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There are various quantum chemical approaches for an ab initio description of transfer integrals within the
framework of Marcus theory in the context of electron transfer reactions. In our paper, we aim to calculate transfer
integrals in redox-active single molecule junctions, where we focus on the coherent tunneling limit with the metal
leads taking the position of donor and acceptor and the molecule acting as a transport mediating bridge. This setup
allows us to derive a conductance, which can be directly compared with recent results from a nonequilibrium
Green’s function approach. Compared with purely molecular systems we face additional challenges due to the
metallic nature of the leads, which rules out some of the common techniques, and due to their periodicity, which
requires k-space integration. We present three different methods, all based on density functional theory, for
calculating the transfer integral under these constraints, which we benchmark on molecular test systems from
the relevant literature. We also discuss many-body effects and apply all three techniques to a junction with a
Ruthenium complex in different oxidation states.
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I. INTRODUCTION

In ultrahigh vacuum and at very low temperatures, the
electron transport problem in single-molecule junctions is
nowadays straightforwardly accessible to a computational
treatment with a nonequilibrium Green’s function (NEGF)
approach [1] in combination with a density functional theory
(DFT) based description of the electronic structure of the
separate and combined components of the junction, namely the
leads and the scattering region [2–5]. The theoretical modeling
of experiments with an electrochemical scanning tunneling
microscope (STM) [6–9] is more challenging, because here
depending on the setup as well as structural details of the
system, two competing electron transport mechanisms have to
be considered, namely, electron hopping, which is a thermally
induced multiple step process and coherent tunneling, which
is the standard one-step phenomenon known from benchmark
molecules relatively strongly coupled to metallic electrodes
at temperatures close to 0 K. In both cases, an atomistic
description of the process under electrochemical conditions
provides a formidable challenge for a DFT based theory. For
the former, the difficulty lies in a simplified and compact but
nevertheless sufficiently accurate description of the nuclear
vibrations of the molecule and solvent which drive the electron
flow. For the latter, it becomes necessary to adjust the oxidation
state of the redox active center in the scattering region and
therefore deal with the issue of charge localization in a
multicomponent system, which we addressed in a recent
publication [10] where we also established a connection
to our earlier work on electronegativity theory, Fermi level
alignment, and partial charge distributions within a single-
molecule junction [11–13].

In our current paper, we focus on calculating the transfer
integral [14] in a single molecule junction, which is a key
ingredient in the semiclassical Marcus theory often used for the
description of electron hopping in purely molecular systems.
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This is a first step in treating hopping and coherent tunneling on
the same theoretical level, which enables a direct comparison
of the coherent tunneling conductance calculated from Marcus
theory with that obtained from a NEGF approach and lays the
ground for a description of electron hopping in our future work,
where the reorganization energy and driving force will also
have to be considered. For the quantum chemical description
of the transfer integral, there are two types of commonly used
frameworks: (1) those that look for the minimum adiabatic
state splitting, which is estimated either through Koopman’s
theorem [15] or by tuning energy differences with external
perturbations [14], and (2) those that depend on defining the
diabatic states, such as the Mulliken-Hush method [16] and its
generalization [17], the block diagonalization method [18],
and the fragment charge difference method [19]. Because
Slater determinant based techniques are rather unsuitable
for the description of metallic systems (this holds also for
parametrized approaches, which are very popular for the
description of electron transfer processes in organic solids
[20]), methods for both (i) and (ii) have also been developed
within the framework of DFT more recently.

We use three of these methods in our article. Within
category 1, we employ an energy gap approach [14,21],
where we define the splitting of adiabatic states in a single
particle version as the energy difference between suitably
selected Kohn-Sham (KS) orbitals of our system and in a many
body version, where we use the generalized �SCF technique
[22–25] for localizing a charge in particular orbitals, thereby
including also electronic relaxation effects in our estimation of
the energy splitting of adiabatic states at the transition point.
For exploiting category 2, namely, the derivation of transfer
integrals via the definition of diabatic states, we use two fun-
damentally different approaches. One is based on calculating
explicitly the coefficients for the expansion of adiabatic into
diabatic states [26–28], where we introduce again a single
particle and a many-body version. The other is Larsson’s
formula for the estimation of an effective coupling [19,29],
which is a multistate approach, where the contributions of all
bridging molecular orbitals (MOs) are summed up. This last
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approach we use only with KS orbitals, because we could not
find a meaningful many body implementation within DFT.

The paper is organized as follows. In the next section,
we introduce the three different methods for calculating the
transfer integral in our article by applying them to a 3 × 3
tight-binding (TB) Hamiltonian, which was also previously
used by others for demonstration purposes [30]. In Sec. III,
we describe how we combine the three techniques with
DFT calculations, which we perform by using the GPAW
code [31,32] and benchmark our approaches by comparing
our results for molecular systems previously studied by
other groups, namely, for intermolecular hole transport in
a diethylene dimer [33] and for intra-molecular electron
transport in a tetrathiafulvalene-diquinone anion (Q-TTF-Q−)
[34]. In Sec. IV, we employ all techniques for the evaluation
of the transfer integral in a single molecule junction with two
gold electrodes connected by a Ru-complex with transport
mediating MOs around the Fermi level. Here, we study
the influence of the representation of the leads, starting
with four-atom gold clusters and ending up with a periodic
slab description of the surface, where k point integration
becomes an important issue [35]. By using Nitzan’s equations
[36,37], we relate the conductance to the transfer integral
in Marcus theory, where for the coherent tunneling limit at
low bias the reorganization energy and driving force can be
disregarded, and we get reasonable quantitative agreement
with our previous results, where we used a NEGF-DFT
technique to calculate transmission functions for the same
system [10].

II. THREE METHODS FOR THE EVALUATION
OF THE TRANSFER INTEGRAL

In this section, we introduce all three methods used in this
article for calculating transfer integrals by applying them to
the diabatic Hamiltonian H of order 3 × 3,

H =
⎛
⎝

εD VDB VDA

VDB εB VBA

VDA VBA εA

⎞
⎠ , (1)

where εD , εB , and εA are the onsite energies of a donor, a bridge
and an acceptor state, respectively, and VDB , VDA, and VBA the
respective electronic couplings between them. When we now
specify the parameters in this Hamiltonian with εA = εD =
0, εB = 1,VDB = VBA = −0.1 and VDA = −0.01, which is
representative for typical molecular donor/bridge/acceptor
systems and identical with the setup studied in Ref. [30] a
diagonalization of H results in the adiabatic states,

ψ1 = 0.701φD + 0.136φB + 0.701φA, ε1 = −0.029,

ψ2 = 0.701φD − 0.701φA, ε2 = 0.010,

ψ3 = 0.096φD − 0.991φB + 0.096φA, ε3 = 1.019.

(2)

If we use the energy gap method [14,21] for evaluating the
transfer integral, we obtain the expression

H
gap
DA = (ε2 − ε1)/2, (3)

where it is important to note that the eigenenergies of the
adiabatic states ψ1 and ψ2 have been selected in this definition
because of their high amplitudes on the donor and acceptor
states, while the third adiabatic state ψ3, which is mostly

localized on the bridge state can be disregarded. In praxis, as
we will also discuss in the following sections, there are always
two distinct adiabatic states which can be used for forming
the energy difference in Eq. (3) even for larger Hamiltonians
as long as the donor and the acceptor are characterized by a
single state on each side [21].

Another definition of the transfer integral can be obtained
by Larsson’s formula for the derivation of an effective coupling
[19,29]

H effect
DA = VDA − �N

i=1
VDiViA

εA,D − εi

, (4)

where the direct coupling between donor and acceptor VDA

as well as the contributions from all N bridge states in an
arbitrary system are added up explicitly and N = 1 for the
3 × 3 Hamiltonian in Eq. (1).

For the third technique, we employ for calculating the
transfer integral, we follow the work of Migliore [26–28] and
use the amplitudes on the donor and acceptor sites, i.e., the
expansion coefficients aD,1 and aA,1, respectively, of the wave
function for the adiabatic state with the lowest energy (the
ground state ψ1) in Eq. (1) to formulate

H coeff
DA = aD,1aA,1

a2
D,1 − a2

A,1

(εA − εD). (5)

Since the diabatic states in Eq. (1) are orthogonal to each other
by definition, we do not need to apply the orthogonalization
procedure detailed in Refs. [26–28] at this point, but we applied
it to the DFT calculations, which we will present in the next
section. In contrast to the energy gap and effective coupling
techniques, where εA = εD has been assumed because the
energies of the initial and final state need to be equal at
the transition point where the transfer integral is defined in
dependence on the reaction coordinate q, for the expansion
coefficient method Eq. (5) has a discontinuity at this point, as
is illustrated in the concrete example of Eq. (2), which gives
aA,1 = aD,1 = 0.701. As it has been shown in the appendixes
of Refs. [26] and [27], this discontinuity can be eliminated
leading to the expected correct result at the transition state
coordinate but the closer the transition state is approached the
higher the demands on the computational accuracy become.
This leads to a trade off, where Eq. (5) is used close to but
not at the transition point and for the model Hamiltonian in
Eq. (1), q can be varied by varying εD−εA.

It is illustrative to compare the values obtained for HDA

from the three methods described in this section numerically
for the Hamiltonian defined in Eq. (1) for the set of parameters
which result in the adiabatic wave functions in Eq. (2). This
is done in Table I, where it can be seen that H coeff

DA converges
towards 0.02 for small values of εD−εA, while H

gap
DA = 0.0195

and H effect
DA = 0.02. As discussed in Ref. [21], the applicability

of the effective coupling method depends on |εB − εA,D| being
reasonably large and all couplings being reasonably small.
In order to be more quantitative with this statement, we
use the Hamiltonian in Eq. (1) with εA = εD = VDA = 0.0
and VDB = VBA to derive H effect

DA = −V 2
DB/εB and H

gap
DA =

0.5(0.5εB −
√

2V 2
DB + 0.25ε2

B ) for this special case, which
we both plot in dependence on VDB and εB in Fig. 1. It
can be seen that the agreement between both methods is
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TABLE I. Transfer integral H coeff
DA as calculated with the expan-

sion coefficient method [26–28] in Eq. (5) for the Hamiltonian in
Eq. (1) with the parameters εB = 1, VDB = VBA = −0.1, and VDA =
−0.01. For the same parameters one can derive H

gap
DA = 0.0195 from

Eq. (3) and H effect
DA = 0.02 from Eq. (4) with εA = εD = 0.

εD εA εD-εA aA,1 aD,1 H coeff
DA

0.0 0.0 0.0 0.701 0.701 divergent
−0.01 0.01 0.02 0.845 0.518 0.0197
−0.1 0.1 0.2 0.991 0.093 0.0189
−0.5 0.5 1.0 0.998 0.017 0.0167

ideal for |εB − εA,D| above 0.2 eV and |VDB | below 0.1 eV.
Most systems we investigate in this article have Hamiltonians
broadly within this range, but from Fig. 1 it can be also seen
that the results from the two methods move away from each
other only gradually for larger couplings or smaller on-site
energy differences.

III. DFT CALCULATIONS OF THE TRANSFER INTEGRAL
FOR MOLECULAR BENCHMARK SYSTEMS

We now want to benchmark the three methods for evalu-
ating HDA, which we have introduced in the last section on
real molecular systems instead of just TB matrices, where
we choose two systems for which HDA has been studied
extensively in the literature. The first is an ethylene dimer,
where inter molecular hole transfer occurs between the local
highest occupied MOs (HOMOs) of two ethylene molecules
[33], which represent the diabatic initial and final state of the
process, respectively, and form the two adiabatic bonding and
antibonding states through their hybridization as we illustrate
in Fig. 2. The second test system is a Q-TTF-Q− anion, where
intra molecular electron transfer between two quinone rings
is mediated by a bridge [34] and the lower lying adiabatic
state is shown in Fig. 3. This latter case is more challenging
to describe correctly, since (i) it is not obvious whether the
sulfur atoms should be seen as part of the initial/final state
or as part of the bridge and (ii) due to the direct covalent
connection between the donor/acceptor states and the bridge
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FIG. 1. (Color online) H effect
DA and H

gap
DA for the Hamiltonian in

Eq. (1) with εA = εD = VDA = 0.0 and VDB = VBA.

FIG. 2. (Color online) Molecular orbitals for a dimer of ethylene
molecules as studied in Ref. [33], where the initial state ψD for hole
transport is the HOMO of the left molecule, and the final state ψA

the HOMO on the right one, and these orbitals form the adiabatic
bonding and antibonding states, ψ+ and ψ−, respectively, through
their hybridization.

states the self interaction (SI) problem of DFT, which results in
an artificial tendency towards charge delocalization, becomes
an issue [38–41].

All DFT calculations in this article were performed with the
GPAW code [31,32], where the core electrons are described
with the projector augmented wave (PAW) method and the
basis set for the KS wave functions can be optionally chosen
to be either a real space grid or a linear combination of atomic
orbitals (LCAO), and we used both for the benchmarking
calculations in the following, where the LCAO basis set has
been applied on a double ζ level with polarization functions
(DZP). The sampling of the potential energy term in the
Hamiltonian is always done on a real space grid when using
GPAW, where we chose 0.18 Å for its spacing and the
same value when the grid also defines the basis set. For the
XC functional we use the semilocal Perdew-Burke-Ernzerhof
(PBE) [42] parametrization but we compare it with the hybrid
functional B3LYP [43] for the cases where we find an
indication for an artificial delocalization of electronic states.
A tool of GPAW we also use extensively in the following is
the generalized �SCF method, where the spatial expansion
of an orbital enforced to contain a charge can be defined
as an arbitrary linear combination of Bloch states [22,23].
By extracting or adding one electron from the system and
inserting the corresponding charge into a predefined orbital
in the beginning of every iteration step, the self-consistency
cycle progresses as usual but with the charge density of this
particular orbital as a contribution to the external potential.

For the evaluation of the transfer integral with the energy
gap method for the hole transport in the ethylene dimer, one
can, in principle, just obtain the two adiabatic states as the
HOMO and HOMO-1 from a standard DFT calculation and
insert their respective KS eigenenergies into Eq. (3). We refer

FIG. 3. (Color online) The SOMO of Q-TTF-Q−, which is the
energetically lower lying adiabatic state for intra-molecular electron
transfer in this system.
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TABLE II. Transfer integral HDA for the ethylene dimer in Fig. 2
calculated with three different techniques, which are applied in single
particle (SP) and many-body (MB) variants, where the results are
compared with those from Ref. [33] and are given in eV.

H
gap

DA H effect
DA H coeff

DA

basis set SP MB SP SP MB HDA (Lit.)

LCAO 0.030 0.026 0.033 0.033 0.043 0.046
grid 0.050 0.043 – – 0.068 (Ref. [33])

to this as a single-particle (SP) approach in the following.
Alternatively, one can use the �SCF method in two separate
calculations where an electron has been removed from either
one or the other of these two orbitals in order to obtain total
energies values whose insertion into Eq. (3) should ensure
that H

gap
DA calculated this way also contains contributions from

the relaxation of all other electrons in reaction to this charge
[44,45]. This is what we call the many-body (MB) approach in
the remainder of this article. In Table II, we compare SP and
MB values of H

gap
DA for the ethylene dimer, where we calculated

both with a LCAO as well as a grid basis set.
For the definition of H effect

DA a subdiagonalization procedure
[46,47] is required, where a Hamiltonian is obtained that
contains a block with the on-site energies of orbitals localized
on the left ethylene molecule and another block of states
belonging to the right one with the couplings between left
and right as nondiagonal elements. Since the ethylene dimer
does not contain bridge states, only the direct coupling element
between initial and final state, i.e., the first term on the right
side of Eq. (4) is needed to obtain H effect

DA for this system. For
this method, we only define a SP mode, and consider MB
calculations to be impractical.

While H
gap
DA and H effect

DA have to be calculated at the ground
state of the system with respect to the coordinates of the
nuclei which corresponds to a reaction coordinate q = 0,
H coeff

DA diverges at this point as illustrated in the last section
in the discussion of Table I. In order to define a suitable q
in terms of nuclear coordinates, we followed the procedure
in Ref. [34], where the ground-state coordinates R0 for the
positively charged dimer are supplemented by relaxations for
the charged initial and final states (with the charge localized
through �SCF on the left or right molecule, respectively)
resulting in the sets of coordinates R−1 and R1 for q =
−1 and 1, respectively, and the interpolation formula Rq =
0.5q(q + 1)R1 − (q − 1)(q + 1)R0 + 0.5q(q − 1)R−1 can be
applied to obtain the coordinates for an arbitrary value of
q. In the following, we show results from calculations for
q = 0.2 wherever it is not stated otherwise. For calculating
H coeff

DA in a SP mode, we make use of the same block
diagonalization of KS states already mentioned in connection
with H effect

DA in the paragraph above, where the local HOMOs
of the separate ethylene molecules in the dimer now have
different energies due to the asymmetry of the system at
q = 0.2 and a finite energy difference can be obtained for
Eq. (5). By forming and diagonalizing a 2 × 2 Hamiltonian
from these two local HOMOs and the direct coupling between
them, the expansion coefficients aA,1 and aD,1 can also be
straightforwardly derived. In MB mode εA and εD are the
total energies of the initial and final states, respectively, and

therefore �SCF calculations constraining the positive charge
on the left ethylene molecule at q = −1 and at the right one
at q = 1 have to be performed. The expansion coefficients
aA,1 and aD,1 on the other hand are again quantities related
to the transition point, and we use the wave-function overlap
within the projector augmented wave (PAW) formalism [32] to
obtain them at q = 0.2, where the coefficients of the expansion
of adiabatic into diabatic states are equivalent to those for
the expansion of constrained diabatic states into KS states
if normalized correctly. We also tested the orthogonalization
procedures for the energy gap and the expansion coefficient
methods suggested in Refs. [26–28,33], respectively, and
found them to have no numerical effect for any system studied
in this paper, where all states in the definitions we chose were
orthogonal already.

From Table II, it can be seen that for the ethylene dimer all
three methods agree perfectly with each other in SP mode,
where only the energy gap technique can be applied also
with a grid basis set, while for the other two approaches the
LCAO basis is needed for the subdiagonalization procedure
of KS states [46,47]. There is a bit more fluctuation of results
in MB mode but overall the deviations are moderate, where
more accuracy tends to deliver slightly higher values assuming
that the grid basis is better converged than the LCAO basis
and that MB in general gives an improvement over SP. We
also show the number obtained by Bredas and co-workers
for the same system in Ref. [33], which matches perfectly
with our MB values of H coeff

DA with a LCAO and H
gap
DA with

a grid basis. One might wonder why the MB values do
not differ more when compared with their SP counterparts
given that electronic relaxation provides a factor of two when,
e.g., comparing the addition energy of a H2 molecule in a
junction with the molecules KS-HOMO/LUMO gap [44]. This
discrepancy is best understood by focusing on Eq. (3) for the
calculation of H

gap
DA from two separate total energy calculations

with a positive charge in first the energetically lower and
than the higher of the two adiabatic states in Fig. 2, which
are the global HOMO and HOMO-1 of the dimer. Contrarily
to the bonding HOMO and antibonding LUMO of H2, which
differ considerably in their respective spatial distribution, the
HOMO and HOMO-1 of the ethylene dimer mostly differ in
their phase, i.e., their minima and maxima are at exchanged
positions for the second ethylene molecule. This is, however,
irrelevant for the electron density that is formed from these
orbitals where the minima and maxima both give local peaks
and the effect of the relaxation of the other electrons in
the system should be similar for both states, thereby almost
canceling out when the difference in Eq. (3) is formed. In
general, such a good agreement between the SP and MB mode
of the energy gap method can always be expected because
transfer integrals are usually below 0.1 eV in value, which
corresponds to a rather low level of hybridization between the
donor and acceptor states and therefore to rather similar spatial
distributions of the bonding and antibonding adiabatic states.

It has to be stressed that the ethylene dimer is a rather
unchallenging system in the sense that the initial and final
states are not connected to each other by covalent bonds and
therefore no bridge states exist. The difficulties that can arise
in the presence of a bridge are illustrated for the Q-TTF-
Q− anion in Table III, where HDA has been calculated in
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TABLE III. Transfer integral HDA for the Q-TTF-Q− anion in
Fig. 3 calculated with all three techniques in SP mode, where the
Sulfur atoms are taken as part of the initial and final states in the first
row, and as part of the bridge states in the second row. All numbers
in this table have been calculated with a LCAO basis set and are
given in eV.

H
gap
DA (MO) H

gap
DA (diag.) H effect

DA H coeff
DA

S on donor/acceptor 0.031 0.023 0.023 0.023
S on bridge 0.031 0.042 0.064 0.057

SP mode with all three methods. Although like in the dimer
case, also for the anion the energy difference of the SOMO
and LUMO from the standard DFT calculation can be used
directly for determining H

gap
DA for electron transfer, there is an

ambiguity here because the initial and the final state have not
been explicitly defined and, in principle, several diabatic states
localized on the two quinone rings could contribute to what we
take as the adiabatic states. This ambiguity can be overcome
by block-diagonalizing the KS Hamiltonian over the donor,
bridge and acceptor areas, selecting one state in the donor area
as initial and one in the acceptor area as final state, keeping
all N bridge states, and then diagonalizing the resulting (N +
2) × (N + 2) Hamiltonian, where the two adiabatic states for
forming the energy difference can be chosen by the criterion
of a high amplitude at the initial and final state as discussed
in the previous section. We distinguish between these two
ways of deriving H

gap
DA in SP mode just described by referring

to them as H
gap
DA (MO) and H

gap
DA (diag.). The latter becomes

especially important in the next section, where we have the
Bloch states of the gold leads as initial and final states and their
selection becomes a crucial issue for the transfer integral. The
same (N + 2) × (N + 2) Hamiltonian is also relevant for the
derivation of H effect

DA , where now the first term in Eq. (4) gives
only a negligible contribution and the N bridge states are all
entering into the sum. Also H coeff

DA we obtain by diagonalizing a
(N + 2) × (N + 2) Hamiltonian for the expansion coefficients
but this one now represents the electronic structure for the
nuclear coordinates corresponding to q = 0.2.

The most important question if a molecular bridge exists
between the donor and acceptor states is the decision which
atoms are still part of the initial/final state and which atoms
should be assigned to the bridge. Although this decision is in
principle arbitrary if all parts of the system are connected by
covalent bonds, for some systems there are natural choices as
we discuss in the next section where the initial and final states
are on the gold leads and the molecule is the bridge. For the
Q-TTF-Q− anion, there is no a priori way to make a superior
assignment for the sulfur atoms and we compare the results
for both possibilities in Table III. For H

gap
DA (MO), there is

no difference because we do not describe our initial and final
states explicitly as stated above and therefore do not specify
where their location starts and ends. For all other methods, the
values for the transfer integral vary between the two choices
of what is the bridge as they should. The correct value of HDA

has to depend on the exact definition of A and D or in other
words the transfer integral for two quinone rings with sulfur
ends connected by an ethylene bridge is different from the

TABLE IV. Transfer integral for the Q-TTF-Q− anion (at q = 0
and 0.2 for H

gap
DA and H coeff

DA , respectively) calculated with PBE and
B3LYP functionals in MB mode. All results in this table have been
obtained with a grid basis set and are given in eV. The result of
Ref. [34] for this system is also shown for comparison.

H
gap
DA H coeff

DA HDA (Lit.)

PBE 0.026 0.117 (0.157) 0.130
B3LYP 0.036 0.053 (0.035) (Ref. [34])

one for two quinone rings connected by an ethylene tetrathiol
bridge. More interestingly, while all three methods give the
same result with the S atoms as part of donor and acceptor,
they exhibit quite a spread of results if these atoms are part
of the bridge. This finding can be explained by coming back
to the discussion around Fig. 1 where it has been shown that
the methods only give the same results for reasonably small
couplings and reasonably large energy differences. If the S
atoms are considered to be part of the bridge, the couplings
reach values of up to 0.8 eV and therefore the methods slightly
diverge for this case.

In Table IV, we show HDA for the Q-TTF-Q− anion
calculated with the energy gap and expansion coefficient
techniques in MB mode. The main numbers for H coeff

DA have
been calculated with the sulfur atoms as part of the initial and
final state, while a definition with the S atoms being part of
the bridge has been used for the numbers in parantheses. All
results we presented so far have been produced with a PBE [42]
parametrization of the XC functional, while in Table IV we also
compare with data using the hybrid functional B3LYP [43]
instead. It can be seen that the PBE version of H coeff

DA deviates
from all the other values we have calculated for the transfer
integral in the Q-TTF-Q− anion by an order of magnitude but
interestingly is almost equal to the value found in Ref. [34].
The explanation of this deviation can be found in the SI
problem, which makes the expansion coefficients aD,1 and aA,1

almost equal even if asymmetry is induced by setting q = 0.2.
This artefact can be even more highlighted by calculating the
expansion coefficients at q = −1, where one of them should
be close to 0 and the other one close to 1, which is indeed the
case for B3LYP (aD,1 = 0.95, aA,1 = 0.001) but not for PBE
(aD,1 = 0.77, aA,1 = 0.64). This problem does not occur for
the PBE calculations of H coeff

DA for the ethylene dimer presented
in Table II where aD,1 = 0.99 and aA,1 = 0.10, because in this
case there is no bridge linking the donor and acceptor [41].
Since in the expansion method the diabatic states are defined as
a linear combination of the adiabatic states, the SI error cannot
lead to an artificial overdelocalization where the charges are
already maximally delocalized over donor and acceptor (as is
the case for the ethylene dimer) but it has an effect on the
Q-TTF-Q− anion where the charge can spill onto the bridge.

In summary, we can conclude from this section that all
three methods agree with each other quite well for the chosen
benchmark systems and that results from single particle and
many body calculations are of the same order of magnitude.
We therefore restrict our study to the SP mode in the remainder
of this article.
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FIG. 4. (Color online) Geometry of the Ru(PPh2)4(C2H4)2

bis(pyridylacetylyde) complex bonded to ad-atoms on Au fcc
(111) surfaces, where the conductance has been studied within the
framework of NEGF for the neutral and oxidized complex in Ref. [10].

IV. CALCULATION OF THE TRANSFER INTEGRAL FOR
A REDOX ACTIVE SINGLE MOLECULE JUNCTION

In a recent paper, we studied the coherent electron transport
through the Ru(PPh2)4(C2H4)2 bis(pyridylacetylyde) complex
in Fig. 4 by using a NEGF formalism for the conductance,
and where we switched the oxidation state of the redox
active ruthenium atom between +II and +III corresponding
to an overall charge of 0 and +1 on the molecular complex,
respectively [10]. The +1 charge on the complex we achieved
by fixing the charge on a Cl counter ion with the �SCF
technique [22,23] and ensuring overall charge neutrality in the
unit cell of our device region, so that the negative charge on the
chlorine anion resulted in a compensating positive charge on
the complex. In Ref. [10], we also tested a second method for
charge localization, which made use of solvent screening and
was computationally more expensive but in the current article
no water molecules were added to our cell, because the more
efficient approach based on �SCF achieved equivalent or even
better results. We chose this particular Ru-complex because it
was used in previous conductance measurements [48,49] as a
monomer of chains, where depending on the chain length either
coherent transport or electron hopping was observed [48], and
because this molecular species is in general considered to be a
good starting point for the investigation of chains with multiple
redox active centers [50]. In contrast to Ref. [48], we use
pyridil groups as anchors to the leads because they provide
peaks in the transmission function, which are narrow enough
to assume that a charge on the complex has an impact on the
conductance but broad enough to avoid the Coulomb blockade
regime [51–53].

In the present article we relate the conductance G of the
molecular junction in Fig. 4 to the transfer integral, where the
electrodes play the role of the initial and the final state in a one-
step electron transfer reaction and the redox-active molecule
acts as a mediating bridge. The relation between HDA and G

was explicitly described by Nitzan [36,37], where adopted to
our definition of HDA the conductance was expressed as

G(EF ) = H 2
DA	A	DG0[

(EF − ED)2 + 	2
D/4

][
(EF − EA)2 + 	2

A/4
] ,

(6)

with G0 being the conductance quantum, and 	D and 	A the
widths of the donor and acceptor levels due to their couplings
to the left and right metal leads, respectively. In such a setup,
only metallic surface states close to EF are relevant for the
conductance through the junction and if only such bands are
considered as the initial and final states of the corresponding
electron transfer reaction the energy differences EF − ED and
EF − EA vanish in Eq. (6), which can now be simplified to

G(EF ) = H 2
DA

16

	D	A

G0. (7)

By using this expression and setting 	D = 	A = 0.5eV , which
is reasonable for the coupling width of gold leads [54], the
transfer integral can be obtained from the conductance as
HG

DA ≈ √
G(EF )/8, where in Table V, we list the values we

derive in this way from the conductances in Ref. [10] as a
benchmark for the three methods introduced in the current
article.

In order for Eq. (7) to be valid, only metal bands, which
contribute to the density of states (DOS) at the Fermi level,
can be considered as donor and acceptor states. Therefore we
calculated HDA,k for all relevant donor-acceptor pairs weighted
with a k-point-resolved DOS,

HDA,k =
∑N

i=1 HDA,i,k ∗ ρ(EF )i,k∑N
i=1 ρ(EF )i,k,

, (8)

where ρ is the density and finally integrated HDA,k over k
space following the procedure of Marcus and co-workers [35].
Another aspect that has to be considered for the proper choice
of initial and final states is their localization on the gold
adatoms, which couple directly to the molecular bridge, since
only those can contribute significantly to the electron transfer
reaction. Bulk bands, that are close to the Fermi level but have
no connection to the molecule would lower HDA in Eq. (8)
artificially, where the statistical weight is only defined by the
DOS. Therefore we introduced the exclusion criterion that the
metallic states entering Eq. (8) have a coupling with one of the
two most relevant MOs (the HOMO-1 and the LUMO), which
is larger than 10−3.

In theory, the initial and the final states in our calculations
should have the same energy for each donor/acceptor pair,
because the junction in Fig. 4 has a high symmetry and
the transfer integral has to be defined at the transition point
of the corresponding reaction. In practice, however, small
asymmetries introduced by the torsional degrees of freedom
in the molecular bridge can lead to differences in diabatic
energies in the range of 10−3 eV. Since the HDA values in
this section are in the order of 10−4 eV, we corrected Eq. (3)
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TABLE V. Transfer integrals for the junction in Fig. 4 calculated with energy gap, effective coupling and expansion coefficient methods in
SP mode. The gold leads are small clusters of four atoms on each side in the Au pyramid columns and the periodic surfaces from Ref. [10]
everywhere else, where 	 point only calculations are also compared with the average over 8 k points in the irreducible Brillouin zone. HG

DA

has been defined as
√

G(EF )/8, where the values of G(EF ) have been taken from Ref. [10]. All results are given in eV.

Au pyramid 	 point only 8 k points

Charge H
gap
DA H effect

DA H coeff
DA H

gap
DA H effect

DA H coeff
DA HG

DA H
gap
DA H effect

DA H coeff
DA HG

DA

0 3.57×10−3 3.63×10−3 3.65×10−3 2.95×10−4 3.05×10−4 3.05×10−4 4.41×10−4 1.06×10−3 1.02×10−3 1.02×10−3 4.96×10−4

+1 3.16×10−3 3.26×10−3 3.18×10−3 4.28×10−4 4.72×10−4 4.69×10−4 1.00×10−3 1.95×10−3 1.65×10−3 1.25×10−3 1.37×10−3

to account for these asymmetries following the procedure
of Bredas and co-workers [33], where the differences of the
diabatic energies are explicitly subtracted,

H
gap
DA =

√
(ε1 − ε2)2 − (εA − εD)2

2
. (9)

For the application of the expansion coefficient method, it is
an advantage that small energy differences between donor and
acceptor states exist, because here we can interpret them as
finite values of q, since this technique cannot be applied at
the transition point as discussed in detail in the previous two
sections. The effective coupling method can be corrected by
replacing the denominator εA,D − εi of the second term in
Eq. (4) with (εD + εA)/2 − εi [21]. Another consequence of
the asymmetry in the junction are artificial deviations between
the couplings of each MO to the two gold surfaces, which we
corrected for by using a mean value for the coupling to both
surfaces for all three techniques.

In Table V, we present HDA values for the junction in Fig. 4
for a neutral (0) and charged (+1) complex calculated with all
three methods at only the 	 point as well as averaged over
the eight k points in the irreducible Brillouin zone obtained
from a 4 × 4 × 1 grid. The values HG

DA are obtained from
the conductances in Ref. [10] for the same system and also
given for comparison. While all the remaining numbers refer
to the periodic junction also used in Ref. [10], for the first
three columns (Au pyramid), small clusters of four gold
atoms on each side in a tetrahedral configuration have been
used as electrodes in order to assess the effect of a proper
description of the gold leads on the numbers. The overall
agreement of the three methods for calculating HDA amongst
themselves is excellent, which is not surprising because all
relevant couplings between the MOs of the bridge and the
surface states are in the range 10−3–10−2 and the molecular
eigenenergies have at least a distance of 0.2 eV from EF .
When compared with HG

DA the important aims are fulfilled,
namely the order of magnitude is the same, and the transfer
integral for the neutral state is always considerably smaller
than that for the charged one. A better agreement could not

TABLE VI. Individual contributions of the MOs in Fig. 5 to
H effect

DA . All values are given in eV.

Charge HOMO-1 HOMO LUMO LUMO + 1

0 3.4×10−4 3.3×10−5 1.1×10−3 −5.8×10−4

+1 1.4×10−3 4.4×10−5 6.2×10−4 −4.7×10−4

have been expected given that the values for HDA are rather
small and the approximative nature of the assumptions we
made in deriving HG

DA from G (EF ). This is in particular true
for the underestimation of the k point dependence of HG

DA in
Table V, which stems from the fact that 	D and 	A in Eq. (7)
depend on the density of states of the lead and should therefore
be different for each k point, which is not considered in our
treatment, where we set both to 0.5 eV globally throughout the
reciprocal space of the system. Only the results we obtained
for the transfer integral with small clusters as gold leads are
wrong, both in their order of magnitude and in the ranking with
regard to 0 and +1 charge, where both can be easily explained.
The small cluster size is responsible for a larger amplitude of
the initial/final state on the Au adatom, thereby enhancing the
coupling to all MOs [54] and resulting in artificially high values
of HDA. The charged complex does not have higher transfer
integrals then the neutral one because for nonperiodic leads
the charge introduced by the chlorine ion is mostly localized
on the Au clusters as we investigated in detail in Ref. [10].

An important finding from the comparison of conductances
of the two charging states of the Ru-complex in Ref. [10]
was that for the neutral molecule it was determined by the
molecular LUMO and LUMO + 1, with the contribution from
the LUMO being distinctly larger. In the charged case, the
molecular HOMO and HOMO-1 are shifted close to the
Fermi energy of the metal leads, which makes them primarily
responsible for the molecular conductance. The effective
coupling method provides a good way to analyze whether the
same holds true for the respective transfer integrals because
the contributions from the MOs are additive in Eq. (4). In
Table VI, we list the terms in the sum coming from the four
MOs closest to EF , where indeed it can be seen that the LUMO

FIG. 5. (Color online) Molecular orbitals close to EF for the
junction in Fig. 4.
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dominates for charge 0 and the HOMO-1 for charge +1. The
HOMO adds only an amount which is two orders of magnitude
smaller for both oxidation states, because it is mostly localized
in the center of the molecule and only to a much lesser extent
on the anchor groups as can be seen from Fig. 5. This results in
rather low coupling of this orbital to the metal leads, which we
also found from the NEGF calculations for the transmission
functions in Ref. [10]. The contribution from the LUMO + 1 is
also independent of the charging state but of larger magnitude
than that of the HOMO, and for both systems its sign is
different from that of the other MOs indicating destructive
interference.

V. SUMMARY

The aim of this article was to identify suitable methods for
calculating the transfer integral—which is a crucial quantity
in Marcus theory—within a DFT framework for a setup where
metallic leads act as donor and acceptor and a molecule in
between them mediates electron or hole transport as a bridge.
We found three techniques fit for that purpose, namely, (i) the
energy gap method where HDA is derived from the total energy
difference of adiabatic states, (ii) Larsson’s formula which
adds up the contributions from each MO of the molecular
bridge, and (iii) a expansion coefficient approach where the
amplitudes of the adiabatic states in a diabatic basis are used
explicitly. For this assessment, we proceeded in three steps.
First, we compared the three methods on an abstract level
by applying them to 3 × 3 tight-binding matrices, where we

found good agreement between all of them for small couplings
between the bridge and the donor/acceptor states and large
respective on-site energy differences. In a second step, we
benchmarked our DFT implementation of the three techniques
for purely molecular systems with and without a bridge, which
have been studied by other groups, where we also established
that a many body approach gives only negligible corrections
compared to single particle descriptions. Finally, we calculated
HDA for a single molecule junction where a Ru complex is
coupled to two gold surfaces by pyridyl anchor groups using
all three methods and assuming that surface states of the two
leads act as donor and acceptor states, thereby describing
coherent tunneling. Our results for HDA were in excellent
agreement with those derived from the conductance computed
with a NEGF formalism for the same system in two different
oxidation states.
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