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Electromagnetic fluctuations near thin metallic films
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We compute the electromagnetic fluctuations due to evanescent-wave Johnson noise in the vicinity of a thin
conducting film, such as a metallic gate or a two-dimensional electron gas. This noise can decohere a nearby
qubit, and it is also responsible for heat transfer and Casimir forces. We have improved on previous calculations
of decoherence rates by including the nonlocal dielectric response of the film, which is an important correction
at short distances. Remarkably, the fluctuations responsible for decoherence of charge qubits from a thin film are
greatly enhanced over those arising from a conducting half space. The decoherence times can be reduced by over
an order of magnitude by decreasing the film thickness. This appears to be due to the leakage into the vacuum
of modes that are well localized in the perpendicular direction. There is no corresponding effect for spin qubits
(magnetic field fluctuations). We also show that a nonlocal dielectric function naturally removes the divergence
in the Casimir force at vanishing separation between two metallic sheets or half spaces. In the separation regime
where local and nonlocal treatments are noticeably distinct, the Casimir attraction between two thin sheets and
two half spaces is practically indistinguishable for any physical film thickness.
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I. INTRODUCTION

Thin metallic films are being used in an increasing num-
ber of nanotechnological applications. Semiconductor qubit
architectures use conducting gates to isolate, manipulate, and
read the qubit. While these conducting device elements are
essential to the functionality of the qubit, they also give rise to
an inevitable source of decoherence through evanescent-wave
Johnson noise (EWJN) [1]. The top gates in accumulation-
mode qubit architectures in particular are well approximated
by a thin metallic film, and an accurate calculation of the
decoherence times in these devices will require a detailed
treatment of the electromagnetic properties of the films [2].
Thin films can also supply a desired or undesired source of
heat transfer in micromechanical devices, and free-standing
conducting films will experience stiction forces from nearby
device elements through the Casimir effect.

The magnitude of heat transfer, the Casimir effect, and the
qubit decoherence rate can all be obtained once the reflection
coefficients of the film, rp and rs , have been calculated. rp

is the reflection coefficient for incident light with an electric
field that is polarized in the plane of incidence, while rs has its
electric field polarized perpendicular to the incident plane.

In this paper we present a detailed derivation of these
coefficients for the case of a general nonlocal dielectric
function and use them to obtain quantitative calculations of the
effects mentioned above. The thin-film reflection coefficients
are found to exhibit important differences compared to a half
space. These same nonlocal reflection coefficients have been
found previously by Jones et al. [3] in the context of the
anomalous skin effect and were used by Esquivel-Sirvent and
Svetovoy [4] to obtain an expression for the Casimir force
equivalent to that obtained here. The main contributions of
the present work are to use these reflection coefficients to
calculate decoherence rates of charge and spin qubits and
to unify the formalisms describing qubit decoherence, heat
transfer, and the Casimir effect for thin conducting films with
a nonlocal dielectric response. Of central importance is our
result that a nonlocal treatment removes all divergences in the
size of these effects as the surface of the film is approached.

This paper is organized as follows. In Sec. II we derive
our expression for the reflection coefficients of a thin film in
a nonlocal treatment. In Secs. III and IV we then apply these
coefficients to give a quantitative analysis of qubit decoherence
from EWJN and stress-energy-tensor related phenomena,
respectively. Section V shows how our reflection coefficients
reduce to the cases of a local response and a conducting half
space when the appropriate limits are taken. Finally, in Sec. VI
we present our conclusions.

II. DERIVATION

We consider an infinite metallic sheet with nonlocal
dielectric response whose surfaces are located at z = −a and
z = 0. To derive the reflection coefficients, we generalize
the treatment by Ford and Weber [5] of a half space in the
semiclassical infinite barrier model. The fields inside the sheet
satisfy Maxwell’s equations, and we consider fields varying
harmonically in time at frequency ω, E(r,t) = E(r)e−iωt .
If we define the Fourier modes of all field quantities as
E(r) = ∫

dkE(k) exp(ik · r)/(2π )3, etc., a general nonlocal
dielectric function will relate D and E by

D(k) = εl(k,ω)k̂ · E(k)k̂ + εt (k,ω)[E(k) − k̂ · E(k)k̂], (1)

where we have separated the dielectric function into its
longitudinal, εl , and transverse, εt , components. The reflection
coefficients may be found through the surface impedances [6],
defined as

ZP (p,ω) = − 1

ε0c2

{
p̂ · E

ẑ × p̂ · B

}
inside

,

(2)

ZS(p,ω) = 1

ε0c2

{
ẑ × p̂ · E

p̂ · B̂

}
inside

,

where p̂ is a unit vector along the direction of the in-plane
component of the wave vector, and the fields are evaluated at
the inner surface of the metal. The reflection coefficients may
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then be written as

rp = q1/ε1 − ZP ε0ω

q1/ε1 + ZP ε0ω
, rs = ZSε0c

2 − ω/q1

ZSε0c2 + ω/q1
. (3)

In the semiclassical infinite barrier model, it is assumed that
the conduction electrons exhibit specular reflection at the
boundary. In this model, the behavior of the fields inside a
conducting half space are indistinguishable from the fields
inside an infinite conductor with a current sheet at the location
of the surface,

j(r,t) = Jδ(z)ei(p·ρ−ωt), ẑ · J = 0, (4)

where ρ is the position vector in the plane of the boundary,
not to be confused with the electron density, and p is the
component of the photon wave vector in the plane of the half
space. For our case of a thin conducting film, the single current
sheet is replaced by an infinite series of image current sheets:

j(r,t) =
∞∑

n=−∞
{J1δ(z − 2an) + J2δ[z − a(2n + 1)]}ei(p·ρ−ωt),

ẑ · J1 = 0, ẑ · J2 = 0,

where J1 and J2, which correspond to images of the right
and left surface current sheets, respectively, must be of equal
magnitude and either parallel or antiparallel. Plugging this
current source into Maxwell’s equations allows us to solve for
the electric and magnetic fields inside the metal,

E(z) = 2π

iωa

∞∑
n=−∞

[(
J1 − (k · J1)k/k2

εt − c2k2/ω2
+ (k · J1)k

k2εl

)

+ (−1)n
(

J2 − (k · J2)k/k2

εt − c2k2/ω2
+ (k · J2)k

k2εl

)]
eiqz,

B(z) = 2πc

iω2a

∞∑
n=−∞

(
k × J1

εt − c2k2/ω2
+ (k × J2) (−1)n

εt − c2k2/ω2

)
eiqz.

(5)

It can be seen by inspection that J1 = J2 corresponds to field
components whose wavelength in the z direction is an integer
fraction of the thickness a, while J1 = −J2 corresponds to
wavelengths in the z direction that are half-integer fractions
of a. Comparison to Ford and Weber shows that the fields
within a thin film differ from those within a half space by
replacing the integral over a continuous q by a summation
over a discrete qn = 2nπ/a or qn = (2n + 1)π/a depending
on whether J1 = J2 or J1 = −J2, respectively. The reflection
coefficients are then obtained by summing the contribution
from both cases.

rp = 1

2

∑
i=e,o

1 − 2i
κa

∑∞
n=−∞ Fp(ki,ω)

1 + 2i
κa

∑∞
n=−∞ Fp(ki,ω)

, (6)

rs = 1

2

∑
i=e,o

1 + 2iκc2

aω2

∑∞
n=−∞ Fs(ki,ω)

−1 + 2iκc2

aω2

∑∞
n=−∞ Fs(ki,ω)

, (7)

Fp(k,ω) ≡ 1

k2

(
q2

εt (k,ω) − c2k2/ω2
+ p2

εl(k,ω)2

)
, (8)

Fs(k,ω) ≡ 1

εt (k,ω) − c2k2/ω2
, (9)

where κ2 = ω2/c2 − p2, qe = 2nπ/a, qo = (2n + 1)π/a,
k2
e = p2 + q2

e , and k2
o = p2 + q2

o . While expressions (6) and
(7) are valid for a general nonlocal dielectric response, for all
numerical results presented in this paper we use the Lindhard
forms

εl(k,ω) = 1 + 3ω2
p

k2v2
F

(ω + iν)fl[(ω + iν)/kvF ]

ω + iνfl[(ω + iν)/kvF ]
, (10a)

εt (k,ω) = 1 − ω2
p

ω(ω + iν)
ft [(ω + iν)/kvF ], (10b)

fl(x) = 1 − x

2
ln

(
x + 1

x − 1

)
, (11a)

ft (x) = 3

2
x2 − 3

4
x(x2 − 1) ln

(
x + 1

x − 1

)
. (11b)

Here ν is the electron collision frequency, ωp =
(4πne2/m)1/2 is the plasma frequency, and vF is the Fermi
velocity. For all results presented in this paper, we use the
values ν = 4πc × 104 s−1, ωp = 1.6 × 1016 s−1, and λF ≡
h/mevF = 0.4 nm. This derivation runs closely parallel to that
of Jones et al. [3] and Esquivel-Sirvent and Svetovoy [4]. In the
following sections we will apply Eqs. (6) and (7) to a variety
of physical systems.

III. DECOHERENCE

A. Energy relaxation

Here we present a quantitative comparison of the relaxation
times of a point-charge or spin qubit when exposed to a
conducting half space or thin film in both local and nonlocal
treatments. The relaxation rate for a charge or spin qubit is
proportional to the spectral density of the fluctuating electric
or magnetic field, respectively, at the location of the qubit.
Quantitatively, for a charge qubit of electric dipole moment d

or a spin qubit of magnetic dipole moment μ pointing in the
ith direction at position r with level separation ωZ , we have

1

T1,c

= d2

�2
χE

ii (�r,�r,ωZ) coth

(
�ωZ

2kBT

)
, (12)

1

T1,s

= μ2

�2
χB

ii (�r,�r,ωZ) coth

(
�ωZ

2kBT

)
, (13)

where χ
E,B
ii (�r,�r,ωZ) are the electric and magnetic spectral

densities, respectively, and �r is the location of the qubit [7]. The
spectral densities are given by an integral expression involving
the reflection coefficients. We pause to emphasize that the
temperature dependence of the relaxation rates is entirely
determined by the Planck function. If we take the qubit to
point along the z direction, perpendicular to the surface, the
relevant components of the spectral density tensors are

χE
zz(z,z,ω) = �Re

∫ ∞

0

p3

q
dpe2iqzrp(p), (14)

χB
zz(z,z,ω) = �

c2
Re

∫ ∞

0

p3

q
dpe2iqzrs(p), (15)

115401-2



ELECTROMAGNETIC FLUCTUATIONS NEAR THIN . . . PHYSICAL REVIEW B 89, 115401 (2014)

10
−1

10
0

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

z/λ
F

T
1 (

s)

FIG. 1. (Color online) T1 time of a point-charge qubit oriented
along the z axis as a function of distance from the conductor, expressed
in units of the Fermi wavelength, λF = 0.4 nm. Dashed and solid
lines indicate local and nonlocal dielectric responses, respectively,
for a half space (thick red lines) and a thin film of thickness a =
10 nm (thin blue lines). The local results are seen to diverge as 1/z3

as z → 0.

where q is the z-component of the photon wavevector and p is
the transverse component; q =

√
ω2/c2 − p2 for p2 � ω2/c2

and q = i
√

p2 − ω2/c2 for p2 > ω2/c2.
Figure 1 shows the T1 time for a charge qubit oriented along

the z axis as a function of distance from the conductor. T1 times
for a charge qubit oriented along other directions are qualita-
tively unchanged. Our primary result, T1 from a thin film with a
nonlocal dielectric function, is given by the solid blue curve. Of
particular note are its convergence to the nonlocal half-space
result as z → 0 and its convergence to the local thin-film result
for large z. For intermediate distances the nonlocal field fluc-
tuations are enhanced above those given by a local treatment,
while for smaller distances they converge to a finite value while
the local result diverges as 1/z3. This inversion has been noted
before by Volokitin and Persson in the context of heat transfer
[8] and may be understood as follows. Increasing the separa-
tion between the conducting surface and the qubit changes the
wavelength of the electromagnetic field that predominantly
contributes to relaxation. This dominant wavelength will
increase with the separation, as the shorter wavelengths are
exponentially suppressed more strongly. As the dominant
wavelength crosses over the mean free path of the metal, a
nonlocal treatment will give an enhanced spectrum because of
a commensurability between the electromagnetic field and the
response of the electron system. Electromagnetic field fluctua-
tions with a wavelength much smaller than the mean free path
are suppressed in a nonlocal treatment, causing the fluctuating
field strength to cross over the local result and converge to a
finite value as the separation vanishes, as seen in Fig. 1.

Also, for separations z > 10λF the electric-field fluctu-
ations outside a thin film are noticeably enhanced relative
to those outside a half space. This enhancement can be
understood by analogy to a quantum particle trapped in a
finite square well. Further squeezing of the particle will lead
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FIG. 2. (Color online) T1 time of a point spin qubit oriented along
the z axis as a function of distance from the conductor, expressed in
units of the Fermi wavelength, λF = 0.4 nm. Dashed and solid lines
indicate local and nonlocal dielectric responses, respectively, for a
half space (thick red lines) and a thin film of thickness a = 10 nm
(thin blue lines). The local results are seen to diverge as 1/z as z → 0.

to increased leakage of the wave function into the forbidden
region. The distinction between the half-space and thin-film
fluctuations vanishes as z → 0. Figure 2 shows comparable
results for a spin qubit oriented along the z axis, which
will relax from fluctuations of the magnetic field. A local
treatment of magnetic field fluctuations exhibits a weaker 1/z

divergence. The enhancements of the nonlocal over the local
field strength and of the thin film over the half space are not
present for the magnetic case.

B. Dephasing

In this section we present results for the pure dephasing
time of a charge or spin qubit from EWJN near a thin film.
The dephasing rate may be found through an examination
of the off-diagonal elements of the time-dependent density
matrix [9]. We assume initially that dephasing dominates
over energy relaxation, and so we consider qubit-environment
coupling which is diagonal in the energy eigenbasis of the
qubit. Following [10], our Hamiltonian takes the form

H = Hs + Hb + Hi

= 1

2
σzωz +

∑
k

ωka
†
kak + �s

∑
k

(g∗
k ak + gka

†
k), (16)

where Hs is the two-level system Hamiltonian of the qubit,
Hb is the bath Hamiltonian for the fluctuating field, and Hi

represents the system-bath interaction. a
†
k and ak are creation

and annihilation operators, respectively, for field modes with
wave vector k. �s is the coupling strength of the system
observable to the fluctuating environment, and gk is the
coupled field quantity with mode k. In our case, �s will
always be proportional to σz in the pseudospin eigenbasis of
the qubit. Because Hi then commutes with Hs , our model will
not describe energy relaxation. For the case of a charge qubit,
the creation and annihilation operators are for electric-field
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modes, while for a spin qubit, we have magnetic field creation
and annihilation operators. For a charge qubit �s = dσz, while
for a spin qubit �s = μσz, where d and μ are the electric and
magnetic dipole moments, respectively. If we take the qubit to
point in the ith direction, gk = Ek,i for a charge qubit, where
Ek,i is the ith component of an electric-field fluctuation with
wave vector k, while gk = Bk,i for a spin qubit, where Bk,i is
the corresponding component of the magnetic field.

As shown in Ref. [10], the time dependence of the off-
diagonal components of the reduced density matrix can be
written as

ρ01(t) = ρ01(0)e−
(t), (17)

where for a two-level system


(t) = 1

2�2

∑
k

|gk|2
ω2

k

sin2 ωkt

2
coth

�ωk

2kBT
. (18)

The density matrix has been reduced in the sense of taking
a thermal and quantum average over the bath degrees of
freedom. This allows |gk|2 to be expressed in terms of the
electric and magnetic spectral densities, defined in Sec. III A.
The dephasing time Tφ is then defined as the value of t for
which 
(t) = 1.

A realistic qubit system will experience both pure de-
phasing and energy relaxation. In this case the system-bath
interaction Hamiltonian will contain terms proportional to σx

as well as σz in the pseudospin basis. It is a well-known
result [11] that the dephasing time T2 is then given by a
reciprocal sum of contributions from energy relaxation and
pure dephasing:

1

T2
= 1

2T1
+ 1

Tφ

, (19)

where T1 is given in Sec. III A.
Results for pure dephasing times of charge and spin qubits

oriented in the z direction as a function of separation from the
film are shown in Figs. 3 and 4, respectively. Dephasing times
are qualitatively unchanged from and are of the same order of
magnitude as qubit relaxation times. This can be understood
because EWJN is characterized by Ohmic, rather than 1/f ,
noise, and it is does not exhibit an enhancement from the
low-frequency part of the spectrum.

IV. STRESS-ENERGY TENSOR

In this section we present results for two closely related
phenomena that are proportional to the stress-energy tensor in
the vicinity of the conducting film.

A. Heat transfer

The problem of heat transfer between conducting half
spaces with a nonlocal dielectric function has been treated
in depth by Chapuis et al. [12]. They show that magnetic field
fluctuations, governed primarily by the rs coefficient, supply
the dominant contribution to heat transfer between metallic
surfaces at short distances (d < 10−7 m). The local expression
for rs does not lead to a divergent heat transfer rate at zero
separation, so they argue that the nonlocal corrections may be
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FIG. 3. (Color online) Tφ time of a point-charge qubit oriented
along the z axis as a function of distance from the conductor, expressed
in units of the Fermi wavelength, λF = 0.4 nm. Dashed and solid lines
indicate local and nonlocal dielectric responses, respectively, for a
half space (thick red lines) and a thin film of thickness a = 50 nm
(thin blue lines). Here we take temperature T = 1 K. The crossover
between the local and nonlocal result is not seen here because the
z axis only extends down to ∼λF .

safely ignored for half spaces. We anticipate that the result for
thin films will be qualitatively similar.

Heat flux from one surface to another will be proportional
to the value of the Poynting vector in the direction of their
separation at the location of the second surface. We will thus
be interested in the ensemble average of

〈S(r)〉ω = c

8π
[〈E(r) × B∗(r)〉ω + 〈E∗(r) × B(r)〉ω]. (20)
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FIG. 4. (Color online) Tφ time of a point spin qubit oriented along
the z axis as a function of distance from the conductor, expressed in
units of the Fermi wavelength, λF = 0.4 nm. Blue dashed and solid
lines indicate local and nonlocal dielectric responses, respectively,
for a thin film of thickness a = 50 nm. Here we take temperature
T = 1 K.
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Volokitin [8] found, for the case of two parallel semi-infinite
bodies with separation z and reflection coefficients rs1,rp1,rs2,

and rp2,

Sz = �ω

∫ ∞

0

dω

2π
[N1(ω) − N2(ω)]

(
4
∫

q>ω/c

d2q

(2π )2
e−2|k|z

× Imrp1(q,ω)Imrp2(q,ω)

[1 − e−2|k|zrp1(q,ω)rp2(q,ω)]2
+ [p → s]

)
, (21)

where [p → s] denotes replacing the coefficients rp with rs

and N1,2 represent the Planck functions for the left and right
films, respectively,

Ni(ω) = (e�ω/kBTi − 1)−1. (22)

In Eq. (21) we have dropped the lower portion of the
integral over q when q < ω/c. This part of the spectrum
represents the radiative blackbody contribution to heat transfer,
which is negligibly small compared to the evanescent-wave
contribution. At a separation of 30 nm, the propagating part
will give a significant contribution only for extremely high
frequencies, ω > 1015 Hz [12]. These fluctuations will be
suppressed by the Boltzmann factor. If Eqs. (26) and (27) are
plugged into Eq. (21), a 1/z2 divergence in the heat transfer
rate will emerge. The nonlocal reflection coefficients for a thin
film, Eqs. (6) and (7), vanish for sufficiently large wave vectors
q > 1/λF , which will remove this divergence to give a finite
heating rate at zero separation. The results of Chapuis et al.
[12] may be recovered by using expressions (24) and (25) in
Eq. (21). For a more detailed discussion of heat transfer from
a material with a nonlocal dielectric response, we refer the
interested reader to their paper.

B. Casimir effect

It is instructive to see how the inclusion of nonlocal
dielectric properties affects the Casimir attraction between two
parallel thin metallic films. The Casimir interaction between
thin films has been studied previously by several authors.
Yampol’skii et al. investigated the temperature dependence
of the Casimir attraction between thin conducting films [13].
They discovered the possibility of a nonmonotonic tempera-
ture dependence of the force due to a competition between
the decrease in conductivity and the increase in available
thermal modes with increasing temperature. Boström et al.
calculated the attractive force between atomically thin gold
films, using density functional theory to derive the anisotropic
deviations of the dielectric function of a thin film from its value
in a bulk conductor [14]. They found that the more accurate
anisotropic dielectric function gives an enhanced attractive
force relative to what is obtained using the bulk dielectric
function. The force, however, is still suppressed compared to
the force between gold half spaces. In both of these papers,
the treatment of the dielectric function was local and led to the
usual unphysical divergence of the Casimir force at vanishing
separation. Esquivel and Svetovoy derive an expression for
the Casimir force between half spaces [15] and thin films
[4] equivalent to ours. They find that the nonlocal correction
to the force between thin films is more significant than it is
for half spaces, although these corrections are still less than
a percent for a separation of 50 nm. Our only supplement

to their work is to emphasize that the nonlocal treatment
removes the unphysical divergence of the force at zero
separation.

To calculate the Casimir force per area between thin films
with a nonlocal response, we use the generalization of the
Lifshitz formula derived by Mochán [16]:

F (L)

A
= �c

2π2

∫ ∞

0
dQQ

∫
q�0

dk
k̃2

q

× Re

(
rs1rs2e

2ik̃L

1 − rs1rs2e2ik̃L
+ rp1rp2e

2ik̃L

1 − rp1rp2e2ik̃L

)
. (23)

Here k̃ = k + i0+, and the integral over k runs from iQ to
0 and then to ∞. The subscripts 1 and 2 on the reflection
coefficients refer to the left and right surfaces, respectively. If
the Fresnel reflection coefficients are plugged into Eq. (23),
the original Lifshitz formula is recovered, but this expression
is more generally applicable.

The Casimir forces per area between two thin films and
two half spaces in both local and nonlocal treatments are
shown in Fig. 5. A nonlocal treatment of the dielectric
function is shown to naturally yield a finite force at zero
separation for both thin films and half spaces, without having
to use renormalization techniques or an external cutoff on
high-frequency modes. The distinction between the Casimir
attraction of thin films and half spaces is insignificant at
separations that are sufficiently small to necessitate a nonlocal
dielectric function. For larger separations we find the attraction
between thin films is suppressed compared to the attraction
between half spaces, consistent with previous work [4,14]. We
pause to mention that at separations smaller than the Fermi
wavelength, surface roughness effects and chemical attraction
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FIG. 5. (Color online) Plot of the Casimir force per area between
two metallic plates as a function of their separation, in units of
the Fermi wavelength, λF = 0.4 nm. Red dash-dotted and dotted
lines indicate local and nonlocal dielectric responses, respectively,
for two conducting half spaces, whereas blue dashed and solid lines
indicate local and nonlocal dielectric responses for two thin films of
thicknesses a = 5 nm each.
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between the films will begin to challenge the validity of our
quasimacroscopic approach to the problem [15].

V. LIMITING CASES

Including a nonlocal dielectric response alters the ex-
pressions for EWJN strength, the heat transfer rate, and the
Casimir force solely through a modification of the reflection
coefficients rp and rs . For completeness, we present here
how Eqs. (6) and (7) reduce to their local and half-space
counterparts when appropriate limits are taken.

Taking the limit a → ∞ in Eqs. (6) and (7) eliminates
the distinction between the even and odd summations by
converting them both into an integral over a continuous q.
Doing so gives the reflection coefficients for a metallic half
space with a nonlocal dielectric response

rp =
1 − 2i

πκ

∫ ∞
0

dq

k2

(
q2

εt (k,ω)−c2k2/ω2 + p2

εl (k,ω)2

)
1 + 2i

πκ

∫ ∞
0

dq

k2

(
q2

εt (k,ω)−c2k2/ω2 + p2

εl (k,ω)2

) , (24)

rs =
2iκc2

πω2

∫ ∞
0

dq

εt (k,ω)−c2k2/ω2 + 1
2iκc2

πω2

∫ ∞
0

dq

εt (k,ω)−c2k2/ω2 − 1
, (25)

where k2 = p2 + q2. Alternatively, the reflection coeffi-
cients for a thin film with a local response can be obtained
from Eqs. (6) and (7) by setting εt (k,ω) = εl(k,ω) = ε(ω),
where ε(ω) is a local dielectric function that is independent
of k. In this case the summations over n may be evaluated in
closed form and give

rp = 1

2

(
κε − iκ1 cot(κ1a/2)

κε + iκ1 cot(κ1a/2)
+ κε + iκ1 tan(κ1a/2)

κε − iκ1 tan(κ1a/2)

)
,

rs = 1

2

(
κ − iκ1 cot(κ1a/2)

κ + iκ1 cot(κ1a/2)
+ κ + iκ1 tan(κ1a/2)

κ − iκ1 tan(κ1a/2)

)
,

where κ2
1 = ω2ε/c2 − p2. Combining the two terms yields the

form given in Ref. [17]:

rp = ε2κ2 − κ2
1

κ2
1 + ε2κ2 + 2iκκ1ε cot(κ1a)

, (26)

rs = κ2 − κ2
1

κ2 + κ2
1 + 2iκκ1 cot(κ1a)

. (27)

Finally, setting εt (k,ω) = εl(k,ω) = ε(ω) in Eqs. (24) and (25)
or sending a → ∞ in Eqs. (26) and (27) gives the traditional

Fresnel reflection coefficients,

rp = εκ − κ1

εκ + κ1
, rs = κ − κ1

κ + κ1
.

VI. CONCLUSIONS

We have presented a detailed microscopic treatment of the
reflective properties of thin metallic films, where the use of
a general nonlocal dielectric function has incorporated the
discrete nature of the valence electrons inside the metal. The
inclusion of nonlocality in the dielectric function removes a
spurious divergence in the rate of heat transfer and the strengths
of both EWJN and the Casimir attraction at zero separation
from the film. This is accomplished through a suppression
of the reflection coefficients for values of the transverse
wave vector larger than the inverse of the Fermi wavelength.
Uniquely, electric-field evanescent waves are enhanced in the
nonlocal treatment for an intermediate range of distances on
the order of the Fermi wavelength. This enhancement will
lead to a decrease in the decoherence times of charge qubits
below what would be expected from a local treatment. This
comes about from an enhancement of rp that is not present
for rs . Additionally, there is an enhancement of rp for a thin
film over that for a half space for all separations. Because the
material is not magnetoactive, this enhancement is not present
for magnetic field fluctuations, i.e., for rs .

We expect the nonlocal corrections to the reflection co-
efficients to become more practically relevant in the future
as micromechanical devices are further miniaturized. Beyond
the use of metallic sheets in such devices, graphene has
been popularized recently as a material in micromechanical
devices because of its unique electromagnetic properties [18].
It would be interesting to see how the results presented
here would generalize to the case of graphene. At present,
decoherence times in contemporary qubit devices seem to
be limited by EWJN only for spin qubits at low external
magnetic field [17]. However, we expect EWJN to become
a dominant source of decoherence in charge qubits in
the future when other noise sources are more effectively
suppressed.
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