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Chiral tunneling, tunneling times, and Hartman effect in bilayer graphene
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We investigate the chiral tunneling in a bilayer graphene n-p-n junction in time aspect. The phase and dwell
times are evaluated for various situations, including the effects of trigonal warping and band gap due to an
external gate field. In the absence of band gap and for normal incidence, the chirality induces Klein effects;
when the trigonal warping is excluded, the tunneling times are the same as the ordinary barrier tunneling, but
including it leads to a perfect reflection and a new type of phase time is found. In the presence of band gap
and/or for an oblique incidence, the Klein effects disappear and the tunneling times have peaks corresponding to
resonant transmission maxima due to the Fabry-Pèrot-type interference of the oscillating waves allowed inside the
barrier. The trigonal warping also leads to valley-polarized transmission for an oblique incidence in the absence
or presence of band gap. As a result, the tunneling times and scattering angles of particles from one valley
are different from the other valley. We observe that the Hartman effect exists only when the chirality selects pure
evanescent waves as transmission channels.
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I. INTRODUCTION

Transport of quasiparticles in graphene [1–3] features
many interesting phenomena, not familiar with electrons in
conventional semiconductors. In particular, their chiral prop-
erties control the flow of quasiparticles in graphene junctions,
rendering the Klein effects [4,5]; for normal incidence on a
potential barrier, the quasiparticles of monolayer graphene
(MLG) are perfectly transmitted through the barrier and
those of bilayer graphene (BLG) have exponentially small
transmission probability even if there are many empty states
inside the barrier [6–9]. There have been many studies on
the perfect transmission in MLG [6,10,11] and experimental
results have also been reported [12–14]. In recent years,
the chirality-induced Klein effects in BLG have drawn more
attention [15–20] because of its potential device applications
due to the tunability of band gap [21–27].

In this paper, we study the chiral tunneling of quasiparticles
in a BLG n-p-n junction, including the effects of trigonal
warping (TW) and band gap induced by an external electric
field applied perpendicularly to the layer. In particular, we
investigate the chiral tunneling in connection with tunneling
times, namely, the phase and dwell times. Previously, the effect
of band gap on the chiral tunneling has been discussed in
view of Zener tunneling [15], survival of the Klein effect [17]
and the effects of magnetic barrier [18]. In these and other
studies [6,9] the TW term has been discarded by assuming the
low-energy dispersion is dominated by the quadratic term. As
we show below, however, the inclusion of the TW makes the
transmission of quasiparticles through a barrier qualitatively
different from the case without it, in the absence or presence
of band gap, and the difference between the two cases can
be seen clearly in the behaviors of the tunneling times. The
essential features of transmission through the BLG junction
are determined by the chirality of pseudospinors which are
strongly coupled to the nature of wave vectors. When the TW
is included complex wave vectors as well as real or imaginary
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wave vectors appear, which makes the transmission diverse. By
carefully examining these wave vectors in association with the
chirality, we analyze the effects of the TW and band gap on the
transmission. For the normal incidence, a perfect reflection of
particles is observed when the TW is included in the absence of
band gap. For an oblique incidence, in the absence or presence
of band gap, the TW leads to valley-dependent transmission
times because of the break of the valley symmetry. We also
examine the existence of the Hartman effect in the BLG
junction by simulating dependence of the tunneling times on
barrier width. We find that the Hartman effect can exist for the
quasiparticles of normal incidence when there is no band gap
and the TW term is excluded.

The paper is organized as follows. In Sec. II, we present
the general low-energy eigenspectrum and eigenfunction of
quasiparticles when both the TW term and band gap are
included. We then describe the barrier tunneling in the
Klein-effect regime and define a chirality-dependent transition
probability between incident and scattered pseudospinors. In
Sec. III, we use the transition probability to analyze the chiral
tunnelings for four different situations (with and without the
TW term, both in the absence and presence of band gap), and
evaluate the tunneling times as functions of incident energy
and barrier width for each situation. Finally, conclusion with
remarks will be present in Sec. IV.

II. BARRIER TUNNELING IN BLG

A. Low-energy eigenspectrum and eigenfunction

The low-energy effective Hamiltonian of BLG in the
presence of band gap, including the TW term, is given
by [28–31]

Ĥ =
⎛
⎝ τu

(
1 − v2

F

γ 2
1
π̂ †π̂

) − 1
2m

(π̂ †)2 + τv3π̂

− 1
2m

π̂2 + τv3π̂
† −τu

(
1 − v2

F

γ 2
1
π̂ π̂ †)

⎞
⎠, (1)

where π̂ = p̂x + ip̂y (p̂x,y = −i�∂x,y), m = γ1/2v2
F is an

effective mass, with the Fermi velocity vF [32] and γ1 ≈
0.4 eV, and τ is the valley index, with τ = +1 for the K
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valley and τ = −1 for the K ′ valley. The effective velocity
v3 = γ3vF /γ0 = 0.107vF (γ3 ≈ 0.3 eV, γ0 ≈ 2.8 eV) causes
the TW distortion to the energy dispersion and u is the
band-gap parameter due to an external gate field. At very
low energy, the TW term leads to the Lifshitz transition,
splitting the eigenspectrum into four Dirac cones each with
linear dispersion [28,29]. The theoretical value of the transition
energy is EL = γ1(γ3/2γ0)2 ∼ 1 meV but the experimentally
observed value is EL ∼ 6 meV [33]. The effect of the TW
on the electronic spectrum and transport near EL has been
discussed in Ref. [34]. In this paper, we assume E > EL.

The low-energy eigenspectrum of quasiparticles, satisfying
the eigenvalue equation Ĥ|ψτs(k)〉 = Eτs(k)|ψs(k)〉, is

Eτs(k) = sEτ (k), Eτ (k) =
√

λ2
τk + λ2

u,

λτk =
√

ε2
k + ε2

3k − 2τεkε3k cos 3θ, λu = u − εu, (2)

εk = �
2k2

2m
, ε3k = �kv3, εu = �

2k2

2mu

, θ = arctan
ky

kx

.

Here, mu = γ 2
1 /2uv2

F is an effective mass associated with the

band-gap parameter u, k = (kx,ky) with k =
√
k2
x + k2

y are two-
dimensional (2D) wave vectors, and s is the band index with
s = +1 and s = −1 for the conduction band and the valence
band, respectively. In the plane-wave basis the eigenfunction,
in its most general form, can be expressed as

ψτs(r) = 1√
2Eτ

( √
Eτ + τsλu

−s
√

Eτ − τsλu eiδτ

)
eik·r

≡ |χτs(k)〉 eik·r , (3)

δτ (k,θ ) = arctan
εk sin 2θ + τε3k sin θ

εk cos 2θ − τε3k cos θ
,

where we have taken the sample size to be unity. In the
above expression, the pseudospinor |χτs(k)〉 represents the
two sublattices and its explicit form varies depending on
the situations that we shall discuss below. The simultaneous
dependence on the band index s and wave vector k leads to
the chiral property of the pseudospinor. To see this property,
one can introduce a chirality operator, Ĉτ (k) = σ̂ · nτ (k) with
nτ (k) = (−1/Eτ )[λτk(cos δτ ex + sin δτ ey) − τλu ez], where
σ̂ is the pseudospin vector represented by Pauli matrices [35]
and nτ is the pseudospin polarization axis. The chirality
operator then satisfies the eigenvalue equation Ĉτ (k)|χτs(k)〉 =
s|χτs(k)〉; the pseudospin vector σ is parallel or antiparallel to
the polarization axis nτ , depending on the band index s. As we
shall see below, this chiral property plays an important role in
the transmission of quasiparticles through a barrier.

B. Barrier interaction and Klein effect

We consider a BLG n-p-n junction in which the p region
is described by a rectangular potential barrier with height V0,

V (x,y) =
{

0, x < 0,x > d,

V0, 0 � x � d.
(4)

Here, we have assumed the potential barrier is translational
invariant along the y direction, so that the y component of

FIG. 1. (Color online) (a) Potential barrier and energy disper-
sions (including the TW) when V0 = 0.75γ1, u = 0.25γ1 (γ1 =
0.4 eV). The range u < E < V0 − u is the Klein-effect regime.
(b) The isoenergy contours of the K and K ′ valleys when E =
0.35γ1. k(k2) denote wave vectors and j are the particle fluxes
whose directions are normal to the contour [see Eq. (10)]: note
their directions are generally different from the corresponding wave
vectors. The dashed lines indicate the conservation of ky , that is, ky =
kry = k2ty = k2ry . θ (βt ) and θr (βr ) are the incident (transmission)
and reflection (reflection) angles in zone I (II), respectively: note
θr �= θ because |k| �= |kr | due to the anisotropy.

particle momentum is conserved. Using this, the wave equation
for quasiparticles incident on the barrier can be conveniently
written as

Ĥ ϕτs(x)eikyy =
{
E ϕτs(x)eikyy, x < 0, x > d,

−E2 ϕτs(x)eikyy, 0 � x � d,
(5)

where E is the Fermi energy and E2 = V0 − E, with E < V0.
We are interested in the tunneling in the Klein-effect regime
where the conduction bands outside the barrier overlap the
valence band inside the barrier. In the presence of a band gap,
the range of E and E2 for the Klein effect is u < E(E2) <

V0 − u with V0 > 2u [see Fig. 1(a)] [36].
The energy Eτs(k) in Eq. (2) is a quartic function of the

wave vector k and hence, for a given energy E = Eτs(k), four
roots of k are possible in the complex regime. Taking into
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account this and assuming the particles are incident from the
left n region we write the wave functions at each region, apart
from the translational-invariant part eikyy , as follows:

ϕI(x) =
(

i1

i2e
iδτ

)
eikixx + Rτ

(
r1

r2e
iδτr

)
e−ikrxx

+Aτ

(
a1

a2e
iη1τ

)
eiq1xx,

ϕII(x) = Bτ

(
b1

b2e
iδ2τr

)
eik2rxx + Cτ

(
c1

c2e
iδ2τ t

)
e−ik2txx (6)

+Dτ

(
d1

d2e
iη2τ+

)
eiq2x+x + Fτ

(
f1

f2e
iη2τ−

)
eiq2x−x,

ϕIII(x) = Tτ

(
t1

t2e
iδτ

)
eikxx + Gτ

(
g1

g2e
iη3τ

)
eiq3xx,

where all k values are positive real and q can have pure
imaginary or complex values. As depicted in Eq. (3), the
pseudospinors depend on the band index as well as the wave
vectors due to the chirality. The phase factors for real wave
vectors are, with the expression of δτ (k,θ ) given in Eq. (3),

δτr = δτ (kr ,π − θr ),

δ2τr = δτ (k2r ,βr ), (7)

δ2τ t = δτ (k2t ,π − βt ),

where θr , βt , and βr are positive angles, as defined in Fig. 1(b);
note the reflection (transmission) angle at region I (II) is thus
π − θr (π − βt ). These angles are determined by the following
conservation relation for the y-component of momentum due
to the translational invariance:

k sin θ = kr sin θr = k2t sin βt = k2r sin βr . (8)

The phase factors ητ for the imaginary or complex wave
vectors can also be obtained from δτ (k,θ ); ητ = δτ (q,θc),
where θc are complex (or imaginary) arguments determined
from the following relation,

k sin θ = q1 sin θ1c = q2 sin θ2c. (9)

As illustrated in Fig. 1(b), the usual law of reflection does
not hold here because the anisotropic dispersion due to the TW
leads to |k| �= |kr |. Moreover, the particle flux is, in general,
not parallel (or antiparallel) to the direction of the wave vectors
k. To see this we note that the particle flux, in the presence of
the TW and band gap, is defined as follows:

j τs = 〈ψτs |v̂|ψτs〉 ← v̂ = 1

i�
[i�∇ p,Ĥ( p)]

= s

Eτ

[λτk(vk cos(δτ − θ ) − τv3 cos δτ ) − λuvu cos θ ]ex

+ s

Eτ

[λτk(vk sin(δτ − θ ) − τv3 sin δτ ) − λuvu sin θ ]ey,

(10)

where vk = �k/m, vu = �k/mu, and ∇ p = ∂px
ex + ∂py

ey [see
also (A1)]: note j τs is the same as the group velocity
vτs = s(1/�)∇kEτ (k) under proper normalization. Clearly,
the direction of j τs is different from the wave vectors, except

when θ = 0. We also remark that the anisotropy leads to
a valley-dependent range of the incident angle θ , which is
determined by the positiveness of the x component of the flux;
the range of |θ | can be larger than π/2 for the K valley and
less than π/2 for the K ′ valley.

Viewing the interaction of quasiparticles with the potential
barrier as a scattering the transition probability from the
incident wave eiki ·r to a scattered wave, within the first Born ap-
proximation and assuming no intervalley scattering is allowed,
can be described by Pf i = |〈ψτsf

(kf )|V (r)|ψτsi
(ki)〉|2 ∝

W (kf ,ki) [7,37]. Here, ki and kf are the incident and
scattered wave vectors, respectively, and W (kf ,ki) is a
chirality-dependent scattering probability between the incident
pseudospinor and a scattered pseudospinor, given by

W (kf ,ki)

= ∣∣〈χτsf
(kf )

∣∣χτsi
(ki)

〉∣∣2

= EτiEτf + sisf

[
λui

λuf
+ λτki

λτkf
cos(δτf − δτi)

]
2EτiEτf

, (11)

where δτi = δτ and we have used the expression (3) in the
second line. The band indices si and sf have the properties of
sisf = −1 for the transmission across a junction and sisf =
+1 for the reflection within a junction. As we shall see shortly,
this chirality-dependent transition probability allows or forbids
scattering from the incident wave to a state corresponding to a
particular wave vector inside or outside the barrier region, so
that a selective transmission arises, known as the Klein effect.

III. TUNNELING TIMES IN THE KLEIN-EFFECT REGIME

Having obtained the eigenspectrum and described the
barrier interaction of quasiparticles, we now discuss tunneling
(or interaction) times in the BLG junction. Among many
controversial definitions the following two are generally
accepted as well established concepts of tunneling times,
namely, the phase time tph and the dwell time tD [38,39]:

tph = �
∂�φ

∂E
, tD = 1

| j in|
∫ d

0
ϕ†(x)ϕ(x) dx. (12)

In the above expressions, �φ is the phase delay due to the
barrier and j in is the incident flux of particles normal to the
barrier, that is, the x-component of j τs defined in Eq. (10).
For ordinary barrier tunneling the two tunneling times exhibit
a peculiar phenomenon, called the Hartman effect; the phase
and dwell times become independent of the barrier thickness
in the limit of opaque barrier [40]. In the following, we
will investigate these tunneling times for the four different
situations in the BLG junction.

A. Tunneling times when the TW is excluded

In this case, since v3 = 0, the eigenspectrum has isotropic
dispersion; the wave vectors have no valley dependence and
the particle flux j τs is parallel (antiparallel) to wave vector k in
the conduction (valence) band. From Eq. (2), Eτ =

√
ε2
k + λ2

u,
and for a given energy E = Eτ the wave vectors have two
real or two imaginary values, each with opposite signs; see
Appendix B 1 for explicit expressions of the wave vectors.
Thus the wave functions are pure oscillating or evanescent
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waves. In the following, we will first consider the case without
band gap, then discuss the effect of the band gap.

1. In the absence of band gap

In this case, since u = 0 and v3 = 0, we have δτ = 2θ and
the x component of the pseudospinor eigenfunction in Eq. (3)
can be written as

ϕτs(x) = 1√
2

(
1

−se±2iθ

)
e±ikxx or

1√
2

(
1

se±2θκ

)
e±κxx,

(13)

where k = κ = (1/�)
√

2mE with the relation E =
[−εk]k→−iκ [see Eq. (B2) for the regional wave vectors] and
θκ is a positive value, satisfying the relation sinh θκ = − sin θ

from Eq. (9) [41]. The transition probability (11) for these
pseudospinors is

W (kf ,ki) = 1
2 [1 + sisf cos 2(θf − θi)], (14)

where θi = θ is the incident angle and θf is a scattering angle;
θf = π − βt or ±θκ2 for the transmission and π − θr or θκ

for the reflection. Note that cos 2(θf − θ ) → e±2θκ cos 2θ for
the imaginary wave vectors −iκ . From this relation, since
sisf = −1 for the transmission across a junction, we can
see W = 0 when θf = θi or θf = θi + π . According to the
choice of angle convention described in Fig. 1(b), for the
present case of isotropic dispersion, the range of scattering
angle is π/2 < θf � π , whereas the incident angle is in the
range 0 � θi < π/2: the former condition never happens and
the latter can be satisfied only when θi = 0, that is, the normal
incidence. Thus W (k2t ,k) = 0 when θ = 0, which implies that
the transition to oscillating waves inside the barrier region are
forbidden for the normal incidence. For an oblique incidence,
however, we always have W �= 0 and hence transitions to
oscillating waves, as well as evanescent waves, inside the
barrier are allowed.

Based on the above general analysis, we now discuss
about the tunneling times. First, for the normal incidence,
since θi = 0, we find W (±κ2,k) = 1 for the transmission
and, for the reflection within a junction, since sisf = +1, we
obtain W (−kr ,k) = 1, W (κ,k) = 0. Thus the incident wave
is transmitted through the barrier via only the evanescent
waves e±κ2x because scattering into the oscillating waves are
forbidden. This selective transmission is the Klein effect in the
BLG barrier junction [6]. Since the transmission channels are
the evanescent waves the situation is the same as the ordinary
barrier tunneling from Schrödinger equation. In fact, from the
matching conditions at boundaries, one can find exactly the
same results for the transmission and reflection amplitudes, T

and R, as in the ordinary barrier tunneling:

T = |T |e−ikdei�φ, R = |R|e−iπ/2e−ikdei�φ,

|T | = 2kκ2√
4k2κ2

2 + (
k2 + κ2

2

)2
sinh2(κ2d)

, (15)

�φ = arctan

(
k2 − κ2

2

2kκ2
tanh(κ2d)

)
,

where |R|2 = 1 − |T |2, �φ is the phase delay due to the
barrier, and the valley index τ and subscript x have been
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FIG. 2. (Color online) Tunneling times when (u = 0, v3 = 0).
(a) Phase (tph), dwell (tD), and interference (tI ) times vs energy for
a barrier of width d = 30d0: the solid lines are normal incidence
(θ = 0◦), with magnitudes being 25 times scaled up for comparison.
(b) The phase and dwell times as a function of barrier width when
E = 0.375γ1. The solid lines are normal incidence (θ = 0◦), with
magnitudes being 10 times scaled up. Note they approach constant
values as d → ∞, exhibiting the Hartman effect. In both cases,
V0 = 0.75γ1 (γ1 = 0.4 eV), d0 = �vF /γ1 = 1.48 nm and the time
units are t0 = d0/vF = 1.65 fs and td = d/vF = 50t0 = 82.5 fs.

omitted because of the isotropic dispersion and kx = k for
the normal incidence.

The phase and dwell times for the above results are well
known and we reproduce them in Fig. 2(a) (see the solid lines
indicated by θ = 0◦) [42]. We have also plotted the interference
time tI (solid black line) due to the self-interference delay in
front of the barrier. According to Winful [43], a relationship
tph = tD + tI is held for a barrier tunneling. To see if this
relationship holds for the BLG junction, we follow Smith [44]
to derive∫ d

0
ψ†ψ dx =

[
ψ†M̂

∂2ψ

∂x∂E
− ∂ψ†

∂x
M̂

∂ψ

∂E
− i�v3ψ

†σ̂x

∂ψ

∂E

]d

0

,

M̂ = �
2

2m
σ̂x + �

2

2mu

σ̂z, (16)

where σ̂ are the Pauli matrices. Using this relation, with v3 = 0
and u = 0, we verify the same relationship tph = tD + tI can
hold in the BLG junction, where tI , the self-interference
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delay time, is given as tI = (�∂ ln k/∂E)|R| cos �φ. This is
in contrast to the results for monolayer graphene in which
the phase time is equal to the dwell time [45]. The main
reason for this difference lies in their dispersion relations:
linear dispersion in the MLG while quadratic dispersion in the
BLG.

In Fig. 2(b), we also display the tunneling times as a
function of the barrier width (see the solid lines indicated by
θ = 0◦). As can be expected from the analogy with the ordinary
barrier tunneling, the Hartman effect is clearly seen; tph and
tD become constant in the limit of large barrier width. It has
been reported that there is no Hartman effect in monolayer
graphene junction [46]. This is because the allowed wave
vectors inside the barrier from scattering are real in MLG, so
that the transmission channels are propagating waves instead
of evanescent waves.

For an oblique incidence, since W (kf ,ki) �= 0 for all
(real or imaginary) kf , the transmission channels are hybrid
of the oscillating and evanescent waves and hence these
two kinds of waves will contribute to the transmission
probability: the evanescent waves yield exponential decay,
whereas the oscillating waves will undergo the Fabry-Pèrot-
type interference between the forward (eik2rxx) and backward
(e−ik2txx) propagating waves inside the barrier [see Fig. 1(b)
for the directions of the wave vectors] to produce resonant
transmission probabilities. From Fig. 2(a), we can see the
effect of interference on the tunneling times (the dashed lines
indicated by θ = 15◦) arises as peaks corresponding to the
resonant transmission probabilities [see also Fig. 3(a) for the
matching between the peak positions and the resonant trans-
missions]: the interval between two adjacent peaks is �En =
(2πγ1d0/d cos βt )[

√
V0/γ1 − (πd0/d cos βt )(n + 1/2)], with

d0 = �vF /γ1 and n being positive integer satisfying u < En <

V0 − u, so that the peaks become closer as the incident energy
approaches the barrier height.

In Fig. 2(b), as a consequence of the interference, we also
observe periodically appearing peaks of tunneling times as
the barrier width increases for the incidence angles θ = 30◦
and 45◦: the interval between two adjacent peaks is �d =
π/(k2t cos βt ). More importantly, the tunneling times become
longer as the barrier width increases, showing disappearance
of the Hartman effect for an oblique incidence. In the ordinary
barrier tunneling, where only evanescent waves exist inside the
barrier, the Hartman effect has been explained by the saturation
of number of particles under the barrier, accounting the phase
and dwell times as storage times of probability density [43,47].
In the present case, however, we have also oscillating waves
that propagate inside the barrier region; while the evanescent
waves lead to exponentially small transmission probabilities,
the oscillating waves propagate through the barrier without
decay. In the limit of opaque barrier, the transmission of
quasiparticles is thus dominated by the propagating waves,
so that the particles can move with finite velocities inside
the barrier. Apart from the amplitudes B and C in Eq. (6),
the particle velocity can be obtained from (10), v2tx =
vk2 cos(βt − θ ), where vk2 = �k2/m and βt is determined by
the relation (8). Consequently, the quasiparticles will traverse
the barrier at finite velocities to have increasing tunneling
times as the barrier width increases and hence the Hartman
effect disappears. In fact, as we shall see below, the Hartman

FIG. 3. (Color online) Tunneling times when (u = 0.25γ1, v3 =
0) (γ1 = 0.4 eV). (a) Phase (tph) and dwell (tD) times vs energy for
d = 50d0. The solid black line displays the resonant transmission
probability |T |2 for the incident angle θ = 15◦: note the local
maxima of tph and tD coincide with the resonance maxima. (b)
Phase and dwell times vs barrier width for E = 0.3γ1. The solid
red and blue lines are for normal incidence: note they oscillate and
increase with d , showing disappearance of the Hartman effect. Here,
V0 = 0.75γ1, d0 = �vF /γ1 = 1.48 nm, t0 = d0/vF = 1.65 fs, and
td = d/vF = 50t0 = 82.5 fs.

effect does not exist when there are traveling waves with real
or complex wave vectors inside the barrier.

2. In the presence of band gap

We now consider the effect of the band gap produced by an
external gate field. In the presence of the band gap and without
considering the TW term (i.e., when u �= 0 and v3 = 0), the
x component of the pseudospinor eigenfunctions are again
oscillating waves or evanescent waves and can be expressed as

ϕτs(x) =
(

χsτ (k)

−sχ−sτ (k) e±2iθ

)
e±ikxx or

(
χsτ (κ)

sχ−sτ (κ)e±2θκ

)
e±κxx, (17)

χ±sτ (k) =
√

E ± τsλu

2E
, E =

√
ε2
k + λ2

u.
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Here, θκ is a positive value, satisfying κ sinh θκ = −k sin θ ,
and χτs(κ) for the evanescent waves can be obtained by the
replacement of k2 = κ2 + 2u2/d2

0 (γ 2
1 + u2) (d0 = �vF /γ1 =

1.48 nm): see Appendix B 1 b for explicit expressions of k and
κ and the regional wave vectors. Using these pseudospinors,
the transition probability (11) for the transmission across a
junction is obtained as

W (kf ,ki) = EE2 − [
λuλu2 + εkεk2 cos 2(θ2 − θ )

]
2EE2

, (18)

where E2 = V0 − E =
√
ε2
k2

+ λ2
u2 with λu2 = u − �

2k2
2/2mu,

θ2(= π − βtor ± θκ2 ) is a scattering angle, and cos 2(θ2 −
θ ) → e±2θκ cos 2θ for the imaginary wave vector as before.
For the reflection, the negative sign should be changed to
positive sign with E2 → E and θf = π − θr or θκ . From
this, one can readily verify W (kf ,ki) �= 0 for the transmission
and reflection [48]. Thus the incident wave can be scattered
into any states (oscillating or evanescent waves) both in
the reflection and transmission regions. This implies all
amplitudes in Eq. (6) have nonzero values and hence the Klein
effect disappears; the band gap destroys the chirality-induced
orthogonal relation between the incident pseudospinor and the
transmitted pseudospinors linked to the real wave vectors.

In Fig. 3(a), we present the phase and dwell times as a
function of the incident energy. In this case, the incident
flux is j in = (1/E)(εkvk − λuvu) cos θ ex , where E is given
in Eq. (17) and vk = �k/m, vu = �k/mu; the dwell time will
be longer for a lager incident angle. We should remark here
that, although the eigenfunctions ϕτs(x) are dependent on the
valley index, the results in Fig. 3 are the same for both of
the K and K ′ valleys because of the isotropic property. From
the results, we find the tunneling times of the normal and
an oblique incidences oscillate with increasing amplitude and
local maxima corresponding to the resonant transmissions (see
the solid black line). The resonance positions are

En = V0 −

√√√√[(
γ 2

1 + u2
)
h2

n − u2
]2 + γ 2

1 u2

γ 2
1 + u2

,

(19)

hn = nπd0

d cos βt

,

where d0 = �vF /γ1 = 1.48 nm and n are positive integer
such that u < En < V0 − u. Again, this is a consequence of
the Fabry-Pèrot-type interference inside the barrier. We also
observe the amplitudes of oscillations grow as the incident
angle becomes larger as expected from the smaller incident
flux; from numerical simulations, we found that the maxima
become peaks at larger angles, similar to the results in Fig. 2(a).

Figure 3(b) shows dependence on the barrier width of the
tunneling times. As anticipated from the previous discussion
they also oscillate with the barrier width, having peaks at
larger angles: the interval is �d = π/(k2t cos βt ), where k2t

is given in Eq. (B3) with the replacement of E → V0 − E.
We, however, emphasize that, in contrast to the case of no
band gap, the Hartman effect disappears even for the normal
incidence (see the solid lines indicated by θ = 0◦). Obviously,
this is because traveling waves corresponding to the real
wave vectors exist inside the barrier, which in turn produce

finite particle velocities: in the present case the velocity
is given by v2tx = (1/E2)[εk2vk2 cos(β2t − θ ) − λu2vu2 cos θ ],
where vk2 = �k2/m, vu2 = �k2/mu, E2 = V0 − E, and β2t is
determined from the conservation relation (8).

In the present and previous results, we recognize that
the phase time is longer than the dwell time. However,
except for the case of normal incidence without band gap,
a simple relationship between them is not available; direct
application of the relation (16) yields complex interference
time. This is because both of the oscillating and evanescent
waves are allowed in the region I, whereas only oscillating
waves are present in the ordinary barrier tunneling. For a
detailed analysis, it would be necessary to use wave packet
approach [49,50]. As a qualitative explanation, the extra delay
in the phase time can be ascribed to a temporary stay of
particles in front of the barrier due to the evanescent wave
eκx as well as the self-interference delay due to the oscillating
waves eikix and e−ikr x .

B. Tunneling times when the TW is included

When the TW is included the eigenspectrum is distorted to
have anisotropic dispersion, as shown in Fig. 1(b). The major
change here is that the wave vectors have valley dependence
and their magnitudes change with the incident angle. From
Eq. (3) and Appendix B 2, the wave vectors in the Klein-effect
regime have two real values with opposite signs (kτ or −kτr )
or two complex conjugate values (kτc = τkc ± iκc). Thus the
corresponding waves are all propagating waves, two of them
with increasing or decreasing amplitude.

1. In the absence of band gap

In the absence of the band gap and when v3 �= 0, the
eigenspectrum (2) becomes Eτ = E = ±λτk (E > 0) and the
pseudospinor eigenfunctions are

ϕτs(x) = 1√
2

(
1

−seiδτ

)
eikτxx,

1√
2

(
1

−seiδτr

)
e−ikτrxx,

(20)

or = 1√
2

(
1

−seiητ

)
eikτcxx, (kτcx = τkcx ± iκcx) ,

where kτx, kτrx, kcx, κcx > 0: see (B7) for the choice of
regional wave vectors. The real phases δτ and δτr are given
in Eqs. (3) and (7), and the complex phase is ητ = δτ (kτc,θc),
where kτc and θc are determined from the conservation
relation kτc sin θc = k sin θ . The transition probability from
these pseudospinors is

W (kf ,ki) = 1
2 [1 + sisf cos(δτf − δτi)]. (21)

An interesting feature appears in the normal incidence. In
this case, since θ = 0, from the conservation relations (8)
and (9) we have θr = βt = βr = θc = 0. This leads to δτf −
δτi = 2π for the reflection and transmission. The chiral
transition probabilities are then evaluated to be W (k2τ tx ,kτx) =
W (−k2τrx,kτx) = W (τk2cx ± iκ2cx,kτx) = 0 for the transmis-
sion and W (−kτrx,kτx) = W (τkcx − iκcx,kτx) = 1 in the re-
flection region: see Eq. (B8) for explicit expressions of the
wave vectors. Thus scattering across the junction (n → p) is
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completely forbidden and the incident wave is totally reflected,
leading to the Klein effect of perfect reflection.

From the matching conditions, we find all amplitudes in
Eq. (6) are zero except Aτ and Rτ ; omitting the subscript x

since kx = k for normal incidence,

Rτ = kτ in + iκc

kτ in − iκc

= ei�φτr ,

Aτ = − 2kτ in

kτ in − iκc

, (22)

�φτr = arctan

(
2kτ inκc

k2
τ in − κ2

c

)
,

kτ in = kτ − τkc = kτr + τkc,

where the modulus |Rτ | = 1, �φτr is the phase delay of the
perfection reflection, kτ = (1/�)

√
2mE + m2v2

3 + τkc, kτr =
kτ − 2τkc, kc = mv3/� and κc = (1/�)

√
2mE − m2v2

3 from
Eq. (B8) with the replacement of d0 = �vF /γ1 = �/2mvF .
Using the given relations, one can easily show RK ′ = RK ,
AK ′ = AK and �φK ′r = �φKr . To see the perfect reflection,
we use the definition of j in Eq. (10) to evaluate the incident
and reflected fluxes (at x → −∞). First, we note Eτ = λτk =
εk − τ�kv3 when u = 0. For normal incidence, θ = 0 and
δτ = 0, from which the incident flux is j τ in = (�kτ /m −
τv3) ex . For the reflected flux, θr = 0 and δτr = 0 from (3)
and (7), so that j τ re = 〈ψτ re|v̂|ψτ re〉 = −|R|2(�kτr/m +
τv3)ex = −|R|2(�kτ /m − τv3)ex , where the relation kτr =
kτ − 2τmv3/� has been used. The reflection probability is
thus PR = | j τ re/ j τ in| = |R|2 = 1. In fact, for a BLG n-p
junction (i.e., the potential step with height V0), one can have
the same results as (22). It should be noted here that, including
the TW term, no particles can penetrate the barrier, even if
it has finite width and height; when the TW is excluded
(considered in Sec. III A 1) the Klein effect is a selective
transmission, so that, although the probability is exponentially
small, the quasiparticles are allowed to penetrate through the
barrier. The present Klein effect of perfect reflection is another
consequence of the chiral property of quasiparticles in BLG
and should be considered as the effect of the trigonal warping.

Since there is no transmission at all, we cannot think of
the dwell time which requires finite probability of finding
particles inside the barrier region. By the same reason, there is
no phase time associated with transmission. Consequently, it
is not necessary to concern the Hartman effect here. However,
from the expression of Rτ in Eq. (22), we can anticipate a
phase time for the reflection as it contains the phase delay
�φτr . Using the definition in Eq. (12), the phase time is found
as

tτph =
(

k2
c

k2
τ in − k2

c

)
2m

�kτ inκc

=
(

k2
c

kτ kτr

)
2m

�kinκc

. (23)

We remark here that, from the equality �φK ′r = �φKr , the
above phase time is the same for the K and K ′ valleys, that is,
tKph = tK ′ph.

The perfect reflection is reminiscent of the ordinary
reflection of particles from a potential step in the Schrödinger
equation [51]; in this case, the reflection amplitude is
Rod = (k0 − iρ)/(k0 + iρ) with the phase delay of �φod =
arctan[2k0ρ/(ρ2 − k2

0)] and the corresponding phase time

FIG. 4. Phase times vs energy for normal incidence when (u =
0, v3 = 0.107vF ): tph is the phase time of the perfect reflection (solid
line) from the BLG barrier with height V0 = 0.75γ1 (γ1 = 0.4 eV) and
tod is the phase time of the reflection (dashed line) from the ordinary
potential step (with height V0) in Schrödinger equation. Note there is
no dwell time in this case. The time scale is t0 = �/γ1 = 1.65 fs.

is given by tod = 2m/�k0ρ, where k0 = (1/�)
√

2mεk and
ρ = (1/�)

√
2m(V0 − εk) [52]. In Fig. 4, for comparison, we

plot tod (the dashed line) as well as tph (the solid line) within
the Klein-effect regime. As can be seen from the graphs, tph

of the BLG barrier monotonically decreases, whereas tod of
the ordinary potential step increases as the energy approaches
lower and higher limits. Of course, this difference stems from
the different sources of the phase delays. In the ordinary
potential step, the phase delay �φod is originated from the
nonzero probability of finding the particles inside the step. In
the BLG barrier (or step), however, no particles are allowed
inside the barrier (or step) region. To interpret the phase time
in the BLG, we first observe a formal similarity between
Rτ and Rod: comparing them one can regard kτ in = kτ − τkc

(kτ re = kτr + kτc) and −κc as an effective incident (reflected)
wave vector and an evanescent wave vector corresponding
to k0 and ρ in the ordinary reflection, respectively. More
explicitly, the effective incident (reflected) wave vector is
related to the incident (reflected) velocity, that is, kτ in =
mvτ in/�(kτ re = mvτ re/�), where vτ in ≡ j τ in = (�kτ /m −
τv3)ex (vτ re ≡ j τ re = − j τ in) from Eq. (10); the incident (re-
flected) particles can be described by the effective waves with
wave vector kτ in (−kτ re = −kτ in). For the correspondence
of κc to ρ, one may replace ρ by −κc: the negative sign
indicates that an effective evanescent wave exists in front of
the barrier (i.e., x < 0). From this analogy κc seems to play
the similar role as the evanescent wave vector ρ inside the
ordinary potential step. In addition, there can also exist a delay
due to the self-interference between the effective incident wave
eikτ inx and the reflected wave e−ikτ rex(=e−ikτ inx) in front of the
barrier. Thus we may interpret the phase time tτph as if the
quasiparticles stay for a while in front of the barrier (within an
effective length ∼k2

c /kτ kτrκc) before they are reflected back.
For an oblique incidence, the transition probability (21) has

nonzero value for all scattering states, so that the transition
from the incident wave to any scattering states, both in the
reflection and transmission regions, are possible. Moreover,
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since the scattering states inside the barrier are all traveling
waves, resonant transmissions and finite particle velocities will
be induced. The tunneling times are then expected to have
similar behaviors as in the previous section: there are periodic
peaks and it takes longer time to traverse the barrier as its width
increases. An important difference from the previous cases is
the tunneling times of quasiparticles at the K and K ′ valleys
will behave differently. Since the types of wave vectors are the
same both in the absence and presence of the band gap we will
discuss this valley dependence of tunneling times together in
the following section.

2. In the presence of band gap

Finally, we consider when both the TW and the band gap
exist. In this case, the pseudospinor eigenfunctions can be
expressed as

ϕτs(x) =
(

χsτ (kτ )

−sχ−sτ (kτ )eiδτ

)
eikτxx,

(
χsτ (kτr )

−sχ−sτ (kτr )eiδτr

)
e−ikτrxx,

or =
(

χsτ (kτc)

−sχ−sτ (kτc)eiητ

)
eikτcxx, (24)

(kτcx = τkcx ± iκcx) ,

χ±sτ (k) =
√

Eτ ± τsλu

2Eτ

, Eτ (k) =
√

λ2
τk + λ2

u,

where λτk and λu are given in Eq. (2), and kτx,kτrx,kcx,κcx >

0: see (B7) for the choice of regional wave vectors. The
real phases δτ and δτr are given in Eqs. (3) and (7) and
the complex phase can be obtained from ητ = δτ (kτc,θc). The
corresponding transition probability is the same as (11).

We first examine the normal incidence, for which the phase
difference in Eq. (11) is δτf − δτi = 2π for the transmission. In
contrast to the result in Fig. 4 where transmission is forbidden,
the transition probability W (kf ,ki) has nonzero values [48], so
that scattering into all states are possible in the transmission
and reflection regions. As in the second case in Sec. III A, the
presence of band gap destroys the orthogonal property between
the incident and scattered pseudospinors to allow oscillating
waves as transmission channels inside the barrier and hence
the Klein effect of perfect reflection disappears.

Inside the barrier, since the wave vectors are k2τ tx , −k2τrx ,
and k2τcx = τk2cx ± iκ2cx , there are two pure oscillating waves
propagating in opposite directions or two forward (backward)
propagating waves for the K valley (K ′ valley) each with
decaying or growing amplitude, respectively. As before, these
waves will undergo the Fabry-Pèrot-type interference to pro-
duce resonant transmissions and hence peaks of the tunneling
times at the resonant maxima will occur. We demonstrate these
features in Fig. 5 by plotting the phase and dwell times as
functions of the incident energy and barrier width. Here, by
setting θ = δτ = 0 in the definition (10), the incident flux
is given by j τ in = (1/Eτ )[λτk(vk − τv3) − λuvu]ex , where
λτk = εk − τ�kv3, vk = �k/m, and vu = �k/mu. Comparing
to the results for the normal incidence in Fig. 3 (the solid
lines), we observe the tunneling times have sharp peaks rather

FIG. 5. (Color online) Tunneling times for normal incidence
when (u = 0.25γ1, v3 = 0.107vF ). Phase (tph) and dwell (tD) times
vs (a) energy for d = 50d0 and (b) barrier width when E = 0.3γ1.
The solid black line in (a) displays the resonant transmission
probability |T |2. Here, V0 = 0.75γ1, d0 = �vF /γ1 = 1.48 nm, t0 =
�/γ1 = 1.65 fs, and td = d/vF = 50t0 = 82.5 fs.

than oscillations with small amplitude. In fact, the behaviors
of the tunneling times are similar to the results for the oblique
incidences in Fig. 3, exhibiting no Hartman effect. This shows
the inclusion of the TW also produces significant changes in
the tunneling times in the presence of the band gap as well as
in the case without the band gap. In passing to the next
discussion we emphasize here that the results in Fig. 5 are
the same for both the K and K ′ valleys, showing no valley
dependence for the normal incidence.

For an oblique incidence, the transition probability (11)
always has nonzero values for energies within the Klein-effect
regime. Thus all scattering states inside the barrier are allowed
as transmission channels and hence similar results as previous
cases are expected: peaks of the tunneling times at resonant
transmission maxima and longer times as the barrier width
increases. However, the tunneling times now have valley
dependence because of the anisotropic property of the energy
dispersion. In Fig. 6, we plot dwell time as functions of the
incident energy and the barrier width: for illustrative purpose
we only display the dwell time because the phase time has the
same behavior (with larger values) as can be seen from the pre-
vious results. From the figure, it can be clearly seen that the K-
and K ′-valley dwell times behave differently; at low energies
the peaks of the K ′ valley is much smaller than those of the
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FIG. 6. (Color online) Dwell (tD) time for oblique incidences
(θ = 15◦ and 30◦) when u = 0.25γ1 and v3 = 0.107vF (γ1 = 0.4 eV).
(a) tD vs energy for d = 50d0 and (b) tD vs barrier width when
E = 0.4γ1. The magnitude of tD of the K ′ valley for θ = 30◦ (the red
line) in (b) has been 5 times scaled up for comparison. Note the dwell
times of the K and K ′ valleys exhibit different behaviors because of
the symmetry-breaking TW term. Here, V0 = 0.75γ1, d0 = �vF /γ1 =
1.48 nm, t0 = d0/vF = 1.65 fs, and td = d/vF = 50t0 = 82.5 fs.

K valley and the positions of the peaks are off each other. By
comparing these with the results for normal incidence in Fig. 5,
it can be seen that the difference of tunneling times between
the two valleys become more apparent as the incident angle
increases. The main reason for the difference in the peak values
can be understood from the different values of the incidence
fluxes between the two valleys; from Fig. 1(b), one can see the
x component of jK ′in is larger than jKin for a given incident
angle θ , so that the K ′-valley dwell time is shorter. This is an-
other consequence of the inclusion of the TW, which destroys
the valley symmetry. For the split of the peak positions, we
note from the resonance condition (19) that the position of the
resonance is related to d cos βt , which has different values for
the two valleys because βKt �= βK ′t from Fig. 1(b).

The valley-dependent transmission makes the quasiparti-
cles of the K and K ′ valleys emerge at different angles at
the transmission region, that is, a valley-polarized scattering
occurs in the presence of the TW. The scattering angles are
determined by the directions of the fluxes at region III, which
are the same as the incident fluxes. As we can see from
Fig. 1(b), for the range of incident angles determined by the
condition Jτx > 0, the K-valley particles will be scattered

at larger angles than the K ′-valley particles for the present
choice of crystal orientation. Taking into account this and
from the results in Fig. 6(a), we can expect the quasiparticles
belonging to each valley will emerge at different time and
angle. As numerical examples we take the second peaks (i.e.,
the second resonant positions) of the K valley in Fig. 6(a);
when θ = 15◦, the position is E = 0.34γ1 and the dwell times
and scattering angles for each valley are (tDK ≈ 46.3td , tDK ′ ≈
3.3td ) and (θjK

≈ 31◦, θjK′ ≈ 3◦); when θ = 30◦, the position
is E = 0.31γ1 and the dwell times and scattering angles
are (tDK ≈ 206td , tDK ′ ≈ 0.024td ) and (θjK

≈ 52◦, θjK′ ≈ 8◦),
where td = 50t0 = 82.5 fs. Thus, for the crystal orientation in
Fig. 1(b), the K-valley particles are transmitted at larger angles
than those of the K ′ valley. The time difference tDK − tDK ′ ,
however, can be either positive or negative depending on
the incident energy and angle, so that particles from the K

valley are transmitted earlier or later than those of the K ′
valley. The valley-dependent transmission can also be seen in
Fig. 6(b) where the time difference is very large at the barrier
widths of resonant transmissions of the K-valley particles:
tDK − tDK ′ ≈ O(103t0). As an application of this valley-
dependent transmission, one can collect electrons scattered
at different angles to produce valley-polarized electrons in
BLG [53,54]. Because of the difference in their dwell times,
these valley-polarized electrons will come out of the barrier at
different times.

IV. CONCLUDING REMARKS

We have demonstrated that the chiral tunneling of quasipar-
ticles in a BLG n-p-n junction can be affected by the trigonal
warping and the band gap induced by an external gate field.
Their effects on the chiral tunneling can be seen clearly in
the behaviors of the tunneling times, that is, the phase and
dwell times. In the absence of the band gap, for the normal
incidence of particles, the chiral property brings about the
Klein effects of exponentially small transmission probability
when the TW is excluded and of perfect reflection when the
TW is included. The former produces the same behaviors of
tunneling times as the conventional barrier tunneling, but the
latter yields a novel phase time originated from the phase
delay in the perfect reflection. The perfect reflection from a
barrier is another manifestation of the Klein effect in BLG
due to the chirality of quasiparticles, and it is associated with
the trigonal warping and should be discriminated from the
Klein reflection in a potential step (i.e., n-p junction) [6].
An oblique incidence of particles and/or opening a band gap
destroy the chirality-induced orthogonal property between the
incident and scattered pseudospinors that is responsible for
the Klein effects, allowing oscillating waves inside the barrier.
These oscillating waves then undergo the Fabry-Pèrot-type
interference to produce resonant transmissions. As a result of
this, the tunneling times have peaks at the incident energies and
barrier widths corresponding to the resonant transmissions.

The effect of the TW for an oblique incidence can
also appear as a valley-polarized transmission. The K-
valley quasiparticles are scattered at larger angles than those
of the K ′ valley. Depending on the incident angle and energy
the particles of one valley are transmitted faster than those of
the other valley and the difference is significantly large at the
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resonant transmissions. This feature can be used for obtaining
valley-polarized electrons in a bilayer graphene.

We have also found that, unlike the monolayer graphene, the
Hartman effect can exist for the particles of normal incidence
on the BLG junction when both the TW and band gap are
absent, which is the same situation as the ordinary barrier
tunneling where only pure evanescent waves are allowed inside
the barrier. From this observation, it seems that the Hartman
effect is closely related to the pure evanescent waves inside the
barrier; when oscillating (i.e., propagating) waves are allowed
inside the barrier the quasiparticles can actually traverse the
barrier with finite velocities, so that the transmission time
increases with the barrier width. In this sense, the present
results may give an indirect support of the explanation of
the Hartman effect, that is, the phase and dwell times of the
ordinary barrier tunneling are not the traversal times but the
storage times of number of particles under the barrier [43,47].

Finally, we comment on the energy range and experimental
observation of the present results. As mentioned in Sec. I, most
of the previous works on the transport of quasiparticles in the
BLG are based on the quadratic dispersion of the low-energy
eigenspectrum; the effect of the TW term is generally assumed
to be limited in the energy range of |E| < 0.25γ1 ≈ 0.1 eV
around which the linear term �kv3 in Eq. (2) starts to play
more importantly. There is, however, no clear cut where
to discard the TW term [31]. As we have shown here, the
inclusion of the TW term gives qualitatively different chiral
tunnelings in the BLG barrier, and the difference can be
appreciated more clearly in view of the tunneling times. As
for the experimental observation, the time-resolved optical
spectroscopy techniques, which has been proposed for the
measurement of the phase time in MLG [55], may be applied to
measure the phase time in the BLG junction. According to this
method, a two-color optical pump can be used to generate and
control the quasiparticles [56–58], then using the two-color
optical coherence absorption spectra the transmission current
through the BLG junction can be observed in real time [59].
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APPENDIX A: VELOCITY OPERATOR

By performing the commutator, the explicit expression of
the velocity operator v̂ is obtained as

v̂ =
(

−τ (v̂uxex + v̂uyey) −v̂
†
τxex + iv̂

†
τyey

−v̂τxex − iv̂τyey τ
(
v̂uxex + v̂uyey

)
)

,

(A1)

v̂τx = π̂

m
− τv3, v̂τy = π̂

m
+ τv3, v̂ux,y = p̂x,y

mu

,

where π̂ = p̂x + ip̂y (p̂x,y = −i�∂x,y).

APPENDIX B: WAVE VECTORS

The chirality-dependent scattering crucially depends on the
nature of wave vectors. Here, we classify the possible wave
vectors in BLG. From the dispersion relation (2), for a given
energy E, the explicit expressions of wave vectors can be found

from the roots of the following quartic equation:

(1 + α2)d4
0k4 − 2τrd3

0k3 cos 3θ + (r2 − 2α2)d2
0k2

+α2 − ε2 = 0, (B1)

d0 = �vF /γ1, r = v3/vF , α = u/γ1, ε = E/γ1,

where d0 has dimension of length given by d0 = 1.48 nm and,
for notational convenience, we have introduced dimensionless
parameters r = 0.107 for the effective velocity v3, α for band
gap, and ε for energy. Since we are interested in the Klein-
effect regime, it is assumed α < ε < v0 − α (v0 = V0/γ1).

1. When the TW is excluded: v3 = 0 (r = 0)

In this case, the eigenspectum is isotropic for k; the wave
vectors have the same magnitudes for all directions and no
valley dependence.

a. In the absence of band gap: (α = 0,r = 0)

In this case, the quartic equation becomes d4
0k4 = ε2 and

hence there are two real roots ±√
ε/d0 = ±k or two imaginary

roots ±i
√

ε/d0 = ±iκ . From Eq. (6), we choose the wave
vectors at each region as follows:

kix = krx = kx, k2rx = k2tx = k2x,
(B2)

q1x = −q3x = −iκx, ρ2x± = ±iκ2x,

where k2 = √
ε2/d0 = κ2 with ε2 = v0 − ε [see Eq. (5)] and

the x components of the wave vectors at each region can be
obtained from the conservation relations (8) and (9): the same
procedure can also be applied in the following cases.

b. In the presence of band gap: (α �= 0,r = 0)

In this case, the quartic equation becomes (1 + α2)d4
0k4 −

2α2d2
0k2 + α2 − ε2 = 0 and we have the same kinds of roots

as the first case (i.e., two real or two imaginary roots), but they
now depend on the gap parameter α. The explicit expressions
of the wave vectors are

±k = ±1

d0

√
1 + α2

√
α2 +

√
(1 + α2)ε2 − α2,

(B3)

±κ = ±1

d0

√
1 + α2

√
−α2 +

√
(1 + α2)ε2 − α2.

There is a simple relationship between k and κ:

k2 = κ2 + 2α2

d2
0 (1 + α2)

. (B4)

We choose the regional wave vectors as follows:

kix = krx = kx, k2rx = k2tx = k2x,
(B5)

q1x = −q3x = −iκx, q2x± = ±iκ2x,

where k2 and κ2 have the same expressions as (B3) with the
replacement of ε → ε2 = v0 − ε.

2. When the TW is included: v3 = rvF (r �= 0)

In this case, the eigenspectrum is anisotropic for k; the
wave vectors have different magnitudes at different directions
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and valley dependence. The wave vectors are the roots of the
quartic equation (B1). However, simple analytical expressions
of the solutions are not available, although they can, in
principle, be obtained. In the Klein-effect regime (α < ε <

v0 − α), numerical evaluation reveals all roots are classified as
following types:

kτ , −kτr (kτ ,kτr > 0),
(B6)

kτc = ±τkc ± iκc (kc,κc > 0),

where τ is the valley index. In the second line, +τ and −τ

exist when 0 � θ < π/6 and π/6 < θ < π/2, respectively: in
the text and following discussion, we shall only use the first
case for a qualitative argument because the second case is just
reverse of the roles of the K- and K ′-valley wave vectors. The
wave vectors at each region can be chosen as follows:

kix = kτx, krx = kτrx, k2ix = k2τ tx, k2rx = k2τrx,

q1x = (τkc − iκc)x, q3x = (τkc + iκc)x, (B7)

q2x+ = (τk2c + iκ2c)x, q2x− = (τk2c − iκ2c)x,

where k2τ t , k2τr , and q2± are the roots obtained from the
replacement of ε → ε2 = v0 − ε in the quartic equation (B1).
Note the choice of the imaginary parts for q1x and q3x ;
although they produce left-traveling or right-traveling waves
we have chosen wave vectors such that their amplitudes always
decay as x → ±∞. From this, we have peculiar wave in the
region III such that e−ikcxxe−κcxx ; left-propagating waves in the
transmission region.

a. Normal incidence in the absence of band gap: (α = 0,r �= 0)

In this special case, we can have analytical expressions for
the wave vectors as follows:

kτ = τkc +
√

2k2
c + κ2

c , − kτr = −(kτ − 2τkc),
(B8)

kτc = τkc ± iκc, kc = r

2d0
, κc = 1

2d0

√
4ε − r2.

Inside the barrier region, the wave vectors are k2τ t , k2τr , and
k2τc, which have the same expressions with the replacement
of ε → ε2. Note that we have +τ in kτc because θ = 0 for the
normal incidence. There is an extra relation between kτ and
kτr : kτ = kτr + 2τkc.
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