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Electronic surface potential from angle-resolved photoemission
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We present a methodology to determine the periodic potential of a surface from angle-resolved photoemission
spectroscopy. By mapping the band structure and measuring the energy gap widths at high symmetry points
of the surface Brillouin zone, the first Fourier components of the potential can be estimated. This method has
been applied in the case of the reconstructed Ag/Cu(111) surface where controlled potassium atom doping has
been used to precisely tune the band gap energies. This potential determination allows one to calculate the local
density of states which is found to be in very good agreement with scanning tunneling spectroscopy data.
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Band structures of solids reflect the potential probed
by the electrons. This electronic potential is usually only
obtained from ab initio calculations in density functional
theory approach and the corresponding band structures may be
compared with experiments using essentially angle-resolved
photoemission spectroscopy (ARPES). An approach was
proposed to map the surface electronic potential from scanning
tunneling microscopy (STM) by using the linear response
theory [1]. We will show that it is possible to directly obtain
the potential from ARPES experiments. This method is based
on the measurement of band gaps at the high-symmetry points
of the Brillouin zone (BZ) which allow the determination of
Fourier components of the potential.

Let us recall some information about the relation between
band structure and symmetry. The band degeneracy, especially
at the high-symmetry points, is a direct consequence of the
potential symmetry and more precisely of the symmetry of
the wave vector group at the considered BZ point [2]. The
wave vector group is the group of operations leaving the wave
vector unchanged. A change of degeneracy or of the dispersion
relation can result from a symmetry breaking (change of the
wave vector group). For example, in graphene the Dirac points
with their twofold degeneracy and the linear dispersion near the
K points correspond to the two-dimensional (2D) irreducible
representation of the C3v wave vector group. A symmetry
breaking which changes the wave vector group at the K

point, achieved by putting a graphene layer on an appropriate
substrate, leads to a gap opening and then to massive fermions
[3,4].

Such a gap opening can be studied in reconstructed
nanostructurated lattices at the surface of (111) noble metals.
Surface Shockley states develop on these (111) surfaces with
nearly-free-electron-like behavior [5]. Therefore parabolic
dispersions are observed with deviations close to the surface
BZ boundary. For example, confinement and/or gap openings
have been observed for vicinal surfaces due to the one-
dimensional periodic potential corresponding to the step array
[6]. In Au vicinal surfaces, additional superperiodicity parallel
to the steps exists due to the herringbone reconstruction of the
Au(111) surface on terraces leading to very small gaps [7].
Another famous example is the Ag/Cu(111) interface where an
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hexagonal array of triangular dislocations was observed [8,9].
The corresponding ∼ (9.5 × 9.5) superperiodicity induces the
opening of gaps observed at the M point of the surface BZ of
the reconstruction [10–12].

Due to the plane wave character of the Shockley state,
the gap opening results from the Bragg mechanism at the
BZ boundaries and their magnitudes are simply related to the
corresponding Fourier components (V �G) of the potential in
the first approximation of perturbation theory. At the M point
of the hexagonal surface BZ, the gap magnitude is simply
2|V �G|-like in a simple 1D nearly-free-electron gas discussed
in solid state textbooks [13]. Therefore the gap width only
gives partial information (the modulus) about the potential. It
has been shown by combining ARPES and scanning tunneling
spectroscopy (STS) that both the magnitude and the phase
of the first Fourier components of the Au reconstruction
on a Au vicinal surface can be obtained [7]. In this Rapid
Communication, we would like to show that a detailed
description of the potential can be achieved by measuring
the gaps at the different high-symmetry points (�, M , and
K) and directions. However, only the first low energy gap
corresponding to occupied states can be probed by ARPES in
Ag/Cu(111). The technical key point of the present work is to
use controlled potassium doping to precisely tune the energy
position of the band gaps since K adsorption changes the work
function and shifts down in energy the Shockley state [14,15].
By using different K doping, we succeeded in measuring
quantitatively several gaps in the different directions of the
Brillouin zone and we obtained a complete determination
of the Shockley band structure. The gap values at several
high-symmetry points allow one to determine not only the
norm but also the real and imaginary parts of the first Fourier
components of the potential. It gives a satisfactory description
of this potential since the calculated local density of states is
found to be in very good agreement with local spectroscopic
properties probed by STS. This demonstrates the interest and
strength of this original methodology in estimating the surface
potential.

The angle-resolved photoemission experiments were per-
formed at 80 K with a Scienta 200 high-resolution hemispher-
ical analyzer using a photon energy of hν = 21.2 eV. Data
points in Fig. 2 are obtained from standard line fits of individual
energy distribution curves (EDCs), using Lorentzian functions
and Fermi edge functions. Features that lie within ±2kBT
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of EF are cut off by the Fermi edge. Peaks above EF can
thus be visualized by normalizing the EDCSs with the Fermi-
Dirac distribution function convoluted with the experimental
resolution. STM and STS experiments have been carried out
using an Omicron STM. The dI/dV spectra and maps were
recorded at 5 K in the open feedback loop mode using the lock-
in technique with a bias modulation of 5 mV rms at 2300 Hz
(stabilization parameters: set point 1 nA, bias 0.8 eV). Before
transferring to the STM cryostat at 5 K, the Ag monolayer is
evaporated at 150 K on the clean Cu(111) crystal, and then
annealed to 350 K. This process leads to an ∼ (9.5 × 9.5)
hexagonal lattice of triangular dislocations. Evaporation of K
atoms in the submonolayer range was achieved by heating a
standard K getter. Band structure dispersions are computed
by a direct diagonalization of the Schrödinger equation with a
potential defined by the two first Fourier components in a plane
wave basis limited to the first 36 waves around �. Note that
additional plane waves have negligible effects. Local density
of states (LDOS) maps and spectra are obtained resolving
the Hamiltonian for more than 1500 wave vectors in the first
BZ and by taking into account a 15-meV Gaussian energy
broadening.

First of all, we will discuss angle-revolved photoemission
spectroscopy measurements recorded along high-symmetry
directions (�M and �K) of the first BZ of the undoped
and K-doped reconstructed Ag/Cu(111) surface. Figures 1(a)
and 1(b) show the second derivative of the ARPES signal for a
bare and a K-doped surface, respectively. These maps clearly
show the parabolic dispersion of the Shockley surface state
with energy gaps appearing at the boundary of the BZ. First,
K deposition shifts the surface state energy at � by 300 meV
towards higher binding energy. This behavior is well known
and reflects the lowering of the work function with alkali
metals [16,17]. This shift of the surface state is proportional to
the amount of K atoms evaporated on the surface. Secondly, the
surface state remains well defined and only a small broadening
is induced by the K deposition. For the bare interface, an
80-meV gap opens below the Fermi energy (EF ) [10–12] at
the M point of the 2D BZ shown in Fig. 1(c) and although
the gap at the K point which is very close to the Fermi
energy is not clearly resolved, the analysis of the spectral shape
reveals that a small gap (30 ± 15 meV) appears in agreement
with previous measurements at room temperature [4]. In the
K-doped surface, this gap is well below the Fermi energy and
can be estimated more accurately, EK2 −EK1 =32 ± 5 meV
[inset of Fig. 1(b)]. In addition, a band is emerging at EK3 .

The characteristics of the energy spectrum at the high-
symmetry points can be simply understood by considering the
topology of the reciprocal space and the band energy calculated
in the nearly-free-electron framework. Indeed, the gap widths
depend on the Fourier components of the surface potential
which can be decomposed:

V (�r) =
∑

�G(p)
n

V �G(p)
n

ei �G(p)
n ·�r . (1)

Symmetry gives us some relations between the different
Fourier components. In the hexagonal reciprocal space lattice,
one has six first neighboring points ( �G(1)

n with n = 1,2, . . . ,6)

FIG. 1. (Color online) Experimental band dispersions (second
derivative) of the Shockley state along the �M and �K directions
for (a) the bare triangular reconstructed Ag/Cu(111) surface and
(b) a K-doped surface (inset: energy cut very close to the K point
exhibiting the three eigenenergies). (c) Reciprocal space showing
the high-symmetry points of the 2D BZ and the first neighboring
reciprocal vectors. We also indicate the symmetry mirrors (σv) and
the Fourier components of the potential associated with the reciprocal
vectors in the first two rings around the � point (dashed circles).

around the central � point [first ring in dashed line in Fig. 1(c)].
However, these points are not equivalent since there is no
sixfold symmetry axis and only a threefold one (C3). Then
only �G(1)

1 , �G(1)
3 , and �G(1)

5 or �G(1)
2 , �G(1)

4 , and �G(1)
6 are equivalent.

As a consequence, two different Fourier components are
associated with these two sets of C3 equivalent vectors.
However, time-reversal symmetry which transforms a wave
vector in its opposite connects these inequivalent points. As
a consequence, if V �G is the Fourier component for �G, then
V− �G = V ∗

�G. In summary, the Fourier components in the first
ring around � are V �G(1)

n
=V1 for n = 1,3,5 and V �G(1)

n
=V ∗

1 for
n = 2,4,6.

Let us now investigate the effects of these Fourier compo-
nents on the band energies at the M and K points in a very
crude approximation. As the M point is located in between
two neighboring reciprocal vectors, �0 (�) and �G(1)

1 , there
are two states associated with the plane waves originating
from these two reciprocal vectors. The diagonalization of
the corresponding 2 × 2 Hamiltonian leads to a gap width
�EM =EM2 −EM1 =2|V1|. The K point is located in the
center of an equilateral triangle defined by three reciprocal
nodes [Fig. 1(c)] and then three plane waves are involved and
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the resolution of the 3×3 Hamiltonian leads to a gap width
�E=EK2 −EK1 =2

√
3 Im V1 and an excited state at EK3

(EK3 −EK2 =3 Re V1−
√

3 Im V1). These simple calculations
show that the gap at the K point is related to the imaginary
part of V1, so that V1 can be completely obtained from ARPES
measurements.

We can go further than this first approximation described
above by extending the plane wave basis. We then consider
36 plane waves associated with 36 reciprocal vectors around
� (additional vectors have nonsizable effects in the energy
range corresponding to our spectroscopic measurements). We
start from the V1 value given by the analytical expressions
above and we adjust it by using the extended basis in order
to reproduce both the experimental energy gaps at M and K

and the band dispersions in the high-symmetry directions. The
energies have been determined by fitting the photoemission
energy distribution curves for each �k value by Lorentzian
structures. The main intensity is found on the main parabola
but small intensity is also observed on the folded bands. This
method gives V1 = (47 + i9.6) meV.

The gaps involving the Fourier components associated with
reciprocal vectors ( �G(2)

n ) in the second ring are not accessible
because they appear in unoccupied states. However, with
increasing the amount of K adatoms, it is possible to shift the
Shockley state in order to occupy states up to the second gap
at the M point. This is illustrated in the inset of Fig. 2 where a
highly doped surface exhibits a gap opening of about 50 meV.

FIG. 2. (Color online) Band dispersion in the �M and �K

directions determined from the K-doped surface of Fig. 1(b). Symbols
are experimental values and the solid lines represent the calculated
band structure obtained with a potential built from the Fourier
components [V1 = (47 + i9.6) meV, V2 = 15 meV] extracted from
experimental gaps. Inset: experimental intensity of a highly K-doped
surface illustrating the opening of a second gap at the M point (see
text).

The vertical mirror symmetry indicates that V �G(2)
2

=V �G(2)
1

=V2

[Fig. 1(c)] demonstrating that the second Fourier component
(V2) is purely real. The magnitude of this gap depends on V2

at first order and on V1 at second order. The fitting method
leads to a value of V2 ∼ 15 meV. It is worth mentioning that
V2 has a small effect on the dispersion and only affects the
band structure close to this second gap at the M point. The
band dispersions along the high-symmetry directions �M and
�K calculated with V1 = (47 + i9.6) meV and V2 = 15 meV
are shown in Fig. 2 (solid lines) and very good agreement
with the experimental dispersions (symbols) is found. This
surface potential directly deduced from experiments is one
step beyond the potentials previously proposed to describe

FIG. 3. (Color online) (a) Calculated potential and STM image
corresponding to the same area showing the undoped reconstructed
unit cell with the fcc1, fcc2, hcp, and side regions. Experimental
dI/dV spectra (b) and calculated LDOS (c) corresponding to the
center of the different regions of the reconstructed unit cell.
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FIG. 4. (Color online) (a), (b) Experimental 2D dI/dV maps and
calculated LDOS corresponding to the bare Ag/Cu(111) surface at
different energies (−70, 40, and 350 meV).

the Ag/Cu(111) surface [4,14]. In these papers, the shape of
the surface potential was arbitrary postulated: It consists of
areas with simple geometry (triangles and/or hexagons and
are different in the two papers) corresponding to flat potentials
whose values are free parameters adjusted in order to reproduce
the experimental data.

Finally, in order to test the accuracy of the method, one
can rebuild the 2D periodic potential and calculate local
properties such as LDOS as a function of energy and position
in the reconstructed supercell. By solving the Schrödinger
equation with the determined surface potential, we obtain
eigenfunctions ��k(�r) corresponding to a given energy E.
The LDOS at position �r and energy E is calculated by
summing |��k(�r)|2 for all values of �k in the first BZ. As
the LDOS can be probed directly by STS, we will be
able to give a quantitative comparison between calculations
and spectroscopic measurements. The rebuilt 2D potential is
plotted in Fig. 3(a) with a STM topographic image of the
bare triangular reconstructed surface with the different regions
characterized by their structural arrangement. We distinguish
four areas: a triangular one corresponding to hexagonal
compact packing (noted hcp), two face-centered-cubic packing
(fcc1 and fcc2), and an intermediate region (side). From
the determined potential, we have calculated local properties

and have compared them with STS data. Figure 3(b) shows
the differential conductance measured in the center of these
four regions and Fig. 3(c) the corresponding LDOS spectra.
The pronounced dip appearing close to the Fermi energy
corresponds to the complete gap in the surface density of
states. We would like to point out that the spectral intensity
in the hcp region is significantly lower than in the three
other regions for small energies (<0.1 eV) suggesting that
the surface potential is high in the hcp triangles as obtained
in our potential determination. Around 0.12 eV, the spectral
intensity in the hcp region increases rapidly. This variation
results from the third band at the M point (Fig. 2). Finally, a
dip in the fcc and hcp regions and protrusion in the side region
appear around 0.35 eV. This behavior is related to the opening
of the second gap at the M point.

In Figs. 4(a) and 4(b), we compare differential conductance
maps recorded at three characteristic energies and the corre-
sponding calculated LDOS. The first energy (−70 meV) was
chosen below the first gap at the maximum of the spectral
peak, the second one (40 meV) is just above the gap, whereas
the third one (360 meV) corresponds to the second gap at
the M point. Very good agreement is obtained between the
experimental and calculated maps. Below the first gap, the
maxima of the local density of states are located in the fcc1
regions, whereas they are in the fcc2 regions above this
gap. At the energy of opening of the second gap at the M

point (350 meV), the electronic density is more structured
and maxima appear in the side regions. The good agreement
between measured and calculated conductance spectra (Fig. 3)
and maps (Fig. 4) shows that the potential estimated from gap
widths in ARPES describes remarkably the local properties.

In this Rapid Communication, we propose a method-
ological approach to obtain the surface potential from gaps
associated with the nanostructurated surface of Ag/Cu(111).
The determination of these energy band gaps by ARPES and
symmetry arguments leads to an estimation of the first two
Fourier components from which we can build an excellent
approximation of the potential. Local properties such as
the LDOS and surface band structure can be satisfactorily
described by this potential. Such an original and simple
approach could be used to model the electronic properties at
the nanometric scale as soon as the nearly-free-electron model
is a good approximation.
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[8] I. Meunier, G. Tréglia, J.-M. Gay, B. Aufray, and B. Legrand,
Phys. Rev. B 59, 10910 (1999).

[9] A. Bendounan, H. Cercellier, Y. Fagot-Revurat, B. Kierren,
V. Y. Yurov, and D. Malterre, Phys. Rev. B 67, 165412 (2003).

121409-4

http://dx.doi.org/10.1103/PhysRevLett.89.176801
http://dx.doi.org/10.1103/PhysRevLett.89.176801
http://dx.doi.org/10.1103/PhysRevLett.89.176801
http://dx.doi.org/10.1103/PhysRevLett.89.176801
http://dx.doi.org/10.1103/PhysRevB.83.125428
http://dx.doi.org/10.1103/PhysRevB.83.125428
http://dx.doi.org/10.1103/PhysRevB.83.125428
http://dx.doi.org/10.1103/PhysRevB.83.125428
http://dx.doi.org/10.1088/1367-2630/13/1/013026
http://dx.doi.org/10.1088/1367-2630/13/1/013026
http://dx.doi.org/10.1088/1367-2630/13/1/013026
http://dx.doi.org/10.1088/1367-2630/13/1/013026
http://dx.doi.org/10.1103/PhysRevB.63.115415
http://dx.doi.org/10.1103/PhysRevB.63.115415
http://dx.doi.org/10.1103/PhysRevB.63.115415
http://dx.doi.org/10.1103/PhysRevB.63.115415
http://dx.doi.org/10.1088/0953-8984/15/47/006
http://dx.doi.org/10.1088/0953-8984/15/47/006
http://dx.doi.org/10.1088/0953-8984/15/47/006
http://dx.doi.org/10.1088/0953-8984/15/47/006
http://dx.doi.org/10.1103/PhysRevB.74.081404
http://dx.doi.org/10.1103/PhysRevB.74.081404
http://dx.doi.org/10.1103/PhysRevB.74.081404
http://dx.doi.org/10.1103/PhysRevB.74.081404
http://dx.doi.org/10.1103/PhysRevB.59.10910
http://dx.doi.org/10.1103/PhysRevB.59.10910
http://dx.doi.org/10.1103/PhysRevB.59.10910
http://dx.doi.org/10.1103/PhysRevB.59.10910
http://dx.doi.org/10.1103/PhysRevB.67.165412
http://dx.doi.org/10.1103/PhysRevB.67.165412
http://dx.doi.org/10.1103/PhysRevB.67.165412
http://dx.doi.org/10.1103/PhysRevB.67.165412


RAPID COMMUNICATIONS

ELECTRONIC SURFACE POTENTIAL FROM ANGLE- . . . PHYSICAL REVIEW B 89, 121409(R) (2014)

[10] F. Schiller, J. Cordón, D. Vyalikh, A. Rubio, and J. E. Ortega,
Phys. Rev. Lett. 94, 016103 (2005).

[11] A. Bendounan, F. Forster, J. Ziroff, F. Schmitt, and F. Reinert,
Phys. Rev. B 72, 075407 (2005).

[12] A. Bendounan, F. Forster, F. Reinert, B. Kierren, Y. Fagot-
Revurat, and D. Malterre, Phys. Rev. Lett. 96, 029701 (2006).

[13] See, for example, N. W. Ashcroft and N. D. Mermin, Solid State
Physics (Brooks Cole, New York, 1976).

[14] Z. M. Abd El-Fattah, M. Matena, M. Corso, F. J. Garcı́a de
Abajo, F. Schiller, and J. E. Ortega, Phys. Rev. Lett. 107, 066803
(2011).

[15] F. J. Garcı́a de Abajo et al., Nanoscale 2, 717 (2010).
[16] S. Achilli, M. I. Trioni, and E. V. Chulkov, Phys. Rev. B 85,

045408 (2012).
[17] H. Bentmann, A. Buchter, and F. Reinert, Phys. Rev. B 85,

121412 (2012).

121409-5

http://dx.doi.org/10.1103/PhysRevLett.94.016103
http://dx.doi.org/10.1103/PhysRevLett.94.016103
http://dx.doi.org/10.1103/PhysRevLett.94.016103
http://dx.doi.org/10.1103/PhysRevLett.94.016103
http://dx.doi.org/10.1103/PhysRevB.72.075407
http://dx.doi.org/10.1103/PhysRevB.72.075407
http://dx.doi.org/10.1103/PhysRevB.72.075407
http://dx.doi.org/10.1103/PhysRevB.72.075407
http://dx.doi.org/10.1103/PhysRevLett.96.029701
http://dx.doi.org/10.1103/PhysRevLett.96.029701
http://dx.doi.org/10.1103/PhysRevLett.96.029701
http://dx.doi.org/10.1103/PhysRevLett.96.029701
http://dx.doi.org/10.1103/PhysRevLett.107.066803
http://dx.doi.org/10.1103/PhysRevLett.107.066803
http://dx.doi.org/10.1103/PhysRevLett.107.066803
http://dx.doi.org/10.1103/PhysRevLett.107.066803
http://dx.doi.org/10.1039/b9nr00386j
http://dx.doi.org/10.1039/b9nr00386j
http://dx.doi.org/10.1039/b9nr00386j
http://dx.doi.org/10.1039/b9nr00386j
http://dx.doi.org/10.1103/PhysRevB.85.045408
http://dx.doi.org/10.1103/PhysRevB.85.045408
http://dx.doi.org/10.1103/PhysRevB.85.045408
http://dx.doi.org/10.1103/PhysRevB.85.045408
http://dx.doi.org/10.1103/PhysRevB.85.121412
http://dx.doi.org/10.1103/PhysRevB.85.121412
http://dx.doi.org/10.1103/PhysRevB.85.121412
http://dx.doi.org/10.1103/PhysRevB.85.121412



