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Hydrodynamic Coulomb drag of strongly correlated electron liquids
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We develop a theory of Coulomb drag in ultraclean double layers with strongly correlated carriers. In the regime
where the equilibration length of the electron liquid is shorter than the interlayer spacing the main contribution
to the Coulomb drag arises from hydrodynamic density fluctuations. The latter consist of plasmons driven by
fluctuating longitudinal stresses, and diffusive modes caused by temperature fluctuations and thermal expansion
of the electron liquid. We express the drag resistivity in terms of the kinetic coefficients of the electron fluid. Our
results are nonperturbative in interaction strength and do not assume Fermi-liquid behavior of the electron liquid.
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Introduction and motivation. Interaction-induced mutual
friction phenomena in the electrically disconnected double
quantum wells provide a uniquely sensitive probe of electronic
scattering and correlations. The effect, commonly referred to
as Coulomb drag (CD) [1,2], consists of passing a drive current
I through one (active) layer and measuring nonlocally induced
drag voltage VD in the other (passive) layer. In experiments,
the drag resistivity ρD = VD/I is usually studied as a function
of temperature, magnetic field, electron density, and interlayer
separation [3–8]. Recent measurements of rD in the tightly
nested graphene double layers [9,10] triggered resurgence
of interest and new proposals for the mechanisms of CD
effect [11,12].

The magnitude and even the mechanism of CD depend
on the temperature T , interlayer distance d, properties of
the disorder potential, and the strength of electron-electron
interactions. The latter is characterized by the interaction
parameter rs = (πna2

B)−1/2, where n is the electron density
and aB = ε/me2 is the effective Bohr radius in the material
(ε being the dielectric constant, hereafter � = 1).

In the weakly interacting regime, rs � 1, measurements of
ρD(T ) [3–5] are in qualitative agreement with the predictions
of the Fermi-liquid theory [13–17]. Specifically, the drag
resistivity is relatively small, ρD/ρQ ∝ (kF d)−αd (T/EF )αT ,
scales quadratically with the temperature at T � EF (αT = 2
up to logarithmic corrections in the disordered case [15,16]),
and is inversely proportional to a certain power of interlayer
distance d (αd = 2–4 depending on the ratio between d and
electronic mean free path), where kF and EF are Fermi
momentum and energy, respectively, and ρQ = 2π/e2 is the
resistance quantum. At higher temperatures, T ∼ EF , drag is
enhanced by the plasmons such that ρD/T 2 has a relatively
broad peak structure near the characteristic energy of the
plasmon modes [18]. There are few exceptions where the
CD effect was studied beyond the leading order in interlayer
interaction. It was shown in Ref. [19] that interference
corrections to ρD originating from the third-order processes
in the interlayer interaction, are increasingly important at low
T . This is in loose qualitative agreement with the fact that
experimental values of the drag are larger than conventional
values that vanish as T → 0, however, the theory of Ref. [19]
still assumes relatively weak interactions.

For rs � 1 Coulomb drag is not well understood. In this
case apart from the Fermi energy EF there are two other

important energy scales: the interaction energy V = rsEF

and the Debye frequency �D ∼ √
V EF = √

rsEF . As a
consequence of this hierarchy EF � �D � V there is a
wide temperature interval, EF < T < V , in which the system
remains strongly correlated but the Fermi-liquid description
does not apply. It is worth noting that such strongly correlated
liquids may be treated classically only for T > �D , while at
lower temperatures they form a semiquantum state [20–22].
Microscopic theory of electron transport in this very interesting
regime has not been developed.

In samples with rs � 1 even at low temperatures, T � EF ,
the drag resistance is one to two orders of magnitude larger
than expected on the basis of a simple extrapolation of the small
rs results [8]. Furthermore, the power exponent 2 < αT < 3
deviates from its nominal value and the system has anomalous
response in a magnetic field [8]. A detailed study based on
an extrapolation of Fermi-liquid-based formulas to the region
where rs � 1 has been carried out in Ref. [23] in an attempt to
address the data of Ref. [8]. Finally two elegant phenomeno-
logical theories designed for the strongly disordered electronic
systems [24] and electronic microemulsions [25] have been
proposed.

Most of the previous theoretical work on CD focused on the
collisionless regime, in which the spacing between the layers
is smaller than the mean free path of the quasiparticles. In
this Rapid Communication we develop a theory of Coulomb
drag in the opposite regime, where the density fluctuations
of the electron liquid responsible for Coulomb drag may be
described using the hydrodynamic approach. A hydrodynamic
theory of resistivity was recently formulated in Ref. [26].
We generalize this theory to the case of drag resistivity
in double-layer systems. This requires consideration of the
fluctuation corrections to hydrodynamics [27,28]. We identify
a mechanism of drag resistivity originating from the entropy
fluctuations, which due to the thermal expansion changes the
electron density thus leading to the Coulomb coupling between
the layers. The contribution from the plasmon modes is also
discussed in details.

We assume that the interlayer distance exceeds the equi-
libration length of the electron liquid, d � �ee, and at the
same time the phonon contribution to drag is negligible.
Hydrodynamic theory of phonon-mediated drag for charge
neutral liquids was developed in Ref. [29]. The hydrodynamic
description applies to any liquid type. Microscopic properties
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of the liquid manifest themselves via the temperature and
density dependence of the kinetic coefficients. Experimentally,
the hydrodynamic regime is likely to be relevant to clean low
carrier density systems, e.g., hole systems of Refs. [8,30]
with the typical rs ∼ 10–40 and Fermi energies on the
order of Kelvin. In this case, at T � EF , electron-phonon
scattering is still weak [30]. On the other hand, carriers form
a nondegenerate strongly correlated liquid (semiquantum or
classical), and the hydrodynamic description applies from
very short distances of the order of inter-electron spacing.
Drag resistivity measurements in a high mobility quantum well
with rs ∼ 1 and at large interlayer spacing (d ∼ 5000 Å) have
been reported in the literature [31] and attributed to phonon
drag [15].

Stochastic Navier-Stokes equations. If the interlayer spac-
ing d exceeds the equilibration length d � �ee Coulomb
drag is dominated by hydrodynamic density fluctuations. The
latter obey Gaussian distribution and may be described by
introducing stochastic Langevin forces into the hydrodynamic
equations [27]. Having in mind linear response theory we
start from the linearized continuity, Navier-Stokes and entropy
production equations for a fluid moving in an external
potential U ,

∂t δn + ∂i(δnvi + nδvi) = 0, (1)

mn(∂t + v · ∇)δvi = −n∂iU − ∂iδP + ∂kδσik, (2)

nT (∂t + v · ∇)δs = −div Q, (3)

where i,k are Cartesian indices and we used shorthand notation
for the spatial derivative ∂i = ∂/∂xi . In Eqs. (1)–(3) n, m, and
T are, respectively, the equilibrium particle density, mass, and
temperature; v is the uniform fluid velocity; while δn, δvi ,
δs, and δP are fluctuations of density, velocity, entropy per
particle, and pressure in the liquid flow. In a charged liquid,
the external potential U is determined by the fluid density via
the Poisson equation. The set of these equations has to be
replicated for both active and passive layers and we will use
subscripts ↑↓ to distinguish the two. The linearized viscous
stress tensor δσik and the thermal energy flux Q are given,
respectively, by

δσik = η(∂kδvi + ∂iδvk) + (ζ − η)δik div δv + ςik, (4)

Q = −κ∇δT + g. (5)

Here κ is the thermal conductivity, η is the first (shear) viscosity
of the liquid, and ζ is the second (bulk) viscosity. We consider a
symmetric setup in which fluctuating Langevin heat and stress
fluxes in the two layers have identical variances:

〈gi(r,t)gj (r′,t ′)〉 = 2κT 2δij δ(r − r′)δ(t − t ′), (6)

〈ςik(r,t)ςlm(r′,t ′)〉 = 2T δ(r − r′)δ(t − t ′)[η(δilδkm + δimδkl)

+ (ζ − η)δikδlm], (7)

where 〈· · · 〉 denotes averaging over the thermal fluctuations.
The steady current ∝nv in the active layer exerts the drag
force FD = 〈δn↓(−∇U↓)〉 on the passive layer. Relating the
potential to density fluctuations by using the Poisson equation
and ignoring the intralayer forces we can express the drag force

in terms of the density-density correlation function

FD =
∑
q,ω

(−iq)
2πe2

εq
e−qd〈δn↑(q,ω)δn↓(−q,−ω)〉, (8)

where δn↑,↓(q,ω) are the Fourier components of the density
fluctuations in both layers and q is the absolute value of the
vector q. Knowing the drag force one readily finds the drag
resistivity ρD = FD/ve2n2.

Results for the drag resistivity. Our technical goal now is
to solve coupled equations (1)–(3) to the linear order in v.
It will be convenient for our purposes to choose entropy and
density as independent variables, and thus express temperature
and pressure fluctuations via thermodynamic relations. To
this end, we rewrite Eqs. (1)–(3) in the Fourier components,
relate temperature fluctuations to the entropy and density
δT = (∂T /∂s)V δs + (∂T /∂n)Sδn, and exclude δv with the
help of the continuity equation (1). We thus find for the active
layer

(νq2−iω+iqv)(ω−qv)δn↑ = − iq2

m
(δP↑+nU↑) + iq

m
(ς̂↑q),

(9a)

(χq2 − iω + iqv)δs↑ + χq2

(
∂s

∂n

)
T

δn↑ = − iqg↑
nT

. (9b)

Here ν = (η + ζ )/mn is the sum of shear and bulk kinematic
viscosities and χ = κ/ncv is the thermal diffusivity, while
cv = T (∂s/∂T )V is the heat capacity. In the passive layer
we have the same set of equations but with v = 0 and an
interchange of indices ↑→↓. It becomes apparent from the
structure of Eqs. (9a) and (9b) that even though we consider
a disorder-free system the entropy fluctuations in the liquid
propagate diffusively. Because of thermal expansion, they
result in diffusively spreading density fluctuations that occur at
uniform stress in the liquid. The pressure fluctuations δP can
be expressed in terms of density and entropy in a given layer,
while the external potential U is determined by the density
fluctuations in both layers. Specifically we have for the active
layer

δP↑ + nU↑ =
(

∂P

∂s

)
V

δs↑ +
(

∂P

∂n

)
S

δn↑

+ 2πne2

εq
(δn↑ + e−qdδn↓), (10)

whereas the pressure variation in the passive layer δP↓ is
obtained from above by interchanging indices ↑�↓. At
wavelengths longer than the screening length the second term
in the right-hand side of Eq. (10) is small in comparison to
the third and can be neglected. Physically this means that the
dependence of the stress on the density of the electron liquid
is dominated by the long-range Coulomb interaction. At the
same time, the first term in the right-hand side of Eq. (10)
must be retained because it describes the dependence of the
stress on the different thermodynamic variable, δs. With the
aid of Eq. (10) we can exclude entropy fluctuations from
Eqs. (9a) and (9b), and thus arrive at two coupled linear
algebraic equations for the variances of thermally induced
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density fluctuations between the layers

�±δn± = iqv
2

[
�+δn+ + �−δn− − q

m
(ς̂+q) − q

m
(ς̂−q)

]

− iq2

mcv

(
∂s

∂ ln n

)
T

(qg±) − (ωχ − iω)
q
m

(ς̂±q),

(11)

where we introduced symmetric (+) and antisymmetric (−)
combinations of the fields δn± = δn↑ ± δn↓, and similarly for
all other quantities. The propagator of the excitation modes
�± and the vertex function �± are defined by the following
expressions:

�±(q,ω) = (ων − iω)(ωχ − iω)iω − (ωχ − iω)ω2
± − ωχω2

α,

(12a)

�±(q,ω) = (ων − 2iω)(ωχ − 2iω) + (ω2 + ω2
±). (12b)

Here we introduced characteristic mode frequencies: ωχ =
χq2 and ων = νq2 correspond to the thermal and viscous
diffusion, the frequencies ω2

± = ω2
p(1 ± e−qd ), with ω2

p =

2πe2nq/εm, correspond to the plasmons, while ωα = uq

corresponds to the acoustic mode associated with the thermal
expansion of the fluid with the characteristic velocity u =√

T/mcv(∂s/∂ ln n)T . In deriving Eq. (11) we also made use
of the thermodynamic relation (∂P/∂s)V = n2(∂T /∂n)S . We
look for the solution of Eq. (11) to the linear order in v in the
form δn± = δn

(0)
± + δn

(1)
± , where

δn
(0)
± = − 1

�±

[
iuq2

√
mcvT

(qg±) + (ωχ − iω)
q
m

(ς̂±q)

]
,

(13a)

δn
(1)
± = i(qv)

2�±

[
�+δn

(0)
+ + �−δn

(0)
− − q

m
(ς̂+q) − q

m
(ς̂−q)

]
.

(13b)

Having found δn we are in a position to compute the
density-density correlation function that determines the drag
force in Eq. (8). For this purpose we use thermal av-
erages 〈q(ς̂±q)q(ς̂±q)〉 = 4T q4(η + ζ ) and 〈(qg±)(qg±)〉 =
4κq2T 2, which follow directly from the Langevin heat flux
variances, and find

〈δn↑(q,ω)δn↓(−q,−ω)〉 = 2in(qv)
q2

m
T (ω2

+ − ω2
−)

ω2
νω

4 + 2ωνωχ

(
ωνωχ + 2ω2

α

)
ω2 + ω2

χ

(
ω2

νω
2
χ − ω4

α

)
|�+|2|�−|2 . (14)

Before performing frequency integration in Eq. (8) with the
density correlator from Eq. (14) we need to analyze the
structure of poles of the propagator �±. Under the physically
relevant simplifying condition ων,χ � min{ωα,ω±}, which is
justified by the fact that typical momentum transferred between
the layers is small, q ∼ d−1 � √

n, we see that �±|ωχ=0 =
−i(ω + i0)(ω2 + iωων − ω2

±). Already at this level we can
identify plasmon poles at energies ω± whose imaginary part
(lifetime) is governed by the diffusive viscous mode ων .
Since ων ∝ q2 fluctuations with sufficiently low momenta
have arbitrary large mean free path, and therefore plasmons
are well-defined excitations. At the finite but small ωχ we
can identify another pole, ω + i0 → ω + iωχ (1 + ω2

α/ω2
±),

which is governed by the thermal diffusion mode. We conclude
that density fluctuations that belong to one of the two
parametrically distinct frequency ranges ω ∼ ωχ and ω ∼ ω±
give the largest contribution to the drag force. Integrating
Eq. (8) within the leading pole approximation we find our
main result for the drag resistivity

ρD = 1

16π2e2

1

nd2

[
T

χn
F1(α) + 2πνT

� 2nd4
F2(β)

]
, (15)

where � =
√

2πe2n/εmd is the plasmon energy taken at the
wave vector corresponding to the interlayer separation. Two
dimensionless parameters here are

α =
(

u

�d

)2

, β =
(

ν

�d2

)2

, (16)

and the two respective dimensionless functions are de-
fined by the following momentum integrals in the rescaled

units:

F1(α) =
∫ ∞

0

4πα2x3e−2xdx

[(αx + 1)2 − e−2x][(αx + 1) − e−2x]
,

(17)

F2(β) =
∫ ∞

0

2x4(βx3 + 1)e−2xdx

[1 − e−2x][βx3 + e−2x]
. (18)

When deriving the above expressions we used (ω2
+ − ω2

−)/
ω2

+ω2
− = [ω2

p sinh(qd)]−1, and rescaled momentum integra-
tion in the units of the interlayer distance (x = qd). The
first term in Eq. (15) stems from the slow thermal modes
and is inversely proportional to the thermal conductivity,
while the second one is due to plasmons. We stress that
Eq. (15) represents a nonperturbative in interaction result for
the drag resistivity and as such applies to electron bilayers
with rs � 1. The functions F1,2 are plotted in Fig. 1 and
they are almost constants of the order of unity F1,2 ∼ 1 in
a wide parameter range {α,β} � 1. For {α,β} � 1, which
is most likely relevant to experiments, one easily finds that
F1 ≈ 3πζ (3)α2/2 and with the logarithmic accuracy F2 ≈
1
8 ln4(1/β), so that Eq. (15) can be simplified to

ρD

ρQ

� 3ς [3]ε2T 3

128π3e4κcvn3d4

(
∂s

∂ ln n

)4

T

+ εT (η + ζ )

128π2e2n4d5
ln4

(
2πe2mn3d3

ε(η + ζ )2

)
, (19)

where ς [z] is the Riemann zeta function. Interestingly,
thermal expansion and plasmon-mediated contributions to the
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FIG. 1. (Color online) Dimensionless functions F1 (bottom line)
and F2 (top line) that enter the drag resistivity are plotted versus their
respective scaling variables z = α and z = β [see Eqs. (15)–(18) for
the definition].

Coulomb drag resistivity Eq. (19) have distinct dependencies
on the electron density n and interlayer separation d. One
should also notice that complete temperature dependence
of ρD(T ) is implicit in the corresponding temperature de-
pendencies of the respective kinetic and thermodynamic
coefficients κ(T ), η(T ), ζ (T ), and cv(T ). Although a detailed
microscopic theory for the temperature dependence of κ , η,
and ζ of nondegenerate strongly correlated liquids has not been
developed, some conjectures were put forward in Refs. [20,32].
In particular, for the semiquantum regime at EF < T < �D

one estimates cv ∝ T , κ ∝ T , and η ∝ 1/T .
In contrast, the Fermi-liquid regime has been studied

extensively [33], and for T � EF one readily finds
κ ∼ cvn�eevF ∼ E2

F /T , η ∼ mvF n�ee ∼ nE2
F /T 2, and

cv ∼ T/EF . Note that for Fermi liquids the temperature
dependence of the drag resistivity in the hydrodynamic regime
is drastically different from the conventional T 2 law. Indeed,
assuming that interaction parameter rs∼1 one estimates the
first term in Eq. (19) as ∼ (T/EF )7(1/kF d)4 and the second
one as ∼ (EF /T )(1/kF d)5. At T < EF /(kF d)1/8 the second
term dominates and we obtain the following estimate for the
drag coefficient of Fermi liquids in the hydrodynamic regime:

ρD

ρQ

∼ EF

T

1

(kF d)5
. (20)

The hydrodynamic description is restricted to temperatures
T > EF /

√
kF d , where �ee < d. It is striking to observe that at

temperatures where �ee ∼ d the hydrodynamic result above,
ρD/ρQ ∼ (1/kF d)9/2, is parametrically larger (in

√
kF d � 1)

than the conventional FL result for the collisionless regime,
ρD/ρQ � (T/EF )2/(kF d)4 ∼ (1/kF d)5. This implies that
collisions strongly enhance Coulomb drag. The study of the
crossover from a collisionless to a collision-dominated regime
is an interesting problem that is beyond the scope of the
present work.

Discussion. It is perhaps instructive to compare our result
for the drag resistivity Eq. (19) to the hydrodynamic result for
intralayer resistivity in Ref. [26] [see their Eq. (6)]. Both are
given by the sum of thermal and viscous terms, which have
similar dependence on the viscosity and thermal conductivity
of the fluid. This is not accidental. To second order in the
disorder potential the intralayer resistivity can be understood
in terms of the drag force between the electron liquid and
the disorder potential FD = 〈δn(−∇U )〉 with U representing
the disorder potential. In that case, the fluctuations of density
in the electron liquid are created by the disorder potential
itself. The subsequent scattering of density fluctuations from
the disorder potential produces a net resistive force. In the case
of drag, both the scattering potential U and the fluctuations
of the electron density are produced by thermal fluctuations,
whose variance depends on the temperature. This accounts for
the difference between the temperature dependence of drag
and intralayer resistivity. On the other hand, the propagation of
fluctuations in the fluid in either case is described by the same
linearized hydrodynamic equations, and occurs in the form
of stress-driven ballistic modes and entropy-driven diffusive
modes. This results in the similarity between the corresponding
expressions.

The above qualitative arguments are useful in contrasting
our theory with the energy transfer mechanism of Coulomb
drag studied in the context of graphene double layers [11]. The
energy transfer mechanism (E drag) does not involve thermal
fluctuations, and may be treated in the main hydrodynamic
approximation. On the other hand, this mechanism relies
on correlations of the disorder potential in the layers and
disappears in the clean limit. The contribution considered in
the present paper arises from fluctuation corrections to hydro-
dynamics, and remains finite in the clean limit. The common
feature of two mechanisms is that diffusive redistribution of
thermal energy in the electron liquid plays a crucial role in
supporting strong Coulomb drag.
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