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The effect of long-distance coherent tunneling (LDCT) on the charge and heat currents in serially coupled triple
quantum dots (TQDs) connected to electrodes is illustrated by using a combination of the extended Hurbbard
and Anderson models. The charge and heat currents are calculated with a closed-form Landauer expression
for the transmission coefficient suitable for the Coulomb blockade regime. The physical parameters including
bias-dependent quantum dot energy levels, electron Coulomb interactions, and electron hopping strengths are
calculated in the framework of effective mass theory for semiconductor TQDs. We demonstrate that the effect
of LDCT on the charge and heat currents can be robust. In addition, it is shown that prominent heat rectification
behavior can exist in the TQD system with asymmetrical energy levels.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) have been advocated
to be promising candidates as qubits for the realization of
solid state quantum computers due to their long coherent
time in charge and spin degrees of freedom in comparison to
their counterparts [1,2]. Many experimental studies have been
devoted to the coherent tunneling behavior of serially coupled
double quantum dots (DQDs) [3]. The serially coupled DQDs
can be used as a spin filter when the Pauli spin blockade
condition is met [3]. To scale up quantum registers based
on QD arrays, one must have good control on the transport
properties of quantum dot arrays. It is expected that serially
coupled triple quantum dots (TQDs) can reveal the salient
features of the charge transport behavior in quantum dot
arrays [4–6]. The tunneling current spectra of serially coupled
TQDs exhibit an unexpected resonance structure arising from
the long distance coherent tunneling (LDCT) between the
outer QDs [4–6]. The interdot coupling strength decreases
exponentially with the separation between QDs. Therefore the
direct coupling strength between the outer QDs of a TQD
system, which are separated by a large distance, is vanishingly
small. However, it has been demonstrated experimentally in
Refs. [4] and [5] that the coherent tunneling coupling between
the outer QDs is not negligible due to the middle QD-assisted
tunneling, which can be understood from the second-order
perturbation theory [7].

Many theoretical studies have been devoted to the trans-
port properties of TQD systems. Topological effect on the
electronic properties of a TQD molecule was investigated in
Ref. [8]. The authors of Ref. [9] studied the control of spin
blockade by ac magnetic field in TQDs. Weymann, Bulka,
and Barnas investigated the dark states in transport through
a triangle TQD [10]. The transport properties of a serially
coupled TQD have been studied by the master equation for
studying the multiple electron spin blockade effect in Ref. [11].
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However, there still lacks a systematic analysis to illustrate the
LDCT effect on the tunneling current spectra of the serially
coupled TQD junction when the intradot and interdot Coulomb
interactions are included.

Besides the qubit aspect, the serially coupled QD arrays
can also be used as solid state coolers and power generators
at nanoscale, which is important in the integration of quantum
device circuits [12]. The understanding of energy transfer and
heat extraction of the QD array is also crucial in the implemen-
tation of solid state quantum register, because the heat accumu-
lation will degrade the performance of quantum computation.
Unlike electronic nanodevices, it is still a challenge to measure
the heat transport in nanoscale structures [12]. Up to date, most
researches on the thermoelectric properties of nanostructures
connected to electrodes have been restricted to theoretical stud-
ies [13–28]. References [13–18] investigated the optimization
of figure of merit of QD junction system in the linear response
regime. The nonlinear thermoelectric properties of nanostruc-
tures including QDs, molecules, and the other mesoscopic
conductors can lead to attractive applications such as thermal
rectifiers, heat engines, and thermal spintronics [19–28]. In this
paper, the effect of LDCT on the charge and heat currents of a
TQD junction system is revealed and analyzed in the presence
of intradot and interdot electron Coulomb interactions.

II. FORMALISM

Here, we consider nanoscale semiconductor QDs, in which
the energy level separations are much larger than their on-site
Coulomb interactions and thermal energies. Thus only one
energy level for each quantum dot needs to be considered. An
extended Hubbard model and Anderson model are employed
to simulate a TQD connected to electrodes. The Hamiltonian
of the TQD junction is given by H = H0 + HQD:

H0 =
∑
k,σ

εka
†
k,σ ak,σ +

∑
k,σ

εkb
†
k,σ bk,σ

+
∑
k,σ

Vk,1d
†
1,σ ak,σ +

∑
k,σ

Vk,3d
†
3,σ bk,σ + c.c., (1)
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where the first two terms describe the free electron gas of
left and right electrodes. a

†
k,σ (b†k,σ ) creates an electron of

momentum k and spin σ with energy εk in the left (right)
electrode. Vk,� (� = 1,3) describes the coupling between the
electrodes and the first (third) QD. d†

�,σ (d�,σ ) creates (destroys)
an electron in the �th dot:

HQD =
∑
�,σ

E�n�,σ +
∑

�

U�n�,σ n�,σ̄

+ 1

2

∑
�,j,σ,σ ′

U�,jn�,σ nj,σ ′ +
∑
�,j,σ

t�,j d
†
�,σ dj,σ , (2)

where E� is the spin-independent QD energy level, and
n�,σ = d

†
�,σ d�,σ . Notations U� and U�,j describe the intradot

and interdot Coulomb interactions, respectively. t�,j describes
the electron interdot hopping. Here, we assume that the interdot
hopping and interdot Coulomb interaction in Eq. (2) are
appreciable only between the nearest neighbor QDs.

Using the Keldysh-Green’s function technique [29], the
charge current of a TQD junction is calculated according to

J = 2e

h

∫
dεT (ε)[fL(ε) − fR(ε)]. (3)

Meanwhile, the heat current that flows into the right (left)
electrode from the TQD system is given by

QR(L) = ± 2

h

∫
dεT (ε)(ε − μR(L))[fL(ε) − fR(ε)]. (4)

We note that QR + QL = QJoule = J�Va , which indicates
that the heat flux dissipated from the TQD is equal to the
electrical power generated by Joule heating [23,30]. Note that
in the open circuit condition (J = 0), which is the case for
our consideration in the study of electron heat rectification, we
have QJoule = J�Va = 0 and QR = −QL. In Eqs. (3) and (4),
T (ε) ≡ [T1,3(ε) + T3,1(ε)]/2 is the transmission coefficient.
T�,j (ε) denotes the transmission function, which can be
calculated by using the on-site retarded and lesser Green’s
functions. The transmission function in the weak interdot
hopping limit (t�,j � U�) has the following form:

T�,j (ε) = −2
32∑

m=1

��(ε)�m
�,j (ε)

��(ε) + �m
�,j (ε)

ImGr
�,m(ε), (5)

where “Im” means taking the imaginary part of the function
that follows, and

Gr
�,m(ε) = p�,m/

(
μ� − ��,m − �m

�,j

)
, (6)

where μ� = ε − E� + i��/2. Note that �� = 0 when � �= 1,3.
�� denotes the tunneling rate for electron tunneling from
QD � to the electrode. In Eqs. (5) and (6), we have � �= j .
�1(3),m denotes the sum of Coulomb energies between one
electron in the first (third) QD and other electrons present
in its neighboring QDs in configuration m, and �m

�,j (ε) =
−2Im�m

�,j (ε), where �m
�,j denotes the self-energy resulting

from electron hopping from QD � to QD j through channel m.
The detailed expressions of probability weight p�,m as well as
��,m and �m

�,j can be found in Ref. [31].
The factor 2 in Eqs. (3) and (4) comes from electron

spin degeneracy. fL(R)(ε) = 1/[e(ε−μL(R))/kBTL(R) + 1] denotes
the Fermi distribution function for the left (right) electrode.

μL and μR are the chemical potentials of the left and right
leads, respectively, with their average denoted by EF =
(μL + μR)/2. �Va = (μL − μR)/e is the voltage across the
TQD junction. TL(R) is the equilibrium temperature of the
left (right) electrode. e and h denote the electron charge and
Planck’s constant, respectively.

To study the LDCT effect on the charge and heat currents
of Eqs. (3) and (4), it is important to provide reasonable
physical parameters. So far, the exact solution of T (ε), which
are valid for strong-coupling regime (with t�,j comparable
to U�,j ), has not been reported due to the many body
effect [8,11]. Although the first-principles method is often
used to calculate T (ε) directly, it can not handle the charge
and heat currents in the Coulomb blockade regime since it
is a mean-field approach [25]. Here, we use the extended
Hubbard-Anderson model (H = H0 + HQD) to illustrate the
transport and thermoelectric properties of three disk-like (or
cone-shaped) GaAs QDs embedded in AlxGa1−xAs connected
to electrodes. The physical parameters for U�,j and t�,j used
in HQD can be calculated in the framework of effective mass
method [32]. The effective-mass equation for a coupled QD
(CQD) system is given by
[
−∇ �

2

2m∗(ρ,z)
∇+VCQD(ρ,z)+Vsc(r)

]
ψ(r) = Eψ(r), (7)

where m∗
e (ρ,z) denotes the position-dependent electron ef-

fective mass. We adopt effective masses m∗
GaAs = 0.063me

for GaAs and m∗ = 0.096me for Al0.4Ga0.6As. VCQD(ρ,z)
is approximated by a constant potential V0 = −0.2496 eV
in the QD region and zero in the barrier region. Its value
is determined by the conduction band offset between GaAs
and Al0.4Ga0.6As. Vsc(r) = e2

ε0

∫
dr′ne(r′)/|r − r′| denotes the

self-consistent potential caused by the electrostatic interaction
with the charge density associated with the other particles in
the system. Note that we consider the position-independent
dielectric constant ε0 = 15.5. For the purpose of constructing
approximate wave functions, we place the system in a large
cylindrical confining box with the length L and radius R (L
and R must be much larger than those of CQD). Here we
choose L = 60 nm and R = 40 nm. We solve Eq. (7) by the
Ritz variational method [32]. The wave functions are expanded
in a set of basis functions, which are chosen to be products of
Bessel functions of ρ and sine functions of z,

ψn,�,m(ρ,z,φ) = J�(βnρ)ei�φ sin[km(z + L/2)], (8)

where km = mπ/L,m = 1,2,3, . . . , J� is the Bessel function
of order � and βnR is the nth zero of J�. The expression
of the matrix elements of Eq. (7) can be readily obtained.
Forty-five sine functions multiplied by fifteen Bessel functions
for each angular function (� = 0 or 1) are used to diagonalize
HCQD. A convergence check (by increasing the basis functions)
indicates that the lowest two confined states are accurate to
within 0.1 meV with the current set of bases.

Figure 1 shows (a) energy levels and (b) electron hopping
strengths for two different shapes of GaAs QDs (cone and
disk) as functions of the gap distance (D) between two
QDs. The height and radius of each QD are L1 = L2 = 5 nm
and R1 = R2 = 10 nm. Let tc denote the hopping strength
between adjacent QDs in a tight-binding model. The energy
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FIG. 1. (Color online) (a) Energy levels and (b) electron hopping
strength of identical double quantum dots (GaAs/AlGaAs) as a
function of gap distance (D). (c) Intradot and interdot Coulomb
interactions as a function of D for dot A and dot B with, respectively,
the height L1 = 5 nm (radius R1 = 2L1) and L2 = 5.5 nm (radius
R2 = 2L2).

separation between the bonding (EBD = E0 + tc) and anti-
bonding (EAB = E0 − tc) states increases with decreasing
gap distance (D). The electron hopping strength (t�,j = tc)
is smaller than 0.1 meV when the gap distance D is larger than
10 nm. When D = 4 nm, tc is approximately 3.5 meV. Note
that t�,j as a function of gap distance can be fitted very well by
an exponential decay function, which can be used to estimate
the very week coupling for two QDs separated far away. As
seen in Fig. 1(b), when the gap distance is doubled, t�,j reduces
to 0.36 meV (a factor 10 smaller). Therefore it is adequate to
keep the inter-dot coupling t�,j only for adjacent dots, since t1,3

(between two outer dots) is significantly smaller. To evaluate
the electron Coulomb interaction strengths, we calculate the
intradot and interdot Coulomb interactions as functions of
the gap distance (D) for two disk-shaped QDs: dot A with
L1 = 5 nm and R1 = 10 nm and dot B with L2 = 5.5 nm and
R2 = 11 nm. The results are shown in Fig. 1(c). The position
dependence for intradot Coulomb interactions are noticeable
only for small D, where the leak-out of QD wave function is
appreciable.

In the presence of an applied bias, the resulting electric
field leads to the energy level shift. To examine this effect,
we added a term −eF (z − z0) in Eq. (7). F and z0 denote the
electric-field strength and the middle point of the junction,
respectively. Figure 2 shows the lowest two energy levels
as functions of electric-field strength (F ) for disk-shaped
QDs with (a) identical QD sizes (R1 = R2 = 10 nm) and
(b) different QD sizes (R1 = 10 nm and R2 = 9 nm), while
L1 = L2 = 5 nm. In Fig. 2(a), the energy gap (2tc) arises from
the resonant tunneling between E1 and E2 levels in the absence
of F . When F increases, this resonant coupling is diminished
(off resonance) due to the increased separation of E1 and E2,
which is approximately linear in F . In Fig. 2(b), E1 and E2

levels are “off-resonance” in the absence of F . However, F

can be tuned to bring the E1 and E2 levels in resonance [see
Fig. 2(b) near F = 3 kV/cm]. The results of Fig. 2 indicate
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FIG. 2. (Color online) The lowest two energy levels of coupled
QDs as a function of electric field strength (F ) for two different gap
distances. (a) Identical QD sizes, and (b) different QD sizes. The other
physical parameters are the same as those for solid lines of Fig. 1(a).

that the energy level shift as well as t�,j and U�(U�,j ) will
significantly affect the behaviors of charge and heat currents.

For electrodes made of heavy-doped semiconductors, the
Fermi energy of semiconductor electrode depends on the
carrier concentration. For example, the carrier concentration
n = 2 × 1018 cm−3 in the GaAs electrodes leads to EF =
91.76 meV. Therefore we have E� − EF = 7.24 meV for
disk-shaped QDs described by the solid lines in Fig. 1(a).
The level E� − EF can be tuned by a gate electrode or the
carrier concentration of electrodes. In the following numerical
calculations, we consider a GaAs/AlGaAs TQD junction with
gap distance D = 8 nm and and QD size L� = 5 nm. Using the
effective-mass model described above, we obtain U� = 200�0,
U�,j = 66�0, and t�,j = 3.6�0, where �0 = 0.1 meV. This set
of physical parameters satisfies the condition of U� > U�,j �
t�,j and U� � ��, which are required in keeping the validity
of Eq. (5) for T (ε) [31]. The tunneling rates �� can also be
accurately determined by a stabilization method [32].

III. RESULTS AND DISCUSSION

A. LDCT for charge current

The results of Fig. 2 show that the bias-dependent shift of
energy level (E�) in each dot can be approximately determined
according to the expression ε� = E� + η�e�Va , where η�

denotes the fraction of voltage difference shared by QD �.
The value of η� depends on the location, shape and dielectric
constant of the QD. When the dielectric constants of the QD
and the surrounding material are similar, the voltage difference
is almost uniformly distributed among QDs. Let d� denotes the
center position of QD � with respect to the mid point of the
junction and the separation of two electrodes is DLR , then
the electrostatic potential energy due to the uniform electric
field seen by an electron in QD � is simply V (r − d�ẑ) =
[d� + (z − d�)](−e�Va/DLR) (z is along the direction of
transport). For weak field and symmetric wave function in
each QD, the linear (z − d�) term vanishes, and the energy
correction due to second-order Stark effect is insignificant.
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FIG. 3. (Color online) (a) Tunneling current as a function of
applied bias �Va for the variation of temperatures, and (b) electrical
conductance (Ge) as a function of E2 − EF = eVg for various
temperatures with E1 = E3 = EF . In diagram (a), we have ε2 =
E2 + U23, ε3 = E3 + U23, and J0 = 2e�0/h.

Thus we have η� = d�/DLR . For the TQD junction, we assume
d1 = −d3 and η1 = −η3.

We first calculate the tunneling current for �L = �R ≡ �

(with � = 0.3�0) under thermal equilibrium. Figure 3(a)
shows the tunneling current as a function of the applied
bias �Va for a GaAs/AlGaAs TQD junction with staircase
energy levels (E1 = EF + 9�0, E2 = EF + 6�0, and E3 =
EF + 3�0), η1 = −η3 = 0.24, and DLR = 54 nm. Such an
energy level arrangement was also considered in Ref. [6].
We noticed a negative differential conductance (NDC) be-
havior. This is an essential feature for resonant tunneling
junction due to off-resonance process [4–6]. There is an
unexpected resonance peak at �Va = 125�0 labeled by p3,
whose contribution is mainly from the third configuration
as described in Ref. [31]. This p3 resonance peak can be
suppressed by decreasing temperature. The structure labeled
by p3 arises from the LDCT between the outer QDs associated
with charging effect under the resonant condition with en-
ergy levels ε1 ≡ E1 + 0.24e�Va = E3 + U23 − 0.24e�Va ≡
ε3. Note that ε2 ≡ E2 + U23 and E2 do not have to be resonant
with ε1 = ε3, a main feature of LDCT. The p3 structure
indicates that the middle QD can assist the electron tunneling
between outer QDs separated by a large distance through a
new channel in the presence of electron Coulomb interaction.
In the p3 configuration, there is one electron in level E3 with
the same spin σ as the electron entering the junction from the
electrode [see the inset of Fig. 3(a)]. Lowering the temperature
decreases the probability of electron occupation in level E3

(N3). Therefore the peak of p3 decreases with decreasing
temperature. It is noted that even at extremely low temperature,
a residue value of N3 still exists. The tiny structure labeled by
p3 at very low temperature can be resolved in the differential
conductance.

In order to illustrate the effect of electron Coulomb
interactions, we also show in Fig. 3(a) the tunneling current at
kBT = 6�0 (curve with triangle marks) for the case without
Coulomb interactions (i.e., U� = U�,j = 0). In this case, the

structure labeled by p3 vanishes, whereas the magnitude of
J is enhanced. We note that Fig. 3(a) displays a nearly
temperature-independent thermal broadening effect, which is
very different from that of a single QD junction [13,14]. Such
a “nonthermal” broadening effect is a common feature for
serially double QD junction system [15,33]. Reference [33]
pointed out that such a “nonthermal” broadening effect allows
serially double QDs to function as low-temperature filters. The
detailed description of low-temperature filter can be found
in Ref. [33], where the electron Coulomb interactions were
neglected.

Because it is difficult to get an analytic expression of
tunneling current shown in Fig. 3(a), we illustrate the effect
of LDCT on the electrical conductance of the TQD junction,
where the QD levels are aligned with EF . For this case, simple
expressions can be used to reveal the LDCT effect. We show in
Fig. 3(b) the electrical conductance (Ge) as a function of gate
voltage Vg , which is is applied to tune the middle-dot level,
E2. Note that

Ge = 2e2

h

∫
dεT (ε)

(
−∂f

∂ε

)
. (9)

Here, E1 = E3 = EF and E2 + eVg = EF + eVg . The trend
of Ge with respect to eVg can be well explained by Eq. (3)
with transmission coefficient T (ε) ≈ T 1(ε) = [T 1

1,3(ε) +
T 1

3,1(ε)]/2.

T 1(ε) = �L�Rt2
eff(ε)p1

|μ1μ3 − teff(ε)μ3 − teff(ε)μ1|2 , (10)

where μ1 = ε − E1 + i�/2 and μ3 = ε − E3 + i�/2.
teff(ε) = t2

c /(ε − E2 − eVg).
In the absence of U� and U�,j , a similar expression to

Eq. (10) can also be found in Ref. [34]. The authors of Ref. [34]
considered the effect of electron Coulomb interactions within
the Hartree-Fock approximation. With this approximation, the
electron occupation numbers will appear in the denominator
of Eq. (10). This will lead to a fractional charge picture.
In our procedure used for calculating, the retarded and
lesser Green functions (which is beyond the Hartree-Fock
approximation), the electron occupation numbers and two-
particle correlation functions appear only in the probability
weight of each configuration [31,35]. The picture with integer
charges appearing in the denominators of Eq. (6) is consistent
with that of the master-equation method [11]. In this approach,
we only considered the one-particle occupation number and
on-site two particle correlation functions in the probability
weights. For weak interdot hopping strength (t�,j /� < 1),
the approximation, which neglects the two-particle interdot
correlation functions and higher-order functions, can get
results quite close to those obtained by solving the EOM
exactly (i.e., including all correlation functions) via numerical
computation, which has been done and will be reported
elsewhere [36]. Although such an approximation is not so
accurate for t�,j /� > 1 when QD energy levels are degenerate,
the procedure considered in Eq. (5) [16,31] is justified as long
as |E� − Ej |/t�,j � 1.

We note that T (ε) is equal to T 1(ε) with p1 = 1 in
the absence of electron Coulomb interactions [31]. With
finite electron Coulomb interactions we have p1 = (1 − N1)
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(1 − 2N2 + c2)(1 − 2N3 + c3), where N� is the one-electron
occupancy in E� level. Note that N1 = N3 for the symmetrical
configuration shown in the inset of Fig. 3(b). The probability
of two-electron occupancy c� in each QD can be assumed zero
due to the large value of U�. The curve with triangle marks
in Fig. 3(b) shows Ge in the absence of electron Coulomb
interactions at kBT = 3�0. We find that Ge increases initially,
reaching a maximum, then decreases as Vg increases. When
the electron Coulomb interactions are included, the probability
factor p1 becomes Vg dependent (as shown in the curve with
squares), which modifies the behavior of Ge as shown in the
solid, dashed, and dotted curves at kBT = 1,2, and 3�0.

Based on Eq. (10), the solution of Ge might be expressed
in terms of the poly-Gamma functions [33]. Rather than
using the complicated poly-Gamma functions, we derive
some simple expressions from Eq. (10) in suitable limits
to gain better understanding of the behavior of Ge. In the
linear-response regime with respect to �Va , the energy levels
shifted by �Va can be neglected in Eq. (10). Since E1 = E3 =
EF here, Eq. (10) reduces to T 1(ε) = p1�L�Rt4

c

|μ1[μ1(ε−E2−eVg )−2t2
c ]|2 .

The denominator can be rewritten in the form |(ε − EF +
i�/2)(ε − ε̃+)(ε − ε̃−)|2, where

ε̃± = EF −i�/2 + [
(eVg + i�/2) ±

√
(eVg + i�/2)2+8t2

c

]
/2

(11)

denote the energy positions of two poles in addition to the pole
at EF − i�/2. At Vg = 0, the two poles ε̃± = EF − i�/4 ±√

2tc when tc � �, which are located far from EF (since
tc � �) and their contributions to Ge become negligible. Thus,
at Vg = 0, we have

Ge ≈ e2

h

p1π�

2kBT
, (12)

which is dominated by the pole at ε = EF . However, when
Vg increases, the two poles at ε̃± move up in energy [See
Eq. (11)] with the lower pole approaching the level EF , which
gives appreciable contribution to Ge when the pole is in the
range covered by the function (− ∂f

∂ε
) = 1/[4kBT cosh2( ε−EF

2kBT
)]

appearing in Eq. (9). This explains the initial rise of Ge (for
p1 = 1) with respect to Vg at finite temperatures as seen in
Fig. 3(b). As temperature approaches zero, the function (− ∂f

∂ε
)

turns into a delta function with ε = EF , then we have Ge =
2e2

h
T (EF ) ≈ (2e2/h)p1/{1 + [eVg�/(4t2

c )]2}. Thus, at T = 0,
the maximum of Ge would occur at Vg = 0.

To understand the decrease of Ge for large values of Vg , we
consider another asymptotic expression (for kBT > � > teff):

Ge ≈ e2

h

π�

2kBT

p1t
2
eff

t2
eff + �2/4

, (13)

where teff = t2
c /(eVg). As Vg approaches infinity, we obtain an

insulating state (Ge → 0).
The curves with circle marks are calculated by Eq. (13) for

the case including Coulomb interactions at kBT = 1�0 and
excluding Coulomb interactions at kBT = 3�0 (i.e., p1 = 1).
We find good agreement between results obtained by Eq. (10)
and by the asymptotic expression (13) for eVg > 43�0.
The factor kBT appearing in the denominator of Eqs. (12)

and (13) also explains why Ge is suppressed with increasing
temperature, as seen in Fig. 3(b). The simple expression of
Eq. (13) is the manifestation of the result for a DQD with
effective coupling strength teff [33]. It is convenient to use
Eq. (13) to illustrate the effect of LDCT between the outer
QDs separated by a large distance.

For tc = 0.36 meV (with D = 8 nm between the middle
QD and the outer QD), we obtain teff = 25.9 μ eV for eVg =
5 meV between outer QDs separated by barriers with total
thickness D = 16 nm. (Note that the width of the middle
QD does not count toward the gap distance. Only the barrier
thickness counts.) For such a gap distance, the direct coupling
for outer GaAs/GaAlAs QDs is t13 = 1.73 μ eV, which is
negligible compared to teff . The effect of LDCT is very useful
for improving the entanglement between qubits stored in
distant QDs [4,5]. Next, we investigate how LDCT influences
the electron heat rectification of TQD junctions.

B. LDCT for heat current

To study the direction-dependent heat current, we let TL =
T0 + �T/2 and TR = T0 − �T/2, where T0 = (TL + TR)/2 is
the average of equilibrium temperatures of two side electrodes
and �T = TL − TR is the temperature difference across the
junction. We have numerically solved Eqs. (3) and (4) for TQD
junctions. We first determine the nonlinear Seebeck coefficient
S = e�Vth/kB�T (thermal voltage yielded by �T ) by solv-
ing Eq. (3) with J = 0 (the open circuit condition) for a given
�T , T0 and an initial guess of the average one-particle and
two-particle occupancy numbers, N and c for each QD, which
can be found in Ref. [31]. Due to J = 0, we have QJoule = 0.
Once �Vth is solved, we then use Eq. (4) to compute the
heat current. The nonlinear Seebeck coefficient of a single
molecule was studied in Refs. [25,26] for the applications
of thermal spintronics. Figure 4(a) shows the electron heat
current (Q = QR) as a function of temperature bias �T for
various values of energy alignment �F = E3 − EF (while
keeping E1 = E3 + 2�0, and E2 = E3 + �0) at T0 = 26�0,
and �L = �R = 7�0. Note that for DLR = 43 nm, we have
η1 = −η3 = 0.31. The energy levels of the TQD have a
staircase structure with step height �0 = 20�0. We considered
�0 = 20�0, which is larger than that considered in Fig. 3, for
observing electron heat rectification in a wide temperature
range. The results of Fig. 4(a) indicate an asymmetrical heat
current (rectification effect) that depends on �F . When T0 is
larger than �F , the rectification effect is seriously suppressed.
The dash-dotted line is almost symmetric, which means Q is
linearly proportional to �T .

To further enhance the asymmetrical behavior, we study
the heat current (Q) for various values of T0 at �F = 40�0

as shown in Fig. 4(b). Other physical parameters are the same
as those for the solid line in Fig. 4(a). When the averaged
temperature T0 goes down, the forward heat current (QF )
increases in the forward temperature bias (�T > 0), whereas
the backward heat current (QB) decreases in the reversed
temperature bias (�T < 0). The asymmetrical Q behavior
with respect to �T is enhanced with decreasing T0. Because
QD energy levels are shifted by the thermal voltage (�Vth), we
show in Figs. 4(c) and 4(d) the thermal voltage �Vth yielded
by �T , corresponding to Figs. 4(a) and 4(b), respectively.
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FIG. 4. (Color online) (a) Electron heat current (Q = QR) as a function of temperature bias �T for TQD junction with staircase energy
levels at kBT0 = 26�0 and D = 8 nm. (b) Q for different T0 values. Other physical parameters are the same as those for the solid line in (a).
(c) and (d) are the thermal voltage (�Vth) corresponding to (a) and (b), respectively. Q0 = �2

0/h.

As shown in Fig. 4(c), when �F = 10�0 the thermal voltage
�Vth produced is rather small, which is insufficient to give rise
to noticeable nonlinear heat behavior with respect to �T [see
dash-dotted line in Fig. 4(a)]. Figure 4(d) shows the increase
of nonlinear behavior in Q due to the enhancement of �Vth.
In addition, the results of Fig. 4 also indicate that there exists
a nonlinear relationship between Q and �Vth. The results of
Fig. 4(b) (large heat current in �T > 0 and small heat current
in �T < 0) can be understood by the following. The trans-
mission coefficient T m

�,j (ε) of the dominant configuration is
proportional to the joint density of states (JDOS), which is the
product of spectral functions arising from three resonant poles
[see Eq. (7) of Ref. [31]]. The thermal voltage �Vth causes shift
in the QD levels. Thus, for a TQD system with E1 > E2 > E3

under zero bias [see the inset of Fig. 4(c)], a positive �T can
bring the levels close to resonance, while a negative �T will
cause them further apart from resonance, resulting in increases
(decreases) of JDOS when �T > 0 (�T < 0).

Next, we examine the LDCT effect on the rectification
behavior of the TQD junction. Figure 5 shows the heat
current and thermal voltage as functions of temperature
bias for �F = E3 − EF = 40�0 and E1 = E3 + 25�0 for
various values of E2. As E2 increases from E3 + 12.5�0 to
E3 + 25�0, the thermal voltage �Vth increases. In comparison
to the results of Figs. 4(b), the heat current of forward
temperature bias in Fig. 5 is enhanced significantly, which
is attributed to the enhancement of JDOS resulting from
the better alignment of resonant poles. For the forward
temperature bias (�T = 12.5�0), the energy levels of outer
QDs can be aligned at �Vth = −40.3�0 (LDCT resonant level

ELDCT = EF + 52.5�0), while the middle QD energy level is
misaligned with ELDCT, which leads to an effective tunneling
coupling teff = t2

c /(E2 − ELDCT). From the results of Fig. 5,
we see that the LDCT can also improve the heat rectification
behavior for two distant QDs [28]. To observe such an
electron heat rectification effect shown in Figs. 4(b) and 5,
the magnitude of phonon heat current Qph must not be
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FIG. 5. (Color online) (a) Heat current (Q), and (b) thermal
voltage (e�Vth) as a function of temperature bias for different values
of E2 at E1 = E3 + 25�0 and E3 = EF + 40�0. Other physical
parameters are the same as those of dash-dotted line in Fig. 4(b).
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dominant over the electron heat current. To reduce Qph, we can
design a QD array in which the barriers (AlGaAs) have a
small cross section [see the inset of Fig. 5(a)] to produce a
phonon bottleneck effect [28]. Although many studies have
been devoted to the design of phonon or photon heat rectifiers
[37–39], these designs are not compatible with the fabrication
technique of solid state quantum register circuit. So far, few
experiments have observed the heat rectification effect [40].

IV. SUMMARY

We have theoretically studied the effect of LDCT on the
charge and heat currents of a TQD junction in the Coulomb
blockade regime. In the presence of intradot and interdot
Coulomb interactions the closed form Landauer expression
for transmission coefficient provides a useful analysis for

clarifying the influence of electron Coulomb interactions on
the LDCT effect. The middle QD can mediate the coherent
tunneling between distant outer QDs. An interesting electron
heat rectification effect of the TQD junction is demonstrated
by considering a staircaselike alignment of energy levels.
Using the nonlinear Seebeck effect (e�Vth/kB�T ), we can
control the electron resonant process of the TQD junction by
temperature bias to observe heat rectification.
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