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Tight-binding model for adatoms on graphene: Analytical density of states, spectral function, and
induced magnetic moment
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In the limit of low adatom concentration, we obtain exact analytic expressions for the local and total density
of states (LDOS, TDOS) for a tight-binding model of adatoms on graphene. The model is not limited to
nearest-neighbor hopping but can include hopping between carbon atoms at any separation. We also find an
analytical expression for the spectral function A(k,E) of an electron of Bloch vector k and energy E on the
graphene lattice, to first order in the adatom concentration. We treat the electron-electron interaction by including
a Hubbard term on the adatom, which we solve within a mean-field approximation. For finite Hubbard U , we
find the spin-polarized LDOS, TDOS, and spectral function self-consistently. For any choice of parameters of
the tight-binding model within mean-field theory, we find a critical value of U above which a moment develops
on the adatom. Preliminary calculations also indicate that this moment can be switched on and off by varying
the Fermi energy. For most choices of parameters, we find a substantial charge transfer from the adatom to the
graphene host.
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I. INTRODUCTION

Graphene is a well-known allotrope of carbon in which
the carbon atoms bond in a planar sp2 configuration [1,2].
As a result, the single graphene sheet is effectively two
dimensional [3,4]. Of the four n = 2 electrons which occupy
the outer shell of a carbon atom, three are in sp2 orbitals and
form in-plane π bonds between the nearest-neighbor carbon
atoms, while the fourth occupies a 2pz orbital. These 2pz

orbitals form a band of states which are responsible for many of
the characteristic electronic properties of graphene [3]. Among
these properties are a zero band gap at the so-called Dirac point,
an electronic dispersion relation that, near the Dirac point, is
equivalent to that of massless Dirac fermions, and spin-orbit
coupling which is believed to be small because of the low
atomic number of carbon [3,4]. Graphene has a vast number
of potential applications, including photovoltaic cells [5],
ultracapacitors [6,7], and spin-transport electronics [8–10].

Recently, a number of researchers carried out experimental
and theoretical investigations into the effects of adatoms and
impurities on both the band structure and localized magnetic
moments in graphene. Among these are theoretical studies of
carbon vacancies in graphene [11–13], hydrogen atoms on the
surface of graphene [14], and several other types of disorder
in graphene [15–17]. In several of these cases and in other
work [16–19], impurity effects have been treated using a tight-
binding model for the electronic structure of graphene and
impurities, vacancies, or adatoms. These calculations have,
however, either been carried out numerically or in the limit of
energies close to the Dirac point, where the graphene density
of states can be approximated as linear [20].

Density-functional calculations for adatoms on graphene
have also been carried out. They have shown that the
introduction of an adatom bonded to the surface of graphene
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can lead to a quasilocalized state with an energy near the Fermi
energy and that the wave function of this quasilocalized state
includes contributions from the orbitals of neighboring carbon
atoms [12,14]. In some cases it has been found that, even if
the introduced defect or adatom is nonmagnetic, a localized
magnetic moment can form at the defect site [12].

In this paper, we extend the previous work on graphene
with adatoms in two ways. First, we show that the tight-
binding model for adatoms on graphene can, in the limit
of low concentrations, be solved analytically in the absence
of electron-electron interactions. Specifically, we obtain an-
alytical expressions for the local density of states (LDOS)
on the adatom, the total density of states (TDOS) of the
adatom-graphene system, and the spectral function A(k,E) for
an electron with Bloch vector k and energy E in graphene in the
presence of the adatom [21]. All these results are expressed
as a function of the graphene density of states, which itself
is known analytically for a nearest-neighbor tight-binding
model [19,22].

Second, we calculate the magnetic properties of the system
using the Hubbard model for the electron-electron interaction,
which we treat using a standard mean-field approximation.
This treatment leads to a transition between a nonmagnetic
and magnetic state above a critical value of U which depends
on the parameters of the tight-binding model. In the presence
of a finite U , our model is basically a special case of the
well-known Anderson model [23], but with a linear rather
than a constant density of states near the Fermi energy. Our
results include not only the magnetic moment on the adatom,
but also that on the graphene sheet and the charge transfer
from the adatom to the sheet, all as functions of the model
parameters.

The remainder of the paper is arranged as follows: In
Sec. II, we describe the model tight-binding Hamiltonian of the
graphene-adatom system. We also describe its generalization
to include electron-electron interaction on the adatom via a
Hubbard U term and the mean-field treatment of this term.
In Sec. III, we describe the Green’s function method used
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to analytically calculate the local density of states on the
adatom, the total density of states on the graphene lattice
in the presence of the adatom, and the spectral function. In
Sec. IV, we present numerical results for the local densities
of states, the total density of states, and the spectral function
for the graphene-adatom system. We give the local density of
states in the presence of a finite Hubbard U within mean-field
theory, and give the magnetic moment induced by the adatom
and the charge transfer from the adatom to the graphene, all
as a function of the adatom parameters. In Sec. V, we give a
concluding discussion.

II. MODEL HAMILTONIAN

Graphene is composed of two interpenetrating triangular
lattices, which we will label α and β, and thus two carbon
atoms per primitive cell. In this work, we are interested in
a system consisting of a perfect lattice of graphene plus a
single adatom, which we will assume has one atomic orbital.
We also assume that the adatom lies at the so-called T (top)
site, above one of the carbon atoms. It has been found, using
ab initio electronic-structure calculations, that several species
of adatoms, including H, F, and Au, do occupy a location above
one of the carbon atoms [24–26].

We treat the graphene-adatom system using a tight-binding
Hamiltonian that can, in principle, include hopping between
any two carbon atoms. For pure graphene, the Hamiltonian can
be written in terms of the creation and annihilation operators
for electrons of spin σ on a site in the nth primitive cell of
the α and β sublattices. We denote the creation (annihilation)
operators for the α and β sublattices by a

†
nσ (anσ ) and b

†
nσ

(bnσ ). The corresponding tight-binding Hamiltonian H0 for
graphene may be written in real space as

H0 = −
∑
n,δ,σ

(tαβ,δa
†
n,σ bn+δ,σ + H. c.)

−
∑

n,δ �=0,σ

tαα,δ(a†
n,σ an+δ,σ + b†n,σ bn+δ,σ ). (1)

Here, tαβ,δ and tαα,δ (tαβ,tαα > 0) are hopping integrals which
take an electron of spin σ (σ = ± 1

2 ) from a lattice site to a
neighboring lattice site, and δ denotes a Bravais lattice vector
of the triangular lattice. The first sum represents hopping
between sublattices and therefore all possible Bravais lattice
vectors are summed over, whereas the second sum only
includes hopping between sites on the same sublattice and,
thus, δ = 0 is not allowed. We have assumed that the hopping
integrals for hopping on the same sublattice are identical for
the α and β sublattices and therefore set tαα = tββ .

Equation (1) can be Fourier transformed as

H0 =
∑
k,σ

H0,k,σ ;

H0,k,σ = −tαβ(k)a†
k,σ bk,σ − t∗αβ(k)ak,σ b

†
k,σ − tαα(k)

×[a†
k,σ ak,σ + b

†
k,σ bk,σ ], (2)

where tαβ(k) = ∑
δ eik·δtαβ,δ and tαα(k) = ∑

δ �=0 eik·δtαα,δ . In
the limit of only nearest-neighbor hopping, tαα,δ = 0, and
tαβ,δ = 0 except for the three nearest neighbors. In this limit,

FIG. 1. (Color online) Left: graphene crystal structure showing
the two interpenetrating lattices labeled as α and β and the set of
nearest-neighbor vectors d1, d2, and d3. Right: first Brillouin zone
for graphene showing the high-symmetry points. This figure is a
modified version of one shown in Ref. [3].

we write tαβ(k) = t(k). The three nearest-neighbor vectors are
shown in Fig. 1, where they are denoted by d1, d2, and d3.

In this limit,

H0,k,σ = −t(k)a†
k,σ bk,σ − t∗(k)ak,σ b

†
k,σ . (3)

Here, the operator a
†
k,σ = 1√

N

∑
n an,σ exp(ik · δn), where N

is the number of primitive cells in the graphene lattice
and δn is the nth Bravais lattice vector of the triangular
lattice; an analogous definition holds for b

†
k,σ . The sum

over k is confined to the first Brillouin zone and t(k) =
t[1 + 2 exp( 3ikxa0

2 ) cos(
√

3kya0

2 )]. Here, t is the hopping energy
between nearest-neighbor carbon atoms (t = 2.8 eV for
graphene [18]), and a0 = 1.42 Å is the nearest-neighbor bond
length [12].

We wish to investigate what happens to the density of states
when an isolated adatom is adsorbed onto the host graphene
at a T site (this location corresponds to hydrogen absorption
on graphene) [24,25]. The extra piece of the tight-binding
Hamiltonian HI due to the adatom may be written in real
space as

HI = ε0

∑
σ

h
†
0,σ h0,σ − t ′

∑
σ

(h†
0,σ a0,σ + h0,σ a

†
0,σ ). (4)

Here, h
†
0,σ and h0,σ are creation and annihilation operators for

an electron of spin σ (σ = ± 1
2 ) at the site of the adatom, which

we assume is located at the site 0 of the α sublattice, ε0 is the
onsite energy of an electron on that site (relative to the Dirac
point of the pure graphene band structure), and t ′ (t ′ > 0) is
the energy for an electron to hop between the adatom and the
carbon atom at the site 0 of the α sublattice.

HI can readily be expressed in terms of Bloch eigenstates
of H0. These eigenstates may be written as two-component
column vectors with components ψ1(k) and ψ2(k) satisfying
the eigenvalue equation (hereafter we suppress the spin
subscript until needed)(

εk + tαα(k) tαβ(k)

t∗αβ(k) εk + tαα(k)

)(
ψ1,k

ψ2,k

)
= 0. (5)
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The solution to this eigenvalue problem gives the tight-binding
band structure of pure graphene [18], and the corresponding
eigenvectors satisfy ψ1,k = ∓e−iφkψ2,k, where the phase
factor e−iφk is given by e−iφk = tαβ (k)

|tαβ (k)| . We can then write
the destruction operator for a Bloch electron in the upper and
lower bands as γk,1

2
= 1√

2
(eiφkak ± bk) where we have defined

γk,1 and γk,2 to be properly normalized, so that, for example,
the anticommutator {γk,1,γ

†
k,1} = 1.

It is readily shown that HI can be rewritten as

HI = ε0h
†
0h0

− t ′√
2N

[
h
†
0

∑
k

e−iφk (γk,1 + γk,2) + H.c.

]
. (6)

Thus, in HI , the creation and annihilation operators of the
adatom are connected to every eigenstate of the graphene band
structure by matrix elements of equal magnitude (although
different phase). For a hydrogen adatom, we take ε0 = 0.4 eV
and t ′ = 5.8 eV, as found in [18]. The one-electron Hamil-
tonian H0 + HI is a special case of the Anderson impurity
model [23], where the impurity state is coupled to all the band
electron states by matrix elements of equal magnitude.

We also include in our calculation the effects of an onsite
electron-electron interaction of the Hubbard form

HU = Un0↑n0,↓, (7)

where n0,σ = h
†
0,σ h0,σ is the number of electrons with spin

σ on the T site. For a hydrogen adatom we take U to
be the difference between the ionization potential and the
electron affinity providing us with a numerical value of
U ∼ 12.85 eV = 4.59t [27,28].

The Hubbard term given in Eq. (7) is quartic in the creation
and annihilation operators. Therefore, in order to calculate
the properties of the Hamiltonian including this term, we use
a standard mean-field theory to rewrite this term (see, e. g.,
Ref. [29]) in the form

HU ∼ U [h†
0↑h0↑〈n0↓〉 + h

†
0↓h0↓〈n0↑〉 − 〈n0↑〉〈n0↓〉]. (8)

With this approximation, the total Hamiltonian, consisting
of the sum of Eqs. (2), (6), and (8), becomes quadratic
in electron creation and annihilation operators, and can be
diagonalized. The Fermi energy, total energy, and magnetic
properties of the system can then be obtained by an iterative
process as described below. The electronic density of states
corresponding to the one-electron Hamiltonian H0 + HI can
be obtained analytically, as we describe below, which makes
the calculation of the total energy and the magnetic properties
quite simple.

III. GREEN’S FUNCTION, DENSITY OF STATES, AND
SPECTRAL FUNCTION OF GRAPHENE-ADATOM

SYSTEM

A. Green’s function

We use the single-particle Green’s function approach to
calculate the local and total density of states of the graphene-
adatom system, initially omitting the Hubbard-U term. We
continue to suppress the spin degree of freedom since, in the

absence of the Hubbard term, spin just gives an extra factor
of 2. To that end, we first introduce the resolvent operator
G(z) = 1

z−H
, where z = E + iη (η → 0+), and H = H0 +

HI . If there are 2N carbon atoms and 1 adatom, G(z) can be
expressed as a (2N + 1) × (2N + 1)-dimensional matrix. It is
convenient to use the 2N Bloch states (corresponding to Nk
values) created by the operators γ

†
k,1 and γ

†
k,2 as the basis for

this matrix, plus the adatom orbital corresponding to h
†
0. If we

let the adatom orbital correspond to the first of the (2N + 1)
states, then one can easily write out the matrix z − H of which
G(z) is the inverse.

B. Density of states

We denote the local electronic density of states per spin on
the adatom site by ρ00(E). ρ00(E) is related to G(z) by

ρ00(E) = − 1

π
ImG00(z) = − 1

π
Im〈0| 1

z − H
|0〉. (9)

Here, z = E + iη (η → 0+) and 〈0|1/(z − H )|0〉 denotes the
matrix element of 1/(z − H ) evaluated at the location of the
adatom, which we take to be above the atom 0 on the α

sublattice. We can then evaluate ρ00(E) as

ρ00(E) = − 1

π
Im

(
1

z − ε0 − t ′2
2N

G0(z)

)
, (10)

where

G0(z) =
2∑

k,λ=1

(
1

z − εk,λ

)
≡ Tr

(
1

z − H0

)
(11)

and εk,2 = −εk,1 are the eigenvalues of Eq. (5).
The real and imaginary parts of G0(z) are related to the

(unperturbed) graphene density of states per graphene unit cell
(per spin), which we denote ρ0(E), by − 1

π
Im G0(E + iη) =

Nρ0(E) and Re G0(E) = N P(
∫ 3t

−3t

ρ0(E′)
E−E′ dE′), with η → 0+

and where the integral runs over the range where ρ0(E′) �=
0 [16,23]. For the form of H0 which includes only nearest-
neighbor hopping, ρ0(E) has been given by Refs. [19,22]; the
relevant expression can be found in Eqs. (14)–(16) of Ref. [19].

The density of states on the carbon sites (per spin) in
the presence of an adatom may be written as ρg(E) =
− 1

π
Im

∑
k,λ〈k,λ| 1

z−H
|k,λ〉, where z = E + iη (η → 0+), and

can readily be computed. The total density of states per spin
is the sum of ρ00 [Eq. (10)] and ρg(E), and can readily be
rearranged to equal

ρtot(E)=Nρ0(E) − 1

π
Im

{
d

dz
ln

[
z − ε0 − t ′2

2N
G0(z)

]}
. (12)

C. Spectral function

We can use an analogous approach to calculate the spectral
function A(k,E). A(k,E) represents the probability density
that an electron with Bloch wave vector k has energy E, and
is given by A(k,E) = − 1

π
Im

∑
λ〈k,λ|( 1

z−H
)|k,λ〉 where z =

E + i0+. It can be evaluated using the methods of the previous
section giving

A(k,E) = − 1

π
Im

( 2∑
λ=1

1

z − εk,λ − �λ(k,z)

)
, (13)
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where �λ(k,E) is the self-energy and is written to first order
in 1/N . We find that the self-energy is independent of both λ

and k and takes the form

�λ(k,z) = t ′2

2N

(
1

z − ε0 − t ′2
2N

G0(z)

)
. (14)

All these equations [(10)–(14)] remain valid for non-nearest-
neighbor hopping; only the form of the graphene density of
states has to be changed.

D. Effects of electron-electron interaction; spin-polarized
density of states and magnetic moment

Finally, we discuss the effects of including a nonzero
Hubbard term HU [Eq. (7)] in the Hamiltonian. If we treat HU

by mean-field theory [Eq. (8)], then the densities of states for
spin-up and -down electrons may be different. We can calculate
the partial density of states self-consistently as follows. First,
we make an initial assumption for the values of 〈n0↑〉 and 〈n0↓〉.
Then, the effective onsite energy for an up-spin electron on the
hydrogen adatom is obtained by making the replacement

ε0,↑ → ε0 + U 〈n0,↓〉, (15)

with a corresponding expression for ε0,↓. Given ε0,↑ and ε0,↓,
we can compute the local densities of states ρ00,↑ and ρ00,↓
using the appropriate generalizations of Eq. (10); we can also
obtain the total densities of states ρtot,↑ and ρtot,↓ using the
corresponding generalizations of Eq. (12). The Fermi energy
EF is then obtained from the condition

2N + 1 =
∫ EF

−3t

ρtot(E)dE, (16)

where we assume one adatom, 2N carbon sites, and ρtot(E) =
ρtot,↑(E) + ρtot,↓(E). Given EF , we then recalculate 〈n0,↑〉 and
〈n0,↓〉. The procedure is repeated until successive iterations
do not lead to a significant change in 〈n0,↑〉 and 〈n0,↓〉. In
practice, we require that these quantities change by no more
than ±0.001na on successive iterations (here, na is the number
of adatoms in the calculation). Typically, about 20 iterations

of the self-consistent equations are needed to attain this degree
of convergence, as discussed further in the following.

Once EF has been found, the total magnetic moment μT of
the system is obtained from

μT

μB

=
∫ EF

−3t

[ρtot,↑(E) − ρtot,↓(E)]dE, (17)

where μB is the Bohr magneton.
In the limit U → ∞, the mean-field version of the Hubbard

model can be done without iteration. In this limit, only one
of the quantities 〈n0,↑〉 or 〈n0,↓〉 is nonzero. The reason is
that if, say, 〈n0,↑〉 is nonzero, then the energy to put a spin-
down electron on the adatom becomes infinite, and hence the
number of spin-down electrons must be zero. To be definite,
we assume that 〈n0,↓〉 = 0. In that case, we just have ε0,↑ = ε0,
and ε0,↓ → ∞. The total density of states for the up spins will
then be given by Eq. (12), while that for the down spins is just
that of unperturbed graphene: ρtot,↓ = Nρ0(E).

In the limit U → ∞, the Fermi energy EF is obtained from
Eq. (16) and may be simplified to∫ EF

0
2Nρ0(E)dE− 1

π
Im ln

[
EF −ε0− t ′2

2N
G0(EF )

−3t − ε0 − t ′2
2N

G0(−3t)

]
=1.

(18)

Once EF has been obtained, the magnetic moment μT can be
again found using Eq. (17). Since both ρtot,↑(E) and ρtot,↓(E)
are available analytically, using Eqs. (17) and (18), μT is easily
computed in closed form.

IV. NUMERICAL RESULTS

In Fig. 2(a), we plot the local density of states ρ00(E) for
parameters appropriate to a hydrogen adatom on graphene with
U = 0, as calculated from Eq. (10). We use the parameters
t = 2.8 eV, t ′ = 5.8 eV, and ε0 = 0.4 eV, as given by Ref. [18]
for a hydrogen adatom. In Fig. 2(b), we plot the change in the
total density of states produced by a single hydrogen atom, i.e.,
the quantity ρtot(E) − Nρ0(E) for the three cases of Fig. 2(a),
calculated using Eqs. (9) and (12).
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FIG. 2. (Color online) (a) Local density of states per spin on the adatom site ρ00(E) with U = 0 for a graphene sample with N = 500
graphene unit cells (1000 C atoms) and 1 adatom. We assume the model described in the text [Eqs. (3) and (6)]. Black curve: t ′ = 5.8 eV,
ε0 = 0.4 eV; blue curve: t ′ = 1.0 eV, ε0 = 0.4 eV; and red curve: t ′ = 1.0 eV, ε0 = −0.4 eV. In all three cases, t = 2.8 eV. The Fermi energy
is calculated using Eq. (16) and gives EF = 0.236 eV. (b) The change in the density of states per spin due to the adatom for the three cases
shown in (a). In both (a) and (b), the inset figures are enlargements of the region between −1 and +1 eV.
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FIG. 3. (Color online) (a)–(c) Spectral function A(k,E) at U = 0
for the graphene-adatom system, as calculated using Eqs. (13)
and (14) for three values of k corresponding to M , K , and �,
respectively, assuming a nearest-neighbor tight-binding band. We
use t = 2.8 eV, t ′ = 5.8 eV, ε0 = 0.4 eV, and N = 500. (d) The
spin-polarized spectral function for the point M and the case U → ∞
in the mean-field approximation, using the same parameters as
in (a)–(c). Aσ (k,E) for the majority spin component is shown in
black and that of the minority component in red. For the minority
spin component, Aσ (k,E) is just that of the unperturbed graphene
sheet, i.e., delta functions at the unperturbed pure graphene energy
eigenvalues for all values of k. For the case U = 0, and for the
majority spin at U = ∞, the adatom contribution occurs near EF ,
while the graphene sheet contribution corresponds to broadened peaks
near the unperturbed energy eigenvalues εk given as the eigenvalues
in Eq. (5). For points � and M , the integral of the peak near E ∼ 0 is
of order 1/(2N ) times those of the main peaks in the spectral function,
and thus vanishes as N → ∞.

Next, we calculate both the spectral function A(k,E) for
U = 0 and the spin-polarized spectral function Aσ (k,E) for
U = ∞ as functions of E for several values of k, using the
parameters given previously. Aσ (k,E) is obtained using a
generalization of Eq. (13) in the limit U → ∞ as discussed in
Sec. III D. The resulting spectral functions are shown in Fig. 3
through first order in 1/N . The contribution from the adatom
appears as the sharp spike near EF = 0.173 eV, while the
contribution from the graphene sheet is shown as broadened

peaks near the values of εk,i (i = 1,2) for the three choices
of k. The self-energy term [Eq. (14)] controls the width of
the graphene resonances. The integral of the graphene sheet’s
contribution to the spectral function will be of order N times
larger than that of the adatom. Furthermore, the width of the
graphene peaks in the spectral function is proportional to the
density of adatoms.

Using the mean-field methods described in Sec. II, we
can calculate a variety of other spin-independent and spin-
dependent properties of the adatom-graphene system. These
include ρ00,↑(E) and ρ00,↓(E), the local density of states of up
and down spin on the adatom; the induced magnetic moment
on the adatom (μa) and in the entire system of graphene
sheet plus adatom (μT ); and the net charge transfer from
the adatom to the sheet, all as functions of the parameters
U , ε0, and t ′. The magnetic moment on the adatom site is
μa = (〈n0,↑〉 − 〈n0,↓〉)μB . 〈n0,σ 〉 is obtained from 〈n0,σ 〉 =∫ EF

−∞ ρ00,σ (E)dE, where ρ00,σ (σ =↑ or ↓) is defined using
the appropriate generalization of Eq. (10). The total magnetic
moment is given in Eq. (17). The net charge transfer from
adatom to the graphene lattice is obtained by first integrating
ρ00,↑ + ρ00,↓ up to the Fermi energy, to obtain the net number
of electrons on the adatom, then subtracting this quantity from
the adatom valence Z (i.e., for hydrogen, Z = 1) to obtain the
net charge transfer.

We have carried out these calculations for various values
of the adatom onsite energy ε0, Hubbard parameter U , and
hopping energy t ′. In Table I, we summarize the results
above for parameters appropriate to a hydrogen adatom and
summarize the trends when the various adatom parameters are
varied. Additional results are shown in Figs. 2 and 4. As can be
seen in Table I and Fig. 4, the parameter values thought to be

TABLE I. Magnetic moment on the adatom (μa), total magnetic
moment on the graphene-adatom system (μT ) (both in units of μB ),
and the charge transferred from the adatom to the graphene lattice
(in units of an electron charge), for various choices of U , onsite
energy ε0, and hopping energy t ′. Note that U = 4.59t , ε0 = 0.4 eV,
and t ′ = 5.8 eV correspond to the expected parameters of a hydrogen
adatom. When U → ∞, we find a spin-polarized state near the Fermi
energy. The magnetic moment calculated on the adatom is done using
a combination of Eqs. (8) and (10) and the magnetic moment on
the sheet is calculated using Eq. (17). (a) LDOS plotted in Fig. 2.
(b) Spin-polarized LDOS plotted in Fig. 4(a).

Summary of Numerical Results

μa (μB ) Charge
ε0 t ′ per μT transfer EF

U (eV) (eV) adatom (μB ) (|e|) (eV)

0.0ta 0.4 5.8 0.0 0.0 0.372 0.372
4.59tb 0.4 5.8 2.67E-4 1.13E-3 0.695 0.173
10.0t 0.4 5.8 3.11E-3 7.67E-3 0.758 0.236
∞ 0.4 5.8 0.300 0.871 0.699 0.111
∞ 0.0 5.8 0.260 0.927 0.738 0.050
∞ − 0.4 5.8 0.338 0.958 0.662 0.050
∞ − 1.0 5.8 0.360 0.990 0.639 −0.01
∞ 0.4 1.8 0.358 0.506 0.641 0.236
∞ 0.4 7.8 0.219 −0.11 0.780 0.236
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FIG. 4. (Color online) Spin-polarized local density of states (sLDOS) per adatom for both the majority spin (black solid line) and minority
spin (red solid line), as obtained by substituting Eq. (15) into Eq. (10). We use t = 2.8 eV and the following values of the onsite energy ε0, hopping
energy t ′, and Hubbard energy U : (a) (t ′,ε0,U ) = (5.8,0.4,4.59t); (b) (5.8,0.4,10t); (c) (5.8,0.4,∞); (d) (5.8,0.0,∞); (e) (5.8, − 0.4,∞); (f)
(5.8, − 1.0,∞); (g) (1.8,0.4,∞); (h) (7.8,0.4,∞).

appropriate to an H adatom (U = 4.59t , t ′ = 5.8 eV, and ε0 =
0.4 eV) lead to a very small magnetic moment on the adatom
although there is an increase in both the LDOS and TDOS
close to the Fermi energy [EF = 0.173 eV; see Fig. 4(a)].

In general, as seen in Table I, for sufficiently large U , a
nonzero magnetic moment develops on both the adatom and
the graphene sheet. The moment on the adatom is of order
0.3 μB in this limit, for the given parameters, while the sum
of the moments on the adatom and the sheet approaches μB

in this limit. We also find in all of our calculations that a
large fraction (typically 0.6 − 0.7 of the electron) is transferred
from the adatom to the graphene sheet for the parameters we
consider. For the parameters appropriate to hydrogen adatoms,
the model predicts no, or only a very small, induced magnetic
moment. A possible explanation is that our model assumes
no lattice distortion due to the adatom. But, DFT calculations
have shown that the surface of graphene is warped due to the
addition of an adatom. This warping could change the distance
between the adatom and the neighboring carbon atoms, and
hence possibly the value of the Coulomb integral.

In Fig. 5, we show the total magnetic moment of the system
as given by Eq. (17) plotted as a function of U , for various
values of t ′. In each case shown, ε0 = 0.4 eV and t = 2.8 eV.
In all the plots, there is an apparent threshold behavior: the
moment becomes nonzero only if U exceeds a threshold value
which depends on t ′ as well as on U . While these calculations
are done using a simple mean-field approximation, they seem
to be consistent with other work on related models [23,30] .

It is also of interest to consider how the magnetic moment on
the adatom varies with the Fermi energy EF . EF can be tuned
experimentally by applying an external voltage to the sample,
thereby reversibly adding or subtracting charge carriers, in the

form of holes. Such experiments have recently been carried out
by Nair et al. [31]. These workers find that there is a usually a
threshold voltage beyond which the magnetic moment of the
sample can be partially or completely quenched.

This quenching can be qualitatively understood as follows.
In the absence of an applied voltage, the local density of states
on the adatom is different for the up and down spins. Hence,
there is a nonzero magnetic moment on the adatom, which is
the difference between the integrated local density of states of
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FIG. 5. (Color online) Total magnetic moment on the adatom and
the graphene (μT ), in units of μB , versus U for two values of t ′/t

(red curve: t ′ = 1.0t , black curve t ′ = 2.0t). In this plot, we hold ε0 =
0.4 eV and t = 2.8 eV as we vary U for two different choices of t ′. In
both cases, the moment seems to become nonzero at a characteristic
value of U , which depends on t ′, t , and ε0. Lines connect calculated
points.
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up and down spins up to the Fermi energy. If EF is sufficiently
reduced, it falls below the adatom density of state peaks for
both spins, and hence the magnetic moment on the adatom falls
to zero. Moreover, since the density of states peaks for up and
down adatoms are determined self-consistently via Eqs. (10)
and (17), ρ00,σ (E) becomes independent of σ when EF is
sufficiently reduced.

We have carried out preliminary calculations of this kind
and found that there is, indeed, a threshold value of EF

below which the magnetic moment is quenched to zero. For
parameters similar to those found in Nair et al., we estimate
this threshold to be approximately 0.5 eV. Thus, the quenching
seen in the experiments of Ref. [31] is at least qualitatively
found in our model. In future work, we plan to make a more
quantitative comparison of the present model with experiment,
using the actual doping generated in the experiments.

V. DISCUSSION

Using a tight-binding model we have calculated the local
and total density of states and the spectral function for a
system consisting of a single adatom in a T site on graphene.
Because the hopping integral from the adatom to a graphene
Bloch state has the same magnitude for any k, we have
shown that these quantities can be calculated analytically.
This simplification holds even if we do not make the oft-used
linear approximation [16] for the graphene density of states
near the Dirac point. It is also valid even if we include
non-nearest-neighbor hopping in the tight-binding graphene
Hamiltonian. Since our numerical results give both the local
and total density of states, we can compute the charge transfer
from the adatom to the graphene. Our numerical results show
that, for most parameters we consider, this charge transfer is
a substantial fraction of an electron (approximately 70% for
parameters appropriate to hydrogen).

Because the calculations are at low adatom concentrations,
the adatom-induced density of states is linear in concentration.
Other work has treated the same system at higher adatom
concentrations, but only numerically [18]. In future work, it
might be possible to treat the present model analytically at
higher concentrations, at least approximately. It would also be
of interest to include the effects of lattice distortions, which are
known to exist when adatoms bind to graphene [32], and which
can lead to a large increase in spin-orbit interactions [33,34].
Such spin-orbit interactions would likely have a large effect
on the magnetic properties arising from the adatom.

We have also calculated the magnetic properties induced by
the adatom, using a Hubbard model treated within mean-field
theory. For all choices of the Hamiltonian parameters, we find
that there is a critical value of the Hubbard U above which the
density of states near the Fermi energy is spin polarized and
a net induced magnetic moment is formed. The appearance of
this magnetic moment was predicted long ago to occur within
mean-field theory for models with a slowly varying density of
states near the Fermi energy [23]. Here, it is also found to occur
in a system with a roughly linear density of states near EF .

Next, we discuss the reliability of the simple mean-
field approximation (MFA) used to study magnetic moment
formation. While the approximation is too simple to give all the
details of the magnetic properties, it may give a qualitatively

reasonable picture. In support of this hypothesis, a study of the
Kondo Hamiltonian using renormalization-group techniques
for a system with a linear density of states [30] also found a
critical threshold for moment formation, as a function of the
model parameters. Since, at large U , the Hubbard model can
be approximately transformed into the Kondo model [35], it
seems likely that there really is a threshold behavior in the
Hubbard model with a linear density of state such as is found
here, even though we use a mean-field theory to obtain it.

We note that our result for the total density of states of
the system [Eq. (12)] suggests that the magnetic moment
of the adatom can be suppressed for experimentally relevant
values of ε0, t, t ′, and U by varying the Fermi energy of the
system. That is, if we can control the Fermi energy of the
system, by say gating the material appropriately, then the total
magnetic moment of the system can approach zero. This result
appears consistent with recent experimental work by Nair et al.
who reported reversible switching of the defect magnetism in
irradiated and doped graphene [31].

A somewhat counterintuitive result of our calculations is
that, as t ′ increases, the value of U needed to induce a magnetic
moment becomes smaller. Since a larger t ′ suggests that it is
easier for the electron to hop from the impurity to the graphene,
one might expect that a moment on the impurity atom would
be less likely to form. A possible explanation is that the larger
t ′ also causes the peak in the impurity density of states to shift
closer to the Dirac point, where the graphene density of states
is smaller. Thus, there are fewer final states available for an
electron to hop into, and hence, the electron is less likely to
hop, thus increasing the likelihood of moment formation on
the impurity.

In our approximation, we also calculate the spectral func-
tion of our graphene-adatom system to first order in 1/N . The
main effect of the adatom is, as expected, simply to broaden the
delta-function peaks that the spectral function would exhibit
in an ideal graphene lattice. In our approach, this broadening,
and the shape of the spectral line, are computed analytically.
To the same order, we find that both the adatom contribution
to the spectral function at E ∼ 0 and the broadening of the
graphene spectral lines will vanish as N → ∞.

In summary, we have, using a single-particle Green’s func-
tion approach together with a tight-binding Hamiltonian in the
limit of no electron-electron correlations, obtained analytical
equations for the LDOS, TDOS, and spectral function for
adatoms on the surface of graphene. Using the same model
with a finite Hubbard energy U , we find that a magnetic mo-
ment is induced both on the adatom and nearby on the graphene
sheet above a critical value of U which depends on the other
model parameters. These results are not only of intrinsic
interest but also may be useful in understanding the behavior of
a variety of adatoms on graphene. Furthermore, the same an-
alytical approach might also be used to treat adatoms on other
two-dimensional systems, such as those based on Si or Ge.
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