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Ferromagnetic response of a “high-temperature” quantum antiferromagnet
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We study the finite-temperature antiferromagnetic phase of the ionic Hubbard model in the strongly interacting
limit using quantum Monte Carlo based dynamical mean-field theory. We find that the ionic potential plays a dual
role in determining the antiferromagnetic order. A small ionic potential (compared to Hubbard repulsion) increases
the superexchange coupling in the projected sector of the model, leading to an increase in the Neel temperature
of the system. A large ionic potential leads to resonance between projected antiferromagnetically ordered
configurations and density ordered configurations with double occupancies, thereby killing antiferromagnetism
in the system. This novel way of degrading antiferromagnetism leads to spin polarization of the low-energy
single-particle density of states. The dynamic response of the system thus mimics ferromagnetic behavior,
although the system is still an antiferromagnet in terms of the static spin order.
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Ultracold atoms in optical lattices [1] have emerged as a
novel platform for strongly correlated physics, where lattice
models, relevant to condensed matter systems and other arenas
of physics, can be implemented and studied in a controllable
way [2–5]. The easy tunability of the Hamiltonian parameters
and the accurate knowledge and control of the underlying
parameters have made these systems the foremost candidate
for emulating models like the repulsive Bose and Fermi-
Hubbard models, which are routinely used as paradigms in the
study of correlation-driven superfluid-insulator transitions [6]
and high-temperature superconductors [7]. In fact, a whole
new subject at the interface of condensed matter and atomic
physics has emerged in this context, being dubbed ‘optical
lattice emulation” (OLE).

The implementation of the Fermi-Hubbard model [3,4]
in the strongly interacting limit has raised the prospect
of observing antiferromagnetic (AF) spin ordering in these
systems [3]. At present, observing antiferromagnetism with
cold atoms is a major goal of experimentalists, which would be
a stepping stone towards observation of the more complicated
phenomenon of high-temperature superconductivity. While
the basic mechanism of superexchange has been verified in
cold atom experiments [8], spontaneous AF ordering is yet
to be seen in optical lattices. The main problem is that the
temperature scale for the AF transition is simply too low
to be achievable in the laboratory at the present time [9].
While a lot of effort has been spent towards improving
cooling techniques in optical lattices [10], in this Rapid
Communication, we propose a different way of observing
AF ordering, by modifying the lattice model in a way that
the Neel temperature is higher than that of the standard
Fermi-Hubbard model. A similar approach has been used to
study “magnetism” in a system with an effective electric field
on the atoms [11]. However, the magnetism in that case is
driven by the hopping of fermions [12] and throws little light
on superexchange-dominated AF order, which is of key interest
in the context of strong correlation physics.

We study a related model called the ionic Hubbard model,
which was first introduced in the context of the ionic to neutral
transition of charge transfer organic compounds [13,14]. In
addition to hopping of the fermions on a bipartite lattice and the

usual on-site Hubbard repulsion, the fermions on the different
sublattices feel different local potential energies, which breaks
the sublattice symmetry in the “charge” sector. This model
can be easily implemented in a cold atom setting, with the
staggered local potential being imprinted using holographic
techniques [15]. In the strongly interacting limit, we find that
the effective superexchange scale, and hence the AF transition
temperature at half filling, increases with the ionic potential.
This should make it easier to see AF order in this model as
compared with the standard fermionic Hubbard model. We
find that the Neel temperature can be enhanced by about 40%
for reasonable values of the parameters.

In the ionic Hubbard model, when the staggered potential
is comparable to the Hubbard repulsion, we find that the
low-energy single-particle density of states (DOS) for the up
(↑) and down (↓) spins are different, i.e., the system shows
ferromagnetic characteristics in its low-frequency dynamics,
although it continues to exhibit static AF order. This coun-
terintuitive result is understood as an effect of the interplay
between the bichromatic nature of the lattice and the AF order
in the system. This surprising result can be confirmed by either
polarization-dependent rf spectroscopy [16] or spin conductiv-
ity [17] or spin injection spectroscopy [18] measurements.

The ionic Hubbard model is defined on a bipartite lattice
(e.g., a square or a cubic lattice with two sublattices A and B)
as

H = −t
∑
〈ij〉

c
†
iσ cjσ + U

∑
i

ni↑ni↓ + V

2

∑
i

(−1)γi ni, (1)

where t is the nearest neighbor hopping matrix element, U

the local Hubbard repulsion, γi = 1(0) if i is a site on A
(B) sublattice, and V is the amplitude of the staggered ionic
potential. This model has a rich phase diagram as temperature,
carrier density, the interaction parameter U/t or the ionic
potential V/U are tuned [13,14,19–24].

In this Rapid Communication, we solely focus on the
system at half filling, i.e., one particle per lattice site. In the
noninteracting limit (U = 0), the system is a band insulator
(since the staggered potential doubles the unit cell). In the
strongly interacting limit (U � V,t), the system is an AF Mott
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FIG. 1. (Color online) (a) Staggered magnetization m and (b)
difference in density between A and B sublattices �n as functions of
temperature for different values of the ionic potential V . The Hubbard
interaction is fixed at U/t = 10 for all the plots.

insulator, with the spin ordering governed by a superexchange
scale J = 4t2/U . Most of the previous studies [13,14,19–24]
on the system have focused on how the system goes from a
band to a Mott insulator and whether there is an intervening
metallic phase, while the antiferromagnetic phase has been
studied at weak coupling [25,26]. Our work has a completely
different focus. Starting from the interaction-dominated limit
(V = 0, U/t � 1), we are interested in the fate of the spin
ordering in the system as a function of the temperature and the
staggered potential V/U .

We use the dynamical mean-field theory (DMFT) [27]
together with a quantum Monte Carlo impurity solver [28] to
study the AF ordered phase of this model. DMFT approximates
the interacting lattice problem by a single site or a small cluster
(i.e., impurities) interacting with a bath. The dynamics of the
bath and the impurities are then solved self-consistently to
obtain the local Green’s functions for the interacting problem,
which are used to calculate various properties of the system.
Since we are interested in the spin dynamics in the presence
of an explicitly broken sublattice symmetry, the local Green’s
functions include G

↑(↓)
A(B)(τ ), where Gσ

α (τ ) is the imaginary-time
Green’s function of the fermions with spin σ on sublattice
α. We first obtain an AF state at V = 0, after which we
slowly turn on V . We typically take at least 109 Monte Carlo
steps in each iteration, and for certain cases, more than 60
iterations are used to ensure convergence. We note that as a
method, DMFT is exact in infinite dimensions. For hypercubic
lattices, DMFT calculations are expected to better capture the
qualitative and quantitative features of the model [27] as the
dimension increases, which, for cold atom systems, can at best
take the value of 3.

We first focus our attention on the AF ordering in the
system. The density of each spin on each sublattice is given
by nσ

α = 1 + Gσ
α (τ → 0+), while the staggered magnetization

m, characterizing the AF order, is given by m = (n↑
A + n

↓
B −

n
↓
A − n

↑
B)/4. The dependence of m on temperature for different

values of V/t (for a fixed U/t = 10) is plotted in Fig. 1(a).
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FIG. 2. (Color online) Dependence of the Neel temperature T N

on the ionic potential V/t for several different values of the Hubbard
interaction U . At large U/t , the Neel temperature initially rises with
V/t before crashing down.

The magnetization decreases with temperature and vanishes
at the Neel temperature T N . As V/t is raised to around 7 and
beyond, the magnetization (at a given temperature) is sharply
suppressed with increasing V/t , and T N also varies rapidly
with V/t in this regime.

The Neel temperature is plotted as a function of V/t for
several values of U/t in Fig. 2. Up to U/t = 10, T N is a
monotonically decreasing function of V/t . For U/t = 12, T N

first rises as a function of V/t , reaches a maximum, and then
crashes as V/t is increased farther. For U/t > 12, this effect
is much more pronounced. This nonmonotonic behavior of
T N at strong coupling can be understood by the following
perturbative argument. For large U/t and small V/U , the
Hubbard repulsion is the largest scale in the problem and hence
states with double occupancies are projected out of the low-
energy sector.

A Schrieffer-Wolff type canonical transformation, e−iS [29]
can then be used to perturbatively include effects of virtual
transitions to the high-energy sector (with finite double
occupancies). The transformation is obtained by assuming that
the transformed Hamiltonian H̃ = eiSHe−iS does not have any
term connecting low- and high-energy sectors. To first order
in t/U ,

iS =
∑

l

T 1
AB(l) − T −1

BA(l)

U + V
+ T 1

BA(l) − T −1
AB (l)

U − V
, (2)

where T
η

AB(l) is the part of the hopping operator on the bond
l which hops a fermion from A to B sublattice. and increases
the double occupancy of the system by η = 0,1, or −1. At half
filling, the effective low-energy Hamiltonian is given by

H̃ = J

1 − V 2

U 2

∑
〈ij〉

(
�Si · �Sj − 1

4
ninj

)
, (3)

where the spin operator �Si = c
†
iσ �σσσ

′ ciσ
′ , and J = 4t2/U [14]

is the standard Heisenberg superexchange scale. Physically,
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there are two possible processes leading to the spin-spin
interaction, one in which the double occupancy in the
intermediate virtual state is formed on the B sublattice,
and the other where it is formed on the A sublattice. They
contribute with the scale ∼t2/(U ± V ) respectively, leading
to an enhancement of the superexchange scale for small
V/U . This can be contrasted with the extended Hubbard
model with nearest neighbor interaction (which does not
break sublattice symmetry), where the effective superexchange
coupling increases with the nearest neighbor interaction V ′
as ∼t2/(U − V ′) [30,31]. In the strongly interacting limit
of the Hubbard model (V = 0) at half filling, the Neel
temperature scales with the Heisenberg coupling J , with
numerical simulations yielding TN/J ∼ 0.957 on the cubic
lattice [32]. The same scaling should hold in the small V/U

limit, where the low-energy subspace does not contain any
configuration with double occupancy, explaining the increase
of T N with V/t for small V/U . This finding is of great
significance to the cold atom experiments, where an increased
Neel temperature would lead to an easier detection of the AF
ordered state, as the current OLE experiments on the standard
fermionic Hubbard model are having difficulties reaching the
T < T N regime.

The perturbative argument, which predicts a divergent
superexchange coupling at V = U , breaks down as V/U

approaches unity. The DMFT results for T N as a function
of V/t (see Fig. 2), however, show that for the strongly
interacting system, T N continues its rise up to V/U ∼ 0.6,
and the optimum T N is 40% higher than that of the standard
Hubbard model for U/t = 16.

In the ionic Hubbard model, when V/U ∼ 1, the potential
energy gained by fermions on the A sublattice can compensate
for the energy cost of forming a double occupancy (as long as
it is formed on the A sublattice). Thus the state |↑A , ↓B〉 and
the state |↑A↓A ,0B〉 will have similar energies differing by
∼U − V . For U − V ∼ J , these states lie in the low-energy
subspace of the system and the Hubbard model can no longer
be reduced to a simple Heisenberg model even at half filling.
This picture is supported by the fact that the sublattice density
asymmetry, �n = n

↑
A + n

↓
A − n

↑
B − n

↓
B , remains constant up

to T N for small V/U , while for V/U ∼ 1, it rapidly rises
with temperature from a low-temperature asymptotic value to
a constant high-temperature value beyond the Neel transition.
This is clearly seen in Fig. 1(b). At half filling, �n is a measure
of the relative weight of doubly occupied states in the thermal
ensemble, with �n = 0 for states in the projected subspace,
while �n = 2 for the state with perfect density order, double
occupancies on sublattice A, and vacancies on sublattice B.
The temperature dependence of the density asymmetry shows
that at small V/U , configurations with double occupancies do
not play a major role in spin disordering, while at large V/U

the loss of AF order is driven by the increasing presence of
such configurations.

The loss of AF ordering due to inclusion of double occu-
pancies results in an apparently counterintuitive phenomenon.
As V is increased close to U , the low-energy single-particle
DOS shows spin polarization, which initially increases with
increasing temperature, before vanishing at the AF transition
point. Thus, the system exhibits static AF order, but the
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FIG. 3. (Color online) Estimated zero-frequency single-particle
DOS Ã(ω = 0) of ↑ and ↓ spin particles on A and B sublattices,
as a function of temperature for (a) V/t = 0, (b) V/t = 5.0,
(c) V/t = 7.0, and (d) V/t = 7.6. The Hubbard interaction is fixed at
U/t = 10 for all the plots. As V/t increases, the ↑ spin DOS shows
a marked increase over the ↓ spin DOS.

low-energy dynamics of the system is very similar to a
ferromagnet. Specifically, if a current is set up in the system,
it will be carried by spin-polarized carriers and the system
would show a finite spin conductivity even in the absence of
a magnetic field. To see this, we compute the zero-frequency
DOS for the fermions on a given sublattice and with a given
spin from the imaginary-time Green’s functions through

Ãσα(ω = 0) = − 1

πT
Gσ

α

(
τ = 1

2T

)
. (4)

This approximation to the zero-frequency density of states has
been frequently used to determine the metallic vs insulating
nature of the system [33]. In Fig. 3, we plot the zero-energy
density of states for fermions of both spins on both sublattices
as a function of temperature for (a) V/t = 0, (b) V/t = 5, (c)
V/t = 7, and (d) V/t = 7.6 for a system with U/t = 10. Up
to V/t = 5, we see very little spin asymmetry in the DOS,
while for V/t larger than 7, there is a large asymmetry in the
zero-energy DOS of the ↑ and ↓ spins. This asymmetry grows
with temperature, and reaches a peak close to the transition
before vanishing at the transition. Thus, the system is metallic
at these temperatures, with transport and low-energy dynamics
dominated by ↑ spins.

To understand the mechanism of spin polarization of low-
energy DOS, we consider the extreme case of a perfectly Neel
ordered state with ↓ spins on the A sublattice and ↑ spins
on the B sublattice. As V/U is increased close to unity, the
↑ spin on the B sublattice can move to the A sublattice to
form a double occupancy and keep the state in the low-energy
subspace. However, the ↓ spin on the A sublattice cannot
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FIG. 4. (Color online) DOS of ↑ and ↓ spins on A and B

sublattices, calculated by maximum entropy method, as a function
of energy for V/t = 7 and U/t = 10. (a) Results for T/t = 0.2;
(b) low-energy results for the same temperature. (c) Low-energy
results for T/t = 0.18. (d) Low-energy results for T/t = 0.1.

move to the B sublattice, as the resulting state would have
a high energy ∼U + V . These processes are thus prohibited
to O(t) and can only happen with a scale O[t2/(U + V )].
Thus the low-energy dynamics is mainly the dynamics of the
↑ spins in this case. Once this basic mechanism is understood,
one can generalize to more complicated states, but as long as
the AF ordering is present, the low-energy density of states
would be dominated by the majority spins on the B sublattice.
The spin polarization of the low-energy density of states is
thus understood as a consequence of a resonance between a
projected AF ordered state and a state with double occupancy
on the A sublattice. This shows the role of double occupancies
in the degradation of AF ordering in the ionic Hubbard model
for V/U ∼ 1.

To study the energy dependence of the spin asymmetry in
DOS, we analytically continue the Matsubara Green’s func-
tions to the real frequency domain and obtain the frequency-
dependent spectral weight (spin and sublattice resolved), using

the method of Ref. [34]. The results are plotted in Fig. 4
for a system with U/t = 10 and V/t = 7 for three different
temperatures. In Fig. 4(b) we plot the results at a temperature
of T/t = 0.2, which is above the AF transition temperature.
Each sublattice shows complete symmetry between ↑ and ↓
spins in terms of the spectral weight. The asymmetry between
A and B sublattices reflects the different densities on these
sublattices. In Fig. 4(c), we plot the results for a temperature
T/t = 0.18, which is just below the transition temperature,
and where the spin asymmetry of the zero-frequency DOS,
as seen in Fig. 3(c), is maximal. In this case, we clearly see
a buildup of low-energy DOS for the ↑ spin, while the ↓
spin DOS shows a soft gap. Finally in Fig. 4(d), we plot the
low-temperature results at T/t = 0.1. In this case, the ↑ spin
DOS shows a soft gap, while the ↓ spin DOS shows a hard
gap in the spectrum.

In conclusion, we have studied the ionic fermionic Hubbard
model using DMFT. This model can be easily implemented
in cold atom optical lattice systems and has a higher Neel
temperature for AF transition than the standard Hubbard
model for an accessible region in the parameter space. For
small V/U , the effective superexchange scale, given by
4t2/(U − V 2/U ), increases with the ionic potential V . As
a consequence, T N increases with V/U , reaches an optimum
value around V/U ∼ 0.6, and then goes down with further
increase in V/U . The optimum temperature is about 40%
higher than that of the standard Hubbard model for U/t = 16,
which should help in observing superexchange-dominated AF
ordering in OLE experiments. At large V/U ∼ 1, the AF order
is degraded by inclusion of more and more configurations with
double occupancies (on the A sublattice) in the ensemble. A
consequence of this mechanism is the surprising result that the
low-energy density of states shows strong spin asymmetry in
the AF phase. Thus, with respect to dynamics and transport,
the system behaves like a ferromagnet, although it shows static
AF spin ordering. This novel feature of the ionic Hubbard
model should manifest itself in the optical lattice emulation
experiments.
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