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Bernstein modes and giant microwave response of a two-dimensional electron system
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We report on a contribution to the microwave response of a two-dimensional electron system in a magnetic
field which originates from excitation of virtual Bernstein modes. These collective modes emerge as a result of
interaction between the usual magnetoplasmon mode and cyclotron resonance harmonics. The electrons are found
to experience a strongly enhanced radiation field when its frequency falls in a gap of the Bernstein modes spectrum.
This field can give rise to nonlinear effects, one of which, the parametric cyclotron resonance, is discussed. We
argue that this resonance leads to a plasma instability in the ultraclean system. The instability-induced heating is
responsible for the giant photoresistivity spike recently observed in the vicinity of the second cyclotron resonance
harmonic.
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Plasma oscillations are well known; their study began about
a century ago by Langmuir and Tonks. These oscillations
are mostly investigated in two different types of systems:
low-density nondegenerate gas plasma [1] and the degenerate
plasma of solids [2]. In the latter case plasma excitations
are often referred to as plasmons. A characteristic feature
of the solid state systems is that the motion of particles
can be easily restricted in one or more directions and
thus low-dimensional systems can be created. Properties of
plasmons in these systems differ dramatically from those in
the three-dimensional (3D) systems. For instance, the plasmon
dispersion law in a two-dimensional (2D) electron system
(ES) can be written as ω(2)

p (q) =
√

2πnse2q/�m, where ns

is 2D electron concentration, � is the surrounding dielectric
constant, m is electron effective mass, and q is the 2D wave
vector of the plasmon. The spectrum of 2D plasmons is gapless
and strongly depends on q in contrast to the dispersionless
spectrum of the 3D plasmon ω(3)

p (q) =
√

4πn3De2/�m, where
n3D is the electron concentration of 3DES.

Recently an ultrastrong radiation-plasmon coupling in
2DES in magnetic field has been observed [3,4]. Plasma
oscillation in the perpendicular magnetic field B is called the
upper hybrid mode in gas plasma or the magnetoplasmon mode
in solid state plasma. The dispersion relation of the excitation
is as follows:

ωmp =
√

ω2
c + (

ω
(i)
p

)2
, (1)

where ωc = eB/mc is the electron cyclotron frequency, and
ω(i)

p is the plasmon frequency in a 3D (i = 3) or 2D (i = 2)
system in the absence of a magnetic field.

Plasma oscillations determined by Eq. (1) can interact with
cyclotron resonance harmonics due to finite value of qRc,
where Rc = vF /ωc is the electron cyclotron radius, and vF is
the Fermi velocity (in the case of degenerate plasma). This
interaction splits mode (1) into the so-called Bernstein modes.
In 2DES these modes, see Fig. 1(a), are separated from each
other by gaps situated near Nωc, N = 2,3, . . .. Scattering of
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electrons by impurities can smear these gaps [5]. The Bernstein
modes are familiar in the physics of gas plasma [6] and 3D solid
state plasma [2]. They were also studied both theoretically
[7–9] and experimentally [10–14] in 2DESs under different
conditions including the quantum Hall regime [15,16].

Consider the influence of the Bernstein modes on the
screening of incident radiation by magnetoplasmons in 2DES.
If a wave vector of radiation q is nonzero and the radiation
frequency � lies in one of the gaps, see Fig. 1(b), then real
magnetoplasma modes are not excited but electric field of radi-
ation can be strongly modified due to a polarization of 2DES.
The effect can be described in plasmon terms as an excitation
of virtual Bernstein modes with the same frequency and wave
vector. If the frequency � occurs in the Bernstein gap and
goes to the frequency of single-particle excitations Nωc, i.e.,
to the top of the gap, then the longitudinal dielectric function
ε(q,ω) becomes infinite at any q and the total electric field in
the system vanishes. It is the regime of the usual screening; see
the dash-dotted lines in Figs. 1 and 2. But if � and q are close
to the bottom of the gap (ω0,q0), where ε(q0,ω0) = 0, then
the corresponding Fourier component of the radiation field is
amplified due to a factor 1/ε(q,ω), Fig. 2(a). As a result, the
total electric field is enhanced and even becomes oscillating in
space; see dashed and solid lines on Figs. 1 and 2.

The enhanced response due to the Bernstein modes
excitation opens a new area of nonlinear effects studies in
2D magnetoplasma. These phenomena are expected to be
revealed in high-mobility systems in which a smearing of
the Bernstein gaps is small. If the magnetic field is weak
(0.1–1 T) then typical frequencies of the Bernstein modes for
GaAs/AlGaAs 2D structures lie in the microwave (MW) range
and one can expect these effects to appear in experiments on
MW-irradiated 2DESs.

Below we consider one of the nonlinear effects, cyclotron
parametric resonance. The parametric resonance in 2DESs can
be understood using an analogy with a simple pendulum whose
length varies periodically with frequency �. The fundamental
mode of parametric resonance develops at � equal to the
double eigenfrequency of the pendulum. In a 2DES, ωc acts as
the eigenfrequency and the fundamental cyclotron parametric
resonance mode is excited at � ≈ 2ωc.
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FIG. 1. (Color online) The Bernstein modes in spectra of 2D
magnetoplasma excitations. Radiation field with frequency � is
strongly modified when � falls in one of frequency gaps (the lowest
gap near 2ωc is shadowed). (a) Schematic picture of the Bernstein
modes; ω0 and q0 correspond to the bottom of the lowest gap. (b) The
Bernstein modes dispersion near the 2ωc, ω̃mp = ωmp/ωc − 1.9973,
logarithmic scale. Different lines correspond to the different values
of �: �/ωc = 1.9995 (dash-dotted line), �/ωc = 1.997 57 (dashed
line), �/ωc = 1.9975 (solid line). Parameters of 2DES are given in
the text.

We suppose that a plasma instability due to this cyclotron
parametric resonance was observed in recent experiments on
the MW photoresistance of an ultraclean 2DES in a magnetic
field [17–20]. In these papers there was reported a giant
photoresistance spike that appears at MW radiation frequency
� close to 2ωc. The spike is much higher and narrower than
ordinary photoresistance maxima observed in high-mobility
structures in the regime of MW-induced resistance oscillations
[21–23]. It is important that all 2DESs featuring the spike ex-
hibit a temperature-sensitive giant negative magnetoresistance
(GNMR); that is why instability-induced heating of 2DESs
leads to the photoresistivity spike. An attempt to explain
the spike was made in Ref. [24], but its origin still remains
unclear. Note also that parametric resonances under different
conditions were studied theoretically in Refs. [25–28].

This Rapid Communication is organized as follows. We
evaluate first the total electric field of radiation which is
enhanced by the Bernstein modes. Then we develop a hydro-
dynamic theory of cyclotron parametric resonance taking into
account the enhanced radiation field. Finally, we find the con-
ditions of the plasma instability to occur in 2DESs due to ex-
citation of the fundamental mode of the parametric resonance.

We consider a MW-irradiated 2DES positioned in plane
z = 0 and placed into the perpendicular magnetic field B =
(0,0,B). As a rule, the wavelength of incident radiation is
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FIG. 2. (Color online) (a) Inverse dielectric function ε−1(q,�)
describing the enhancement of the radiation electric field due to the
excitation of the virtual Bernstein modes. The radiation frequency
� lies in the Bernstein gap (2ωc > � > ω0). (b) The amplitude of
total electric field in x space. The model function of unscreened field
E�(x) induced by irradiated metal contact is used; see details in the
text. Different lines correspond to different values of �; see the legend
of Fig. 1.

greater than a typical size of the sample. So, the MW electric
field is inhomogeneous on the cyclotron radius scale, for
example, because of the metal contacts to the 2DES, which
significantly modify the MW radiation field [29]. This electric
field is defined as E0(r,t) = E�(r) cos �t , with an amplitude
E�(r) dependent on the coordinates r = (x,y). For simplicity
we consider electric field E�(r) directed along the x axis
and assume that it depends only on the x coordinate. The
MW electric field E�(x) and its Fourier component E�(q) are
screened by the Bernstein modes of 2D magnetoplasma. We
use linear response theory to evaluate the total electric field
Etot(x,t) = Etot(x,�) cos �t and the random phase approxi-
mation to find the dielectric function of 2DES ε(q,ω):

Etot(x,�) =
∫ +∞

−∞

dq

2π
eiqx E�(q)

ε(q,�)
. (2)

In the collisionless limit, at q � kF , �ωc � 2π2kBT �
EF , where �kF , EF are Fermi momentum and energy, T

is temperature, and the function ε(q,ω) is determined as
[7,30,31]

ε(q,ω) = 1 + 2m

π�2
Vee(q)

∞∑
n=1

n2ω2
cJ

2
n (qRc)

n2ω2
c − ω2 − i0sgnω

, (3)

where Vee(q) = 2πe2/�|q| is the Fourier component of the
2D Coulomb potential, and Jn(qRc) is the nth-order Bessel
function of the first kind.

Let us estimate the frequency of the bottom of the gap
ω0, its position q0, and the gap width �0 ≡ 2ωc − ω0. In
the lowest order in the small parameter qRc we obtain
q0Rc = 4.5aB/Rc, where aB = �

2�/me2 is the effective
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Bohr radius. For ωc/2π = 100 GHz and typical parameters
of GaAs quantum wells (� = 7, m = 0.067m0, ns = 3 × 1011

cm−2) we obtain aB ≈ 5.5 nm, B ≈ 0.24 T, Rc ≈ 0.37 μm,
and q0Rc ≈ 0.067 � 1. In the same approximation the gap
width is estimated as

�0

2π
≈ 11.4

2π

a2
B

R2
c

ωc ≈ 0.24

[
ωc/2π

100 GHz

]3

[GHz].

From Eqs. (2) and (3) we are able to find an
asymptotics of the total electric field Etot(x,�):
Etot(x,�) � E�(q0) cos q0x/ε(q0,�), when � → ω0 + 0.
The total radiation field is enhanced strongly due to
ε(q0,�) → 0 at this limit. We have computed Etot(x,�) for
the above-mentioned experimental parameters, Fig. 2(b).

Consider the parametric resonance of electrons induced
by the enhanced radiation field. We describe the motion of
electrons by the Euler equation for the hydrodynamic velocity
V = V (x,t):

∂t V + V
τ

+ (V ,∇)V = e

m
Etot(x,t) + e

mc
[V ,B], (4)

where τ is the phenomenological relaxation time. We assume
than the mobility in the 2DES is high and conditions �τ � 1,
ωcτ � 1 take place. The nonlinear term (V ,∇)V in (4) plays a
central role in our approach. It can be interpreted as a nonlinear,
local, and instantaneous Doppler shift of the frequency of
excitations described by Eq. (4).

Solutions of Eq. (4) for the forced oscillations of velocity
V 0 = (V0x,V0y) can be written in the linear approximation as
V0x(x,t) = Vsx(x) sin �t , V0y(x,t) = Vcy(x) cos �t , where

Vsx(x) = eEtot(x,�)�

m
(
�2 − ω2

c

) ,Vcy(x) = Vsx(x)
ωc

�
. (5)

To find a nonlinear correction δV (x,t) to the velocity we
substitute V (x,t) = V 0(x,t) + δV (x,t) into Eq. (4) and derive
the following exact set of equations for δV = (δVx,δVy):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂t + 1/τ )δVx + V ′
0xδVx + (V0x + δVx)δV ′

x

−ωcδVy = −V0xV
′

0x,

(∂t + 1/τ )δVy + V ′
0yδVx + (V0x + δVx)δV ′

y

+ωcδVx = −V0xV
′

0y,

(6)

where the prime denotes the derivative with respect to x.
The third and the forth terms on the left-hand side of Eqs. (6)

as well as the right-hand side terms in these equations stem
from the nonlinear term (V ,∇)V in Eq. (4). The coefficients
in the third and the fourth terms on the left-hand side of
Eqs. (6) periodically depend on time and cause the parametric
resonance in the 2DES. The variable δVy(x,t) can be excluded
from Eqs. (6) and the obtained equation is linearized with
respect to δVx . We do not present an explicit form of this
cumbersome equation.

Following the standard procedure of the parametric res-
onance theory [32], a solution for the fundamental mode at
� ≈ 2ωc can be written in the two-wave approximation as

δVx = es0t

[
A(x) cos

�t

2
+ B(x) sin

�t

2

]
V −1

sx (x), (7)

where s0 is the amplification coefficient, |s0| � �. The
instability occurs at s0 > 0.

We substitute Eq. (7) into the linearized equation for
δVx(x,t) to obtain the set of the linear equations for the
coefficients A(x), B(x). In this derivation, we neglect the
terms containing high order frequency harmonics as well as
the nonlinear terms with respect to the electric field amplitude.
Neglecting also the difference between � and 2ωc where it is
possible, we arrive to the system of homogeneous equations
for A(x) and B(x). Then we exclude function B(x) and
simultaneously omit the terms small by the parameter s/� �
1, where s = s0 + 1/τ . For simplicity we also consider the
“clean limit,” assuming that the Bernstein gap smearing is
small: s2 � �2, where � ≡ 2ωc − �. With these assumptions
the equation for A(x) takes the form[

−∂2
x −

(
�2

4s2

)(
3
4V ′

sx

)2 − �2

V 2
sx

]
A(x) = 0. (8)

Equation (8) is formally equivalent to the Schrödinger-type
equation with an effective potential energy

U (x) = −
(

�2

4s2

)(
3
4V ′

sx

)2 − �2

V 2
sx

(9)

and zero effective energy. For solutions of Eq. (8) to exist,
the potential energy U (x) should be attractive. The computed
U (x) for different � are presented in Fig. 3. The parameters
of the 2DES were as listed above. We also use the model
function of electric field E�(x) = φ0/

√
l2 + x2, where φ0/l is

the characteristic value of the field inhomogeneity. We assume
φ0 = 1 mV, l = Rc, and �/s = 700. The function E�(x)
describes the edge field of irradiated metal contact [33]. The
total field Etot(x,�) is weakly sensitive to the length l, because
E�(q) ≈ 2φ0 ln(1.12/ql) at ql � 1.

We see in Figs. 2 and 3 that as � approaches the bottom
of the gap ω0, the amplitude of screened field Etot(x,�)
[and Vsx(x)] increases and becomes oscillating. Note that
Etot(x,�) changes its sign, for the first time at x = x0 ∼
π/2q0. Near this point Vsx(x) = V ′

sx(x0)(x − x0) and U (x) is
attractive, if V ′

sx(x0) � 4�/3. Moreover the potential energy
has asymptotic behavior −C/(x − x0)2, where C � 1 in
the limit � → ω0. Such an asymptotics of potential energy
corresponds to the so-called “fall to the center” in quantum

U(x), 103Rc
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FIG. 3. (Color online) The effective potential energy (9) in the
Schrödinger-type Eq. (8). Different lines correspond to different
values of �; see the legends of Figs. 1 and 2. Solid line formally
corresponds to the quantum-mechanical phenomena, named “fall to
the center.” As a result, a plasma instability develops in the system
near x = x0 ∼ π/2q0.
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mechanics [34]. In this case solutions of Eq. (8) always
exist and a local plasma instability develops near x = x0. In
turn, it leads to a heating of the 2DES which destroys the
temperature-sensitive GNMR. Therefore the photoresistivity
peak arises at � close to (2ωc − �0).

We now discuss other conditions of the plasma instability
to appear. The condition τ ∗�0 ∼ 1 defines the minimal
frequency of the MW radiation. Here τ ∗ is an effective
relaxation time that defines the Bernstein gap smearing. For a
2DES with the parameters listed above and μ = eτ/m = 3 ×
107 cm2/(Vs) we are able to estimate this minimal frequency
assuming τ ∗ � τ as

�min

2π
= 1

2π

3

√
8

11.4

(
vF

aB

)2 1

τ ∗ � 160 GHz.

One can also estimate the minimal effective electron mobil-
ity needed for the instability to take place at typical frequency
�/2π = 100 GHz: μ∗

min = eτ ∗/m ≈ 13 × 107 cm2/(V s).
One should point out that the instability due to parametric
resonance develops at the distances from the contact of the
order π/2q0 ∼ 24Rc ≈ 9 μm. Certainly, this distance should
be smaller than the sample’s width.

Discuss also the applicability of the semiclassical approxi-
mation for dielectric function ε(q,ω). Equation (3) is formally
valid if the parameter �ωc/2π2kBT is small, but this parameter
is of the order of unity in the experiments [17–20]. Let us take
into account that the Shubnikov–de Haas oscillations disappear

in a field B ≈ 0.1 T even at low temperatures [17,19]. This
effect is likely due to large-scale electron-density fluctuations
which can be described by introducing an effective temperature
of the system T ∗ ≈ �ωc/kB = 2 K at B = 0.1 T [31]. The
condition 2π2kBT ∗ � �ωc is satisfied and it allows us to use
Eq. (3) to explain experimental data [17–20].

In summary, we consider the mechanism of MW field
enhancement due to excitation of the virtual Bernstein modes
of a 2D magnetoplasma. The mechanism is realized only in
ultraclean 2DESs in which the Bernstein gap is larger than the
gap smearing due to scattering. The enhanced field leads to the
appearance of the cyclotron parametric resonance, which takes
place when � is close to 2ωc. We argue that the excitation of
the fundamental mode of the cyclotron parametric resonance
is the reason for the giant MW response recently discovered
in ultraclean 2DESs near 2ωc. We show that fluctuations of
hydrodynamic velocity obey the Schrödinger-type equation.
An effective potential energy in this equation corresponds to
the “fall to the center” if � is close to the bottom of the
Bernstein gap near 2ωc. As a result the plasma instability
occurs. In turn, it leads to electron heating and the giant
photoresistance spike observed in experiments [17–20].
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Foundation for Basic Research (Project No. 14-02-01166) and
the Foundation “Dynasty.”

[1] T. H. Stix, The Theory of Plasma Waves (McGraw-Hill, New
York, 1962).

[2] P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid
State Physics (Academic Press, New York, 1973).

[3] V. M. Muravev, I. V. Andreev, I. V. Kukushkin, S. Schmult, and
W. Dietsche, Phys. Rev. B 83, 075309 (2011).

[4] G. Scalari, C. Maissen, D. Turcăinková, D. Hagenmüller,
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