〉

and 〈MG(t)|σα
L/2−1σ

α
L/2−1+k|MG(t)〉 for α = x,z and k = 1,3.

We note that it is sufficient to consider transverse correlations
in the x direction, as the initial state is U(1) invariant.
Furthermore, as |MG〉 is invariant under translations by two
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FIG. 14. (Color online) The same as Fig. 11, but with initial state with θ = 30◦.
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FIG. 15. (Color online) Quench from the Majumdar-Ghosh state to different � � 0. We focus on correlators at distances 1 and 3, as
nearest-neighbor correlations are insensitive to translational symmetry breaking and the data approach the GGE values quite rapidly. Solid
(dotted) lines correspond to j = L/2 and L/2 − 1, respectively. For small values of �, relaxation to stationary values is observed. For small
values of � > 1, the observed relaxation is compatible with the predictions of the GGE (dashed lines). For larger values of �, relaxation does
not occur on the accessible time scales.

sites, next-nearest-neighbor correlators are insensitive to the
breaking of translational symmetry.

In Figs 15, 16, and 17, we show the time evolution of
transverse and longitudinal correlations at distances 1 and
3 for quenches to the Heisenberg chain with several values
of �. We include results for � � 1 in order to elucidate
the general trend of the � dependence. The � = 0 case
is exactly solvable by free-fermion methods [46], and our
numerical results agree perfectly with the analytical results in
this case. At late times, all correlations relax in an oscillatory
manner to stationary values given by the appropriate GGE.
The qualitative behavior of correlation functions is essentially
unchanged for anisotropies smaller than � = 1, but GGE
predictions for the stationary values are not yet available.
Increasing � further, the time evolution is seen to become less
regular, involving several oscillation frequencies. The curves
for parity-even and -odd correlators cease to be symmetric
around the stationary value and the relaxation is observed
to slow down. The results for � = 1.2,1.4,1.6 are visibly
compatible with relaxation to the GGE predictions (dashed
lines). For � = 2,4,8, no relaxation is observed on the
accessible time scales. This strongly suggests a relaxation time

that grows with increasing �. In fact, one can show that in the
limit � → ∞, the relaxation time diverges [46].

D. Tilted ferromagnetic state

In this case, the initial state is

|θ ; ↗↗ . . .〉 = eiθ
∑

j S
y

j |↑↑ . . .〉. (3.6)

The tilted ferromagnetic states are similar to the tilted
Néel states in that they generally break the U(1) symmetry
of rotations around the z axis of the XXZ Hamiltonian.
However, the quench is more complicated than in the Néel
case for the following reason. The ferromagnetic state along
the z axis (θ = 0) does not break the U(1) symmetry, but in
fact is an eigenstate of the XXZ Hamiltonian. As a result,
spin-spin correlation functions are time independent in this
case. When we approach θ = 0◦ from above, the breaking
of symmetry becomes unimportant, while at the same time it
becomes increasingly difficult to observe relaxational behavior
in the accessible time window. Furthermore, a ferromagnetic
state in an arbitrary direction is an exact eigenstate of the
isotropic (� = 1) Hamiltonian. Concomitantly, the relaxation

FIG. 16. (Color online) Same as Fig. 15, with � = 1.2,1.4,1.6.
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FIG. 17. (Color online) Same as Fig. 15, with � = 2,4,8. Transverse and longitudinal correlations are shown separately for the sake of
clarity.

time diverges for quenches from general tilted ferromagnetic
states when � is close to 1. As a result of the aforementioned
complications, the relaxation times are always extraordinarily
large and even though the growth of the entanglement entropy
is considerably slower than for the other initial states we have
considered (cf. Fig. 8), which allows us to explore larger time
windows, relaxation to the GGE is not observed during the
accessible times.

In Figs. 18 and 19, we show iTEBD data for quenches from
tilted ferromagnetic states with θ = 90◦,60◦,30◦ to an XXZ
chain with � = 4. The various correlators are seen to exhibit
irregular and nonmonotonic oscillations. The symmetry in the
xy plane is clearly not restored. The observed oscillatory
behavior in the nearest-neighbor correlations occurs around
values that are broadly compatible with the GGE prediction.
Conversely, correlators at distances 2 and 3 appear to relax, but
to values that are quite distant from the GGE predictions. Our
interpretation of the data is that in all cases the time scale for re-
laxation is too large to be accessible by numerical simulations.

In order to lend credence to this interpretation, we have
analyzed the single-spin expectation values 〈σx,y

j 〉 for a quench
from a ferromagnetic state with θ = 30◦ to � = 8. The results
are shown in Fig. 20. The data are compatible with exponential
relaxation to the expected GGE value zero, but with a very
large relaxation time. In order to see whether there is any
evidence for restoration of spin-rotational symmetry around
the z axis, it is useful to plot the differences between transverse
correlators |〈σx

j σ x
j+k〉 − 〈σy

j σ
y

j+k〉| for distances k = 1,2,3 as

functions of time. The data are compatible with a very slow
exponential decay to zero, indicating symmetry restoration at
very late times. A naive fit of the maxima for the difference
at k = 1 gives a time scale τ ∼ 130, which implies that in
order to observe the true asymptotic value with a precision
of 0.01, we should roughly run the simulation up to t ∼ 300,
which is clearly beyond our capability. For smaller values
of �, the relaxation times increase because we are getting
closer to the isotropic point � = 1, where relaxation is absent.
Consequently, an analysis as in Fig. 20 becomes even more
difficult, but we are confident that the same qualitative scenario
is valid. The upshot is as follows: We believe that quenches
starting from tilted ferromagnetic states are characterized by
very large relaxation times. This prevents us from checking
the GGE predictions.

E. Interaction quenches

The final class of initial states we have considered are
ground states of the Heisenberg XXZ chain, i.e., interaction
quenches, where we prepare the system in the ground state
of the XXZ Hamiltonian at parameter �0, and at time t = 0
instantaneously quench it from �0 to �. We have carried out
tDMRG computations for a variety of values of �0 and �, and
present some representative results in Figs. 21 and 22. The
chain length in these simulations is L = 64. The initial state is
selected by running a static DMRG retaining χ0 = 40 states.
After the quench, we perform the usual time-dependent routine
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FIG. 18. (Color online) iTEBD results for transverse correlations after a quench from the ferromagnetic state with θ = 90◦,60◦,30◦ (from
left to right column) to � = 4. Solid lines (symbols) correspond to Sx

j,j+k (Sy

j,j+k).

retaining at most χ = 300 states, which is enough to show
equilibration because the entanglement entropy grows very
slowly (cf. Fig. 8) and so these interaction quenches are less
computationally demanding than the quenches out of the initial
states we have considered above. It is clear from Figs. 21 and
22 that all correlators relax in an oscillatory way to the GGE
predictions (dashed lines) at late times. As in in all previous
cases, the principal oscillation has a frequency proportional to
�, but there are also less important oscillations with higher
frequencies. Therefore, for � = 2 these oscillations slightly
spoil the equilibration around the GGE values on the time
scale reported in the figure.

IV. CONCLUSIONS

We have considered quantum quenches from several initial
states in the spin- 1

2 Heisenberg XXZ chain with Ising-type
anisotropy � > 1. In particular, we considered (a) tilted Néel
states; (b) Majumdar-Ghosh dimer product states; (c) tilted
ferromagnetic states; and (d) the ground state of the XXZ
Hamiltonian for �0 > 1. Following Ref. [8], we constructed
the corresponding generalized Gibbs ensembles by means of
the quantum transfer-matrix approach. We then determined
the short-distance (up to distance three) behavior of spin-spin
correlation functions in these ensembles.
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FIG. 19. (Color online) Same as Fig. 18 for longitudinal correlations.

We then considered the time evolution under the XXZ
Hamiltonian when starting in these initial states by means
of numerical matrix-product techniques (i.e., tDMRG and

iTEBD). In cases (a), (b), and (d) we observed that on the
accessible time scales, short-distance spin-spin correlators
appear to relax towards stationary values, which are in good

FIG. 20. (Color online) iTEBD results for quenches from the ferromagnetic state with θ = 60◦ to � = 8. The rightmost panel is the local
correlator 〈σ x,y

j 〉. The other three panels report the (absolute value of the) difference |〈σx
j σ x

j+k〉 − 〈σ y

j σ
y

j+k〉| with k = 1,2,3 (going from left to
right).
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FIG. 21. (Color online) Interaction quenches in the XXZ Hamiltonian from �0 = 3 to � = 6. All data are from tDMRG simulations for
chains of length L = 64.

agreement with the GGE predictions. For tilted ferromagnetic
initial states, the presence of an extraordinarily long relaxation
time precludes an analysis of the stationary behavior by our
numerical methods. First and foremost, these results constitute
a strong test of the GGE predictions by independent methods.
A second issue we have focused on is that of symmetry
restoration after quantum quenches. Most of the initial states
we considered break symmetries of the XXZ Hamiltonian and
the generalized Gibbs ensemble. In order for the GGE to be
a valid description of the stationary state at late times, such
symmetries must be restored under time evolution. This is
indeed what we have observed in our numerical computations.
To the best of our knowledge, this phenomenon was previously
discussed only for the transverse-field Ising chain [11,12]. Our
results for the XXZ chain show the general nature of this
phenomenon.

They also raise many interesting open questions and
problems:

(i) Our analysis has been restricted to the massive regime
� > 1. It will be very interesting to extend it to the critical
regime |�| < 1. For particular choices of initial states, we

expect the quasilocal integrals of motion constructed recently
[47] to come into play.

(ii) It would be interesting to consider initial states that
break the reflection symmetries of the Hamiltonian and lead
to GGEs, in which the parity-odd conservation plays a role.
In such cases, we expect the reflection symmetry not to be
restored at late times.

(iii) We expect symmetry restoration to be a rather generic
feature for quenches in one-dimensional systems. This is
because spontaneous symmetry breaking may occur only
at zero temperature, and the finite-energy density present
in the system after a quench plays a role very close to a
finite temperature. In higher-dimensional models, it should
be possible for spontaneous symmetry breaking to occur
in GGEs describing stationary states after quenches. Some
similar conclusions on symmetry restoration after a quench
were also drawn in Ref. [48] by means of renormalization
group arguments and field-theoretical methods (in imaginary
time and analytically continuing the final results to real time).

(iv) We have focused on spin-spin correlators on short
distances of at most three sites. These can be generalized to
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FIG. 22. (Color online) Interaction quenches in the XXZ Hamiltonian from �0 = 3 to � = 2. All data are obtained by tDMRG simulations
for chains of length L = 64.

longer distances by combining the results of Ref. [37] for the
thermal case with our formalism of constructing the GGE for
a given quench.

(v) Finally, an analytic description of the full time evolu-
tion after quantum quenches in interacting integrable models
remains a largely open problem. A possible approach to this
problem is to use the overlaps between several initial states
and arbitrary Bethe states recently reported by Pozsgay [34]
to determine the “initial data” in the saddle-point approach of
Ref. [29].

An alternative method is based on the Yudson represen-
tation [35,49], but at present this is restricted to the limit
of zero-energy density (compared to the ground state of the
post-quench Hamiltonian). The generalization of this method
to finite-energy densities remains an open problem.
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APPENDIX A: LARGEST EIGENVALUE
OF THE QUANTUM TRANSFER MATRIX

In this section, we discuss the validity of some assumptions
concerning the leading eigenvalue of our quantum transfer
matrix, which underlie the derivation of the system of
equations (2.3). The latter was obtained in Ref. [8] by taking
the Trotter limit (N → ∞) in the Bethe ansatz equations for
the leading eigenvalue of the quantum transfer matrix, which
read as[

y∏
k=1

sinh
(
wj − u

(y)
k;N

)
sinh(wj + η)

sinh
(
wj − u

(y)
k;N − η

)
sinh(wj )

]N/y

+
N∏

k=1

sinh(wj − wk + η)

sinh(wj − wk − η)
= 0, j = 1, . . . ,N. (A1)

Here, u
(y)
k;N are inhomogeneities introduced into the transfer

matrix in order for it to give rise to the truncated GGE with
only the first y conservation laws retained. The derivation
of the integral equations describing the largest eigenvalue
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of the quantum transfer matrix was based on the following
assumptions:

(a) The thermodynamic limit and the Trotter limit are
interchangeable.

(b) The leading eigenvalue of the quantum transfer matrix
is nondegenerate and is separated from the subleading eigen-
values by a finite gap.

(c) The largest eigenvalue is determined by a solution of
the Bethe ansatz equations with N roots.

In addition, the Trotter limit was taken by assuming that
(d) the solutions of the Bethe ansatz equations for the

largest eigenvalue of the quantum transfer matrix lie in the
region Re[wj ] ∈ (−η/2,η/2).

The system of equations (2.3) was finally obtained by
taking the limit y → ∞. The description of the GGE by
considering a limiting procedure in which the number of
retained conservation laws is taken to infinity in the end of the
calculation was proposed in Ref. [12] and has a sound physical
grounding. In the following, we shall accept assumption (a) as
it is a central tenet of the quantum transfer-matrix approach,
but scrutinize the remaining assumptions for a “truncated
GGE”[12] with three conservation laws. For simplicity, we
restrict our analysis to parity-invariant initial states, for which
the inhomogeneities can be chosen as

u
(3)
j ;N = sinh η

2

(
−λ1

1

N
+ (6λ3)1/3 e2πij/3

N1/3

)
. (A2)

In spite of the unusual dependence on the Trotter number N ,
the finite-N corrections to the Lagrange multipliers scale as
integer powers of 1/N . It is then reasonable to expect that the
role of the small parameter controlling large-N expansions of
physical quantities will be played by N−1 rather than N−1/3.
This expectation is borne out by our direct calculations.

The first step in analyzing the spectrum of the transfer ma-
trix is, as always, to identify the root distribution of the leading
eigenvalue by comparing the eigenvalues obtained by solving
the Bethe ansatz equations (A1) to exact diagonalization data
for small system sizes. This analysis shows that for small
systems, both (b) and (c) hold. The leading eigenvalue of the

transfer matrix is characterized by considering the logarithmic
form of the Bethe ansatz equations, which for the quench in
Fig. 23 and N = 0 mod 6 reads as

N

3

3∑
k=1

ln

(
sk sinh

(
wj − u

(3)
k;N

)
sinh(wj )

sinh
(
wj − u

(3)
k;N − η

)
sinh(wj + η)

)

+N ln

(
− sinh2(wj + η)

sinh2(wj )

)

+
N∑

k=1

ln

(
− sinh(wj − wk + η)

sinh(wj − wk − η)

)
= 2πiIj , (A3)

where s1 = s2 = −1 and s3 = 1. The leading eigenvalue of
the quantum transfer matrix corresponds to the sequence of
half-integer numbers

Ij = 1 − N

2
, . . . ,

N − 1

2
. (A4)

As usual, we are now able to follow the solution (A4)
with increasing N by numerically solving the Bethe ansatz
equations (A3). We considered system sizes of a few hundred
sites and performed the following checks:

(1) For large N , we checked whether Re[wj ] ∈
(−η/2,η/2).

(2) We extrapolated the leading eigenvalue and the Fourier
coefficients of ρ(x)eζ (x)/2 and compared them with the
corresponding quantities obtained from the solution of (2.3)
(readapted to the truncated GGE).

Figure 23 shows the Bethe roots wj that solve (A3) for a
rather large value of N for the quench from the ferromagnetic
state in the x direction |→→ . . .〉 with � = 2. The roots lie
inside the integration contour used to derive the nonlinear
integral equations. In addition, the extrapolation of the leading
eigenvalue of the quantum transfer matrix in the Trotter limit
is in perfect agreement with the value corresponding to the
solution of (2.3). An analogous discussion holds true for the
Fourier coefficients of ρeζ/2, corroborating the assumptions
we made.

FIG. 23. (Color online) Left: Bethe roots associated with the leading eigenvalue of the quantum transfer matrix for the quench from
|→→ . . .〉 with � = 2 and N = 492. The dashed lines are part of the contour of integration used to derive the nonlinear integral equations in
the Trotter limit. The red points are the inhomogeneities of the transfer matrix, which in the Trotter limit approach 0. Right: The discrepancy
δ�(N ) ≡ �0(N ) − �0 between the the largest eigenvalue of the quantum transfer matrix for a finite number of roots and the eigenvalue as
computed solving (2.3).
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APPENDIX B: LIST OF EXPLICIT RESULTS FOR SPIN-SPIN CORRELATORS IN THE GGE

In this Appendix, we list the GGE results for the spin-spin correlation functions (3.3) calculated by means of the quantum
transfer-matrix method as described in the main part of the paper.

30◦ Néel
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

2 −0.2951 0.06493 0.002095 −0.5799 0.3076 −0.1919
4 −0.1789 0.02855 0.009815 −0.7231 0.5150 −0.3864
8 −0.09891 0.01684 0.006760 −0.7565 0.5705 −0.4364

20◦ Néel
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

2 −0.3194 0.06760 −0.004129 −0.6221 0.3553 −0.2438
4 −0.2000 0.02499 0.004992 −0.8122 0.6526 −0.5552
8 −0.1068 0.008910 0.004371 −0.8709 0.7571 −0.6679

10◦ Néel
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

2 −0.3367 0.07108 −0.009721 −0.6482 0.3872 −0.2808
4 −0.2181 0.02592 −0.0005958 −0.8683 0.7483 −0.6845
8 −0.1172 0.007326 0.001055 −0.9443 0.8910 −0.8537

90◦ Ferromagnetic
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

4 0.2391 0.1039 0.04256 0.1304 0.01049 0.08296

60◦ Ferromagnetic
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

4 0.2219 0.1322 0.07781 0.3266 0.2417 0.2735

30◦ Ferromagnetic
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

4 0.1064 0.09290 0.08058 0.7593 0.7452 0.7438

Majumdar-Ghosh
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

1.2 −0.4799 0.1547 −0.07218 −0.5334 0.2172 −0.1185
1.4 −0.4592 0.1377 −0.05954 −0.5583 0.2531 −0.1428
1.6 −0.4399 0.1240 −0.04998 −0.5751 0.2793 −0.1575
2 −0.4081 0.1042 −0.03752 −0.5919 0.3080 −0.1653
4 −0.3317 0.06584 −0.01802 −0.5842 0.3045 −0.1118
8 −0.2905 0.04834 −0.01067 −0.5524 0.2621 −0.05291

XXZ ground state: �0 = 3
� Fx1 Fx2 Fx3 Fz1 Fz2 Fz3

1.25 −0.5102 0.1691 −0.09802 −0.5855 0.2668 −0.1811
1.5 −0.4937 0.1488 −0.09095 −0.6597 0.3725 −0.3010
2 −0.4320 0.1052 −0.06263 −0.7810 0.5784 −0.5439
2.5 −0.3675 0.07300 −0.03914 −0.8560 0.7179 −0.7054
3 −0.3148 0.05235 −0.02452 −0.8981 0.7990 −0.7940
4 −0.2424 0.03031 −0.01032 −0.9344 0.8701 −0.8622
6 −0.1677 0.01440 −0.002004 −0.9472 0.8958 −0.8708
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