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We investigate the wave functions, spectrum, and g-factor anisotropy of low-energy electrons confined to
self-assembled, pyramidal InAs quantum dots (QDs) subject to external magnetic and electric fields. We present
the construction of trial wave functions for a pyramidal geometry with hard-wall confinement. We explicitly find
the ground and first excited states and show the associated probability distributions and energies. Subsequently,
we use these wave functions and 8-band k · p theory to derive a Hamiltonian describing the QD states close to the
valence band edge. Using a perturbative approach, we find an effective conduction band Hamiltonian describing
low-energy electronic states in the QD. From this, we further extract the magnetic field dependent eigenenergies
and associated g factors. We examine the g factors regarding anisotropy and behavior under small electric fields.
In particular, we find strong anisotropies, with the specific shape depending strongly on the considered QD level.
Our results are in good agreement with recent measurements [Takahashi et al., Phys. Rev. B 87, 161302 (2013)]
and support the possibility to control a spin qubit by means of g-tensor modulation.
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I. INTRODUCTION

Electron spins confined to semiconductor quantum dots
(QDs) are excellent candidates for the physical realization
of qubits, the elementary units of quantum computation [1].
The qubit state can be initialized and manipulated by means
of externally applied electric and magnetic fields. Thus
knowledge about the qubit’s response to these fields is crucial
for the successful operation of qubits. This response depends
strongly on the type of QD considered, e.g., lateral gate defined
QDs, nanowire QDs, and self-assembled QDs [2,3]. The most
prominent type of QDs for self-assembled QDs are InAs
QDs grown on a GaAs surface or in a GaAs matrix. These
QDs can be grown in various shapes such as pyramids [4–6],
truncated pyramids [7], and flat disks [8] and hence are highly
strained due to the lattice constant mismatch of substrate and
QD materials. In self-assembled InAs QDs, spin states have
been prepared with more than 99% fidelity [9] and complete
quantum control by optical means has been shown [10,11].
However, full qubit control by means of external fields and
small system sizes are the most important goals in solid state
based quantum computation, allowing for the construction
of integrated circuits [2,3]. Regarding these requirements,
g-tensor modulation is a powerful mechanism that allows
control of the qubit [12–14] but is sensitive to the shape of
the QD hosting the qubit [3]. Hence the qubit behavior under
the influence of geometry, external fields, etc., is still subject
to ongoing scientific effort [15–17]. A crucial ingredient for
modeling the qubit behavior is the knowledge of the particle
distribution within the QD, i.e., the envelope wave function,
which is mainly determined by the shape of the QD. For
simple structures such as spheres, flat cylinders, and cubes, the
wave functions in QDs can be described analytically, e.g., by
employing hard-wall or harmonic confinement potentials [18].
For more complicated shapes usually numerical models are
employed [4,19–22]. Recently, there have been efforts to find
analytical wave functions for pyramids with different types
of boundary conditions [23,24]. However, the set of wave
functions introduced so far has been observed to be incomplete,
lacking for example the ground state wave function. Both

analytical and numerical methods are employed to further
explore QD characteristics such as strain [4,25], spectra [4],
and g factors [26]. Explicit values depend on the material
properties. Building QDs in materials with very large, isotropic
bulk g factors, i.e., InAs (g = −14.9), is favorable due to an
improved opportunity of g-factor modification. Measurements
emphasize the decrease of the g factor when considering
electrons in InAs QDs. Numerical calculations [22,26] and
measurements [27,28] show that the g factor can go down
to very small values and depends strongly on the dot
size. Furthermore, recent measurements show a significant
anisotropy [29,30] of the g factor which turned out to be
tunable by electrical means [30,31]. This behavior of g can
be attributed to material- and confinement-induced couplings
between the conduction band (CB) and the valence band (VB)
which result in totally mixed low-energy states.

The outline of this paper is as follows. In Sec. II, we
present an 8-band k · p Hamiltonian describing the low-energy
QD states which accounts for strain and external electric
and magnetic fields. Additionally, we introduce a set of trial
wave functions satisfying the hard-wall boundary conditions
of a pyramidal QD. Furthermore, we derive an effective
Hamiltonian describing CB states in the QD. In Sec. III, we
present the results of our calculations, in particular the g-factor
anisotropy of CB QD levels. These results are discussed
and compared to recent measurements in Secs. IV and V,
respectively. Finally, in Sec. VI, we conclude.

II. MODEL

In this section, we introduce the Hamiltonian and wave
functions used in this work. Furthermore we outline the
performed calculations and give the main results in a general
manner.

A. Hamiltonian

Low-energy states in bulk III-V semiconductors are well
described by an 8-band k · p model [32], which includes the
CB and the VB consisting of heavy- (HH) and light-hole (LH)
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FIG. 1. (Color online) Sketch of the QD geometry and the co-
ordinate system used in this work with x, y, and z axes pointing
along the growth directions [100], [010], and [001], respectively. The
externally applied fields under consideration are B = (Bx,By,Bz) and
E = (Ex,0,0).

bands, and split-off (SO) bands. The associated Hamiltonian
Hk· p is given in terms of twofold-degenerate basis states
|j,±〉, j = CB,HH,LH,SO, which are linear combinations of
products of angular momentum eigenfunctions and real spin
states [32]. We model a pyramidal QD by taking into account a
three-dimensional hard-wall confinement potential Vc defining
a square pyramid of height a and base length 2a as sketched in
Fig. 1. We introduce strain by adding the strain Hamiltonian
Hstrain [32]. An analytical description of the strain distribution
within an InAs pyramid enclosed in a GaAs matrix can be
modeled by exploiting the analogy to electrostatic theory [25].
We include the effect of an externally applied magnetic field
B = ∇ × A defined by the vector potential A (∇ · A = 0) by
adding two terms. The first term is the magnetic interaction
term HZ [32]. To derive the second term, HB , we replace
k → k + eA/� in Hk· p and Hstrain in a semiclassical manner,
where e is the positive elementary charge and � the Planck
constant. We drop all contributions independent of B and
obtain a Hamiltonian which accounts for orbital effects of B.
An external electric field E is included by adding the electric
potential HE = e E · r , with r = (x,y,z). The full system is
then described by the Hamiltonian

H = Hk· p + Hstrain + HZ + HB + HE + Vc. (1)

Note that literature values for k · p parameters are usually
given for 4-band models. In an 8-band model, the parameters
have to be modified accordingly [32].

B. Hard-wall wave function

As a first step, we consider Vc of a pyramidal QD
analytically and require a vanishing particle density at the
boundaries. We construct a trial wave function satisfying these
boundary conditions as follows.

The Schrödinger equation of a particle confined in a square
with sides of length a with vanishing boundary conditions
on the borders has the well-known solution ψ�

mn(x,y) with
eigenenergies E�

mn. The wave function of a particle confined
in an isosceles triangle obtained by cutting the square along the
diagonal, ψ�(x,y), is then constructed by linear combinations
of degenerate solutions ψ�

mn(x,y) while requiring a vanishing
wave function at the diagonal of the square [33]. We span the
full three-dimensional (3D) volume of the pyramid and the
corresponding wave functions with the product of two such
triangles and the associated ψ�. This consideration suggests

then the following ansatz for the hard-wall wave functions
inside the pyramidal geometry of the form

ψm(r) = c
∏

ξ=x,y

[sin(αξ ξ+) sin(αz ξ−)

− (−1)mξ +mz sin(αz ξ+) sin(αξ ξ−)], (2)

with r = (x,y,z), c = csc(πz)/Nm, αi = miπ/a, mi =
1,2,3, . . . , mx �= mz, my �= mz, m = (mx,my,mz), ξ± = ξ ±
(z − a)/2, and Nm such that the integral over the pyramid
volume

∫
d3r |ψm(r)|2 ≡ 1. We define energies of ψm(r) by

taking

�
2

2m0
〈ψm(r)| (−i∇)2 |ψm(r)〉 = Em, (3)

where m0 denotes the bare electron mass. For notational
simplicity we use ψm ≡ ψmxmymz

and Em ≡ Emxmymz
. Exact

analytical solutions of the Schrödinger equation have been
derived using specular reflections of plain waves at the
boundaries of the geometry [23]. However, the obtained set of
solutions is incomplete, consisting solely of excited states and
especially lacking the ground state. We stress that our ansatz
ψm is not an eigenstate of the Schrödinger equation. However,
the energies Em we find are lower than the eigenenergies of
the Schrödinger equation derived in Ref. [23]; see Secs. III A
and IV A. In addition, the wave function for the lowest
energy state, ψ221, exhibits the expected nodeless shape for
the ground state. A more detailed justification of ψm(r) is
given in Appendix A. In the following calculations, we apply
these trial envelope wave functions for both CB and VB
states. In general, electron and hole envelope wave functions
differ [4,21]; however, this choice is justified since we find that
even this overly simplified picture yields already good results.

C. Zeeman splitting of the CB states in the QD

A strong confinement of the electron and hole wave
functions to the QD, as assumed by taking Vc into account,
corresponds to a splitting of the basis states into localized
states which can be described as products of the former basis
states and the confinement-induced envelope functions,

�j,±
m (r) = ψm(r) |j,±〉 . (4)

We note that a nontrivial set of basis states requires max{mj } �
3. We rewrite H in a basis formed by the �

j,±
m by taking the

according matrix elements and find a new Hamiltonian Hd

describing the QD states. We split Hd into three parts,

Hd = H d
d + H bd

d + H bod
d , (5)

where H d
d denotes the diagonal elements of Hd , H bd

d denotes
the block-diagonal parts of Hd between the CB and VB, and
H bod

d the associated block-off-diagonal elements. The external
electric and magnetic fields are treated as a perturbation to the
system. Hence diagonal terms of Hd stemming from taking
matrix elements of HZ,HB,andHE are included in H bd

d . Since
we are interested in describing electrons confined to CB states
of the QD, we decouple the CB states from the VB states by
a unitary transformation, the Schrieffer-Wolff transformation
(SWT) H̃d = e−SHde

S , where S is an antiunitary operator
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(S† = −S) [32]. We approximate the SWT to third order in
a small parameter λ determined by the ratio of the CB-VB
coupling and the CB-VB energy gap. To this end, we express
S as S = S1 + S2 + S3, where O(Si) = λi . Here, the operators
Si are defined by [H d

d ,S1] = −H bod
d , [H d

d ,S2] = −[H bd
d ,S1],

[H d
d ,S3] = −[H bd

d ,S2] − 1/3[[H bod
d ,S1],S1] [32]. Since λ is

small, we can expand eS up to third order in λ using the
decomposition of S. Assuming that O(H d

d ) = λ0, O(H bd
d ) =

O(H bod
d ) = λ1, we perform the SWT where we keep terms up

to third order in λ in the final Hamiltonian H̃d . In a last step, we
project H̃d on the CB and find an effective CB Hamiltonian,
H̃ CB

d . In H̃ CB
d , the single-QD levels are strongly coupled, and

thus cannot be treated perturbatively anymore. Instead, we
diagonalize H̃ CB

d exactly and evaluate the eigenenergies E±
n ,

where the indices denote the nth QD level from the VB edge
with effective spin ±. We find the g factor of the nth spin-split
QD level by taking

gn = E+
n − E−

n

μB |B| , (6)

with Bohr magneton μB . Since the exact values of the energies
E±

n depend on the magnitude and direction of the external
fields E and B, gn = gn(E,B). H̃ CB

d contains higher order
terms in B; thus we find

gn = gn,0 + gn,2|B|2, (7)

which is consistent with the general behavior expected of
H̃d under time reversal. However, with |gn,2| 	 |gn,0|, the
quadratic dependence of gn on |B| is barely measurable in
experiments.

III. RESULTS

In this section, we present the results of the calculations
outlined in Sec. II. All calculations were performed for a
pyramidal QD of height a = 50nm. We consider basis states
that fulfill max{mi} � 3, which results in a splitting of each
band |j,+〉 (|j,−〉) into nine QD levels. The system parameters
used for the Hamiltonians are listed in Table I in Appendix B,
where the notation directly corresponds to the notation used in
Ref. [32].

A. Probability distribution of the wave function

We show contour plots of the probability distribution
|ψm(r)|2 of the wave function found in Eq. (2); see Fig. 2.
We present the lowest-energy states forming the smallest
nontrivial set of wave functions. The ground state ψ221 with
associated ground state energy E221 = 0.53meV exhibits s-
wave character; i.e., we find a single-density cloud roughly
fitting the pyramidal shape. For excited states, nodes appear
in the center of the pyramid and along the axes of the
coordinate system. We observe p-wave character for the states
ψ321, ψ231, ψ312, and ψ132; see Fig. 2. The wave functions
ψmimj mk

and ψmj mimk
with mi �= mj are degenerate and we

find that the associated particle densities are of the same form,
only with nodes oriented along different axes, i.e., x and y.
Further restrictions arising from the pyramid geometry, such
as correlations between the coordinates, result in symmetries
regarding the quantum numbers, ψmimimj

= ψmj mj mi
.

B. Spectra of the CB states in the QD

In Fig. 3, we plot the energy spectrum of the low-energy
CB states given by H̃ CB

d and examine the behavior of the QD
levels as functions of B = (0,0,Bz). For |B| = 0, we find six

FIG. 2. (Color online) Probability distributions of the smallest nontrivial set of trial wave functions ψm(r), i.e., max(mi) = 3, satisfying
the hard-wall boundary conditions for the geometry given in Fig. 1. We show contour plots of |ψm(r)|2 = 0.1 inside the pyramidal geometry
assumed for the QD; see Fig. 1. Note the degenerate pairs: ψ321 and ψ231, ψ312 and ψ132, ψ213 and ψ123.
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FIG. 3. (Color online) Left: Spectrum of the lowest six QD levels
En of H̃ CB

d as a function of the magnetic field B = (0,0,Bz), where
we increase |B| = 0Tto1T. We assume E = 0. Right: Enlarged plots
of the B-dependent splitting of the single-QD levels. For most QD
levels, except for n = 5, we observe a nonlinear dependence of E±

n

on B.

degenerate QD levels En which split into pairs while increasing
B from 0 to 1T, where we assume that E = 0. Confinement
and strain push the QD levels far apart from each other; hence
the B-induced spin splitting cannot be observed in the full plot,
Fig. 3 on the left. To circumvent this, we produce magnified
plots showing the B dependence of the single-QD levels n,
Fig. 3 on the right. We note that the splitting of the CB levels,

(a)

(b) (c)

FIG. 4. (Color online) Ground state g factor |g1| as a function
of the magnetic field direction for |B| = 1T shown in (a) 3D plot,
and cuts along the planes (b) xy, and (c) (x − y)z with electric field
E = (Ex,0,0).

(a)

(c) (d)

(b)

FIG. 5. (Color online) |g2| and |g3| as functions of the magnetic
field direction for |B| = 1T shown in 3D plots for (a) n = 2, (b)
n = 3, and cuts along the xz plane for (c) n = 2 and (d) n = 3 with
electric field E = (Ex,0,0).

En+1 − En, is on the order of 100meV which contrasts the
Zeeman splitting, E+

n − E−
n , which is on the order of 1meV or

below. For most QD levels E±
n , we observe a clearly nonlinear

dependence on B, indicating a diamagnetic shift of the QD
levels [34]. This dependence is not independent of the direction
of B, resulting in an anisotropy associated with the g factor;
see Sec. III C.

C. g factor of the CB states in the QD

We discover strong anisotropies for the g factors of elec-
trons confined to low-energy CB states of pyramidal-shaped
InAs QDs. The g factors of the first six QD levels from the
VB edge, gn with n = 1, . . . ,6, are shown as 3D plots and

(a)

(b) (c)

FIG. 6. (Color online) |g4| as a function of the magnetic field
direction for |B| = 1T shown in (a) 3D plot, and cuts along the
planes (b) xy, and (c) (x − y)z with electric field E = (Ex,0,0).
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(a) (b)

FIG. 7. (Color online) |g5| as a function of the magnetic field
direction shown for |B| = 1T in cuts along the planes (a) xy, and (b)
xz with electric field E = (Ex,0,0). Here we omit the 3D plot since
the g factor shows a spherical distribution, where such a plot does not
yield further insight.

cuts along specific planes in Figs. 4 to 8 in ascending order.
We calculate the gn for magnetic fields of strength |B| = 1T.
We further apply electric fields of strengths |E| = 0V/m and
|E| = 106V/m along the x axis. In response to an electric field
along the x axis the anisotropy axis slightly tilts away from
the z axis. To reduce calculation effort, we interpolate between
data points; however, we have checked consistency in several
cases with noninterpolated plots.

We find anisotropies of various shapes and directions
depending on the QD level under consideration. We observe
the emerging of three main axes of anisotropy, x + y, x − y,
and z, pointing along crystallographic directions [110], [11̄0],
and [001], respectively. QD levels n = 1,4,6 (n = 2,3) reveal
g-factor maxima along the x + y (z) axes, whereas small
g-factor values tend to appear along (in) the x − y axis (xy

plane). Along the x − y axis we observe that a special situation
arises for n = 1; here g approaches a very small value close to
but still larger than zero. However, this drop depends strongly
on the dot size; see Sec. IV C. Interestingly, g5 barely exhibits

(a)

(b) (c)

FIG. 8. (Color online) |g6| as a function of the magnetic field
direction for |B| = 1T shown in (a) 3D plot, and cuts along the
planes (b) xy and (c) (x + y)z with electric field E = (Ex,0,0). Note
that the color scale changed because |g6| reaches larger values than
the |gn| of the QD levels with n < 6.

any anisotropy with maximum values at the x + y axis and
minimum values at the x − y axis; see Fig. 7. This is in contrast
to g6, where we note a considerable increase of the g-factor
values and again a significant anisotropy. Note the change of
the color scale in Fig. 8. In general, we observe a dependence
of the absolute values of the gn on the QD size; see Sec. IV C.

IV. DISCUSSION

In this section, we comment on the probability distributions
of pyramidal QDs calculated in Sec. III A. Furthermore, we
discuss the B dependence of both spectrum and g factor of
the CB states in the QD presented in Secs. III B and III C,
respectively.

A. Probability distribution of the wave function

The wave functions of the lowest states exhibit the structure
of cuboidal wave functions adapted to the pyramidal shape
of the enclosing QD. We definitely observe the ground state
as well as excited states. This is consistent with the method
used for the construction of the wave functions. Note that
the wave functions ψm(r) are not exact eigenfunctions of
the Schrödinger equation. However, the boundary conditions
are satisfied and the corresponding energies, see Eq. (3), are
smaller than the energies of known analytical solutions of
the Schrödinger equation provided that the correct boundary
conditions are taken into account [23]. Due to the method of
construction, we find that the wave functions do not vanish at
the diagonal planes (x + y)z and (x − y)z, respectively, as was
observed in Ref. [23]. Furthermore, the authors of the work
presented in Ref. [23] explicitly state that the obtained set of
wave functions is incomplete; solutions with a finite density
at the center of the pyramid are not contained. In particular,
a distinct ground state is missing. From this we conclude
that our set of wave functions is more suitable to describe
low-energy states in pyramidal QDs. Numerical calculations of
QD wave functions usually include piezoelectric potentials and
specific material properties directly from the beginning, which
complicates a direct comparison [4,21]. However, compared
to numerical calculations without strain as performed in
Ref. [4], where the wave functions extend into a wetting
layer, and Ref. [21], where no intermixing with a wetting
layer is observed, we report similar shapes of the probability
distributions with our analytical ansatz. Even though we apply
this simplistic model, we recover the effects recently observed
in experiments to a very good degree [30]; see Sec. IV C.

B. Spectra of the CB states in the QD

After diagonalizing H̃ CB
d , we find states in the CB of the

QD which are degenerate for |B| = 0 and split into pairs
by an increasing magnetic field. These energy levels exhibit
a quadratic dependence on B. We note that the direction
of the magnetic field is important to the exact behavior of
the splitting of the QD levels. Due to the highly admixed
nature of the final eigenstates of H̃ CB

d , which consist of CB
and VB states of the basis introduced for Hd in Eq. (5), we
find ourselves unable to comment on the exact shape of the
nth eigenfunction. For illustrative plots of the electron wave
function in considerably (one order of magnitude) smaller
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QDs from numerical and experimental studies, we refer the
interested reader to Refs. [21] and [35].

C. g factor of the CB states in the QD

The reported anisotropy in our system stems from several
effects. The first effect is the mixing of CB and VB states
caused by the confinement potential and intrinsic material
parameters of the QD. This mixing is further influenced by
the second effect, a change of gaps between the bands |j,±〉
due to strain. The intrinsic strain fields in the QD impose
additional constraints on the system yielding a reduction of the
symmetry of the level splitting with respect to the direction of
B. Furthermore, the strain fields reduce the symmetry class of
the pyramid along the z axis from C4 to C2 [4]. This reduction
of the symmetry class agrees well with the observed anisotropy
of the gn in our work. Additionally, effects due to the orbital
coupling of B may have an effect on g. For |B| = 1T, we
find that the magnetic length lB = √

�/e|B| ∼ 25nm is much
smaller than the dot size characterized by a = 50nm; hence
Landau levels form. However, we took this into account by
including HB into our Hamiltonian; see Eq. (1). Compared
to experimental results [30], we observe very small g factors,
mainly gn < 2. However, small g-factor values, in particular
a zero crossing of g due to the transition from the bulk
value gbulk ≈ −14.9 to the free electron value gfree = +2, have
also been reported for circular and elliptical InAs QDs [26].
This transition is characterized as a function of the band
gap between the CB and VB in the QD. In fact, we find
a comparable magnitude of the g-factor values considering
the band gap present in our system. In general, decreasing
the QD size leads to a decrease of the CB-VB admixture
and the g-factor values ultimately yield the free electron
value, gfree = +2. On the other hand, when increasing the QD
size the g-factor values will finally approach the bulk value,
gbulk ≈ −14.9. Considering these two limits and assuming that
the g factor is a continuous quantity, zero values of g will be
observed eventually [26].

V. COMPARISON TO EXPERIMENT

In this section, we compare our results to recent ex-
perimental observations of the three-dimensional g-factor
anisotropy in self-assembled InAs QDs by Takahashi et al.;
see Ref. [30]. The anisotropy of the QD g factor is usually
extracted by transport measurements for different magnetic
field directions [29,30]. The basic setup of these experiments
consists of a QD which is tunnel coupled to two leads. An
additional back-gate creates an electric field parallel to the
growth direction. The back-gate voltage is used to select
the QD level participating in the transport by changing the
chemical potential of the QD. Furthermore, the tunneling rates
depend on the different g factors of QD and leads [36]. We
first point out that the QD considered in Ref. [30] is rather
a half pyramid due to the applied gates. Thus, deviations
of the absolute value of g compared to our findings are
not unexpected. Such deviations increase even further due
to different dot sizes. However, we find good qualitative
agreement when accounting for the different confinement
geometries in the following way. One can perform a coordinate
transformation in order to align the axes of the upright pyramid

considered above and the half-pyramid of Ref. [30]. Indeed, a
rotation of 135◦ around the y axis aligns the symmetry axes
of both systems in first approximation. We observe now that
the g-factor anisotropies of the QD levels n = 2,3 (Fig. 5)
agree well with regions I and II of the charge stability diagram
reported by Takahashi et al. in Ref. [30]. In region III they also
find a state with a spherical distribution of the g factor similar to
our calculation for QD level n = 5. Furthermore, they report
measurements of a symmetrically covered upright pyramid
as well. In this case the axes and shapes of the anisotropy
are directly comparable to our results. The associated g-factor
anisotropy agrees well with our findings for QD levels n = 2,3.
In general, due to confinement and strain, the QD size and
shape have a strong influence on characteristic quantities such
as spectrum and g factor, both absolute value and anisotropy.
However, we find good qualitative agreement between our
model calculation and the measurements. This is not surprising
since both consider square-based pyramids which conserve
the main anisotropy axes independent of the QD size. Finally,
we point out that our model further predicts different shapes
of the g-factor anisotropy depending on the QD levels—in
particular, shapes not yet observed in experiments, such as the
ones described for the QD levels n = 1,4,6.

VI. CONCLUSION

In conclusion, we have found trial wave functions satisfying
hard-wall boundary conditions for a pyramidal QD geometry.
We calculated the associated particle density distributions
of the low-energy states and found a ground-state-like, s

symmetric state of lowest energy, as well as excited states with
nodes along the coordinate axes of the system and at the center
of the QD. We argued that these wave functions provide a good
basis for analytical calculations of QD states. Furthermore, we
have presented 8-band calculations to derive the spectrum of
low-energy CB states in the QD. The magnetic field induced
splitting of the QD levels shows a nonlinear dependence on
the magnetic field and strong anisotropies depending on the
direction of the field. Starting from this, we have calculated the
g factor of low-energy electrons in self-assembled InAs QDs
subject to externally applied electric and magnetic fields. We
calculated the g factor for all possible spatial orientations of
the magnetic field and found distinct anisotropies. In particular,
we showed that the anisotropies include configurations where
the g factor drops down to values close to zero. Furthermore,
we observed that the shape of the anisotropies depends on the
QD level n and that the maximal values of gn increase with
n. Finally, we showed that our results are in good qualitative
agreement with recent measurements. From these findings we
conclude that the direction of magnetic fields applied to QDs
can be used to control the splitting of qubit states efficiently
and hence should prove useful for the manipulation of qubits
in such QDs.
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APPENDIX A: TRIAL WAVE FUNCTIONS

The Schrödinger equation of a particle confined to a square
with sides of length a,

− �
2

2m0

(
d2

dx2
+ d2

dy2

)
ψ�(x,y) = E� ψ�(x,y), (A1)

with boundary conditions ψ�(x,y) = 0 for x = 0, y = 0, x =
a, or y = a, has the well-known solution

ψ�
mn(x,y) = 2

a
sin

(
mπ

a
x

)
sin

(
nπ

a
y

)
, (A2)

E�
mn = �

2π2

2m0a2
(m2 + n2). (A3)

The wave function of a particle confined in an isosceles
triangle obtained by cutting the square along the diagonal,
ψ�(x,y), is constructed by symmetric and asymmetric linear
combination of degenerate solutions to the square problem,
ψ�

mn and ψ�
nm [33], and we find

ψ�s
mn = 1√

2
(ψ�

mn + ψ�
nm), (A4)

ψ�a
mn = 1√

2
(ψ�

mn − ψ�
nm), (A5)

where ψ
�s
mn (ψ�a

mn ) vanishes at x + y = a for m + n odd (even).
The general wave function takes the form

ψ�
mn = 1√

2
(ψ�

mn + (−1)m+n+1ψ�
nm), (A6)

with m,n = 1,2,3, . . . and m �= n to prevent the construction
of a vanishing wave function ψ

�
mm = 0. We apply a coordinate

transformation characterized by x = −[x̃ + (ỹ − ã)]/2
√

2
and y = [x̃ − (ỹ − ã)]/2

√
2 in order to bring the triangle into

upright position, i.e., the apex of the triangle is centered above
the base, and find

ψ�
mn(x̃,ỹ) = −ψ�

mn

(
x̃ + (ỹ − ã)

2
√

2
,
x̃ − (ỹ − ã)

2
√

2

)
(A7)

with m,n = 1,2,3, . . . , m �= n, and ã = a/
√

2.
Starting from the solution to the two-dimensional

Schrödinger equation, we construct an ansatz or trial wave
function that is not an eigenfunction of the three-dimensional
(3D) Schrödinger equation but nonetheless fulfills the bound-
ary conditions of the pyramid and expected symmetries. We
span the 3D volume of the pyramid with the product of two
upright triangles, see Fig. 9, and find the wave function

ψm(r̃) = c ψ�
mxmz

(x̃,z̃) ψ�
mymz

(ỹ,z̃)

= c
∏

ξ=x̃,ỹ

[sin(αξ ξ+) sin(αz ξ−)

− (−1)mξ +mz sin(αz ξ+) sin(αξ ξ−)], (A8)

with r̃ = (x̃,ỹ,z̃), c = csc(πz̃)/Nm, αi = miπ/ã, mi =
1,2,3, . . . , mx �= mz, my �= mz, m = (mx,my,mz), ξ± = ξ ±
(z̃ − ã)/2, and Nm such that the integral over the pyramid
volume yields

∫
d3r̃ |ψm(r̃)|2 ≡ 1. Note that we have added

the term csc(πz̃) in order to restore the asymptotes at the
apex and the base to the correct power law behavior in z that

x̃

0
ã

ỹ
ã

z̃ã

FIG. 9. (Color online) We span the pyramid volume by multiply-
ing two upright isosceles triangles (red and blue). Note that r̃ and ã

correspond to r and a in the main text, respectively.

were altered by taking the product ψ
�
mxmz

ψ
�
mymz

. This factor is
essential for obtaining s- and p-wave like states. The energies
of state ψm are given by

Em = �
2

2m0
〈ψm(r̃)| (−i∇)2 |ψm(r̃)〉 . (A9)

For notational simplicity we use ψm ≡ ψmxmymz
. We note that

the states ψmxmxmz
and ψmzmzmx

coincide by construction and
that ψmxmymz

and ψmymxmz
are degenerate.

As mentioned above, ψm is not an eigenfunction of the
3D Schrödinger equation. However, the boundary conditions
are fulfilled. In addition, the energies Em are smaller than
the eigenenergies of known analytical solutions provided that
the correct boundary conditions at the base of the pyramid are
taken into account [23]. Furthermore, the set of eigenfunctions
reported in Ref. [23] is incomplete and in particular lacks the
ground state and states with a nonvanishing particle density
(of s-wave type) at the center of the pyramid. In contrast,
our trial wave functions form a complete set including states
with s- and p-wave character. Despite the fact that ψm is not
an eigenfunction, we conclude that our trial wave functions
provide a good starting point for analytical investigations of
pyramidal quantum dots.

APPENDIX B: MATERIAL PARAMETERS

We choose the notation for the parameters exactly as given
in Ref. [32]. See Table I.

TABLE I. Material parameters used in this work. If not stated
otherwise, the parameters were taken from Ref. [32].

Eg [eV] 0.418 q 0.39
�0 [eV] 0.380 C1 [eV] −5.08 [32,37]
P [eV Å] 9.197 Dd [eV] 1 [32,37]
Ck [eV Å] −0.0112 Du [eV] 2.7
m∗ [m0] 0.0229 D′

u [eV] 3.18
g∗ −14.9 C2 [eV] 1.8 [37,38]
γ1 20.40 D′ −2 [39]
γ2 8.30 C4 [eVÅ] 11.3 [40,41]
γ3 9.10 C5 [eVÅ] 103.3 [40,41]
B+

8v [eV Å2] −3.393 C ′
5 [eVÅ] 76.9 [42]

B−
8v [eV Å2] −0.09511 aInAs [nm] 6.0583

B7v [eV Å2] −3.178 aGaAs [nm] 5.65325
κ 7.60 νInAs 0.35 [43]
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