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We propose an efficient three-qubit gate of singlet-triplet states in quantum dots based on capacitative coupling.
This scheme can be used to generate the maximally entangled Greenberger-Horne-Zeilinger state with one simple
gate operation. Our simulations using a realistic microscopic model combined with our detailed analysis for the
gate operation can be used to extract the actual experimental pulse sequence needed to realize this.
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I. INTRODUCTION

Entanglement is an essential resource in quantum-
information technology. It is exploited in, for example,
quantum teleportation, and entangled states are at the heart
of all quantum computation [1]. Entanglement is, however,
fragile to the environment, and it cannot generally be increased
with local operations if the involved parties are not in direct
contact [1,2]. The development of efficient methods for
generating highly entangled states is thus an important task.

In contrast to the bipartite case, where all maximally
entangled states are equivalent up to local operations [2],
genuine tripartite entanglement exhibits two different classes,
the W states [1,2] and the Greenberger-Horne-Zeilinger (GHZ)
states [3]. The GHZ states, represented by |GHZ±〉 = (|000〉 ±
|111〉)/√2, are especially interesting, as they exhibit the
strongest possible entanglement and correlations in a tripartite
system [2]. In quantum information, they have applications in,
for example, quantum teleportation [4] and dense coding [5].
The tripartite GHZ state belongs in the class of cluster
states [6–8], highly entangled many-qubit states that are
exploited in measurement-based quantum computing [9,10].
Previously, the GHZ states have been demonstrated in, for
example, superconducting qubits [11,12] and theoretically
proposed in, for example, single-spin qubit systems [13,14].

A promising realization for a quantum bit [15,16] is the two-
electron spin eigenstates in quantum dots (QD) [17–19]. The
universal set of quantum gates [20] for two spin singlet-triplet
qubits has been demonstrated experimentally [21–23]. In this
architecture, the interqubit interactions can be implemented
using capacitative coupling that exploits the differences
between the charge configurations of the singlet and triplet
states to generate entanglement between the qubits [24,25].
The scheme, a two-qubit capacitatively coupling CPHASE gate,
has been realized experimentally quite recently [23,26].

In this paper, we propose a generalization of the CPHASE

gate, a capacitative three-qubit gate that creates tripartite
entanglement between singlet-triplet qubits. The qubits are
placed in the corners of a triangle. As they are evolved under
exchange interaction, generated by electronically detuning the
qubits, they start to entangle and disentangle. We quantify the
classes of entanglement generated in the gate and show that a
GHZ state can be obtained by the gate operation.

Our method provides an efficient way to generate high-
tripartite entanglement, as the gate operation does not include
multiple steps, but just detuning the three qubits to the desired
values of the exchange interaction. Our analysis can be used to

determine the pulse sequences to be used in such a gate for the
creation of long-lasting GHZ states, paving the way towards
an experimental realization of these maximally entangled
states and three-qubit interactions in the singlet-triplet qubit
architecture.

The paper is organized as follows. In Sec. II, the model
and methods used in this study are discussed. The generation
of GHZ states via capacitative coupling of three qubits is
simluated in Sec. III. An effective model for the three-qubit
gate operation is derived in Sec. IV and the creation of long
lasting GHZ states is discussed. In Sec. V, the effects of
asymmetry on the scheme are analyzed.

II. MODEL AND METHODS

A system consisting of Nq singlet-triplet qubits (N = 2Nq

electrons and QDs) is modeled using an extended Hubbard
model Hamiltonian,

H =
2N∑
i=1

Eia
†
i ai −

2N∑
i,j=1

tij a
†
i aj

+
2N∑

i,j,k,l=1

vijkla
†
i a

†
j alak, (1)

where Ei are the on-site energies at each QD, tij are the
tunneling matrix elements between dots, and vijkl are the
Coulomb-interaction matrix elements. Here the indices i, j ,
k, and l refer to both the spin and spatial degrees of freedom.
{a†

i }i�N are the creation operators for the σi = −1/2 electrons
at the sites from 1 to N , and {a†

i }i>N are those for the
σi = +1/2 electrons. Spin is conserved in the tunneling, i.e.,
tij = δσiσj

tij .
In Eq. (1), the Coulomb interaction is long range, vijkl =

〈i|〈j | C
|r1−r2| |l〉|k〉. With |i〉 being δ functions in the Hubbard

model, the vijkl elements can be written as

vijkl = δikδjl

[
(1 − δij )

C

|ri − rj | − d
+ δijU

]
. (2)

Here, C = e2/4πεrε0 is the Coulomb -strength, ri and rj are
the locations of the dots i and j . U is the on-site interaction
between two electrons in the same QD and d > 0 is an extra
constant conveying the fact that in truth the wave functions
have finite widths.

In the capacitative coupling, the tunneling between two
S-T0 qubits is usually negligible [23–26]. Hence, in our model,
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FIG. 1. (Color online) The lowest energies of a two-qubit system
as a function of the detunings ε1 = ε2 = ε. The thick black dashed
line shows the ED energies, and the solid red line shows the Hubbard
energies with the parameters tij = 27.8 μeV, U = 3.472 meV, and
d = 0.43 nm.

the tunneling elements tij are nonzero only between the two
dots inside the qubits. Consequently, we can include only
the terms with exactly two electrons in each qubit in the
Hubbard calculations (this is found to have no effect on the
results shown in this paper and it makes the computations
considerably faster). The Hamiltonian of Eq. (1) is diag-
onalized in the Sz = 0 subspace (i.e., the number of both
up and down electrons is Nq) to obtain the eigenstates of
the system.

The parameters tij , U , and d can be fitted to exact
diagonalization (ED) data [27] in order to produce realistic
results. We compare the Hubbard results to a reference system
of two capacitatively coupled S-T0 qubits (four QDs) modeled
as parabolic potential wells. The parabolic dot minima are
located at the x axis. The dot distances in the qubits are
80 nm, and the interqubit distance is 120 nm. The parabolic
confinement strength is �ω0 = 4 meV. The GaAs value of εr ≈
12.7 is used for the permittivity. The many-body basis of Slater
determinants is created using the single-particle eigenstates of
the system which are computed using the multicenter Gaussian
method [28]. The many-body Hamiltonian is diagonalized
using the Lanczos method. See Ref. [27] for more details
on the ED calculation.

A good fit is obtained with the values tij = 27.8 μeV,
U = 3.472 meV, and d = 0.43 nm. The lowest energies
(including the relevant two-qubit states |SS〉, |ST0〉, |T0S〉, and
|T0T0〉) can be seen in Fig. 1 as a function of the detunings ε1

and ε2. (εn is the difference of the on-site energies E between
the two dots of the qubit n.) Here, ε1 = ε2 = ε. The energies
computed with the two methods coincide almost exactly.
The obtained parameters were also tested in asymmetric
detuning cases, ε1 �= ε2, and the fit was equally good there.
As the strength of the capacitative interaction is determined
by the energy differences of the two-qubit basis states, our
Hubbard model should now describe the qubit-qubit interac-
tions realistically (at least with the intra- and interqubit dot
distances used).

III. GHZ STATE GENERATION

In the (symmetric) three-qubit gate, the qubits are placed
at the corners of an equilateral triangle (both the inner and
outer dots of the qubits form an equilateral triangle). The
distance of the qubits (i.e., the distance of the inner dots)
is 120 nm, and the intraqubit dot distance is 80 nm, as in
the two-qubit case discussed in the previous section. The
symmetric three-qubit geometry is illustrated in Fig. 2. The
parameters of the Hubbard model correspond to the two-qubit
system with �ω0 = 4 meV confinement, 80 nm intraqubit dot
distance, and 120 nm qubit-qubit distance (i.e., the values
are the same as those in Fig. 1). The results shown in this
paper all correspond to these Hubbard-parameter values. The
same scheme was tested also with other intra- and interqubit
distances (the parameters were again fitted to corresponding
two-qubit gauss-ED data), and the results were qualitatively
similar to the ones shown in this section.

The three-tangle, τ123, measures the tripartite-entanglement
in a three-qubit system [2,29]. Writing an arbitrary state |ψ〉
of the three qubits as |ψ〉 = ∑1

i,j,k=0 aijk|ijk〉, with |ijk〉 =
|i〉1 ⊗ |j 〉2 ⊗ |k〉3, the three-tangle (for pure states) is given as

τ123 = 2
∣∣∣∑ aijkai ′j ′manpk′an′p′m′

× ηii ′ηjj ′ηkk′ηmm′ηnn′ηpp′
∣∣ , (3)

where the sum goes from 0 to 1 for all indices, and η01 = 1,
η10 = −1, and ηii = 0. The value of τ123 is between 0 and 1,
and it is maximal for the GHZ states. Conversely, the W class
states have zero tangle. The entanglement in a subsystem of
two qubits can be measured by pairwise concurrences. The
pairwise concurrence C12 of qubits 1 and 2 can be computed
from the reduced density matrix of the pair (see, e.g., Ref. [29]
for the details). The W states maximize all three pairwise
concurrences, so that C2

12 + C2
13 + C2

23 = 4/3. In the GHZ
states, the pairwise concurrences are zero [29].

We evolve the qubits under exchange (the detunings εi

are held constant), so that the S and T0 states have differing

FIG. 2. (Color online) The geometry of the three-qubit system.
The qubits are placed symmetrically at the corners of an equilateral
triangle (both the inner and outer dots of the qubits form an equilateral
triangle). The distance of the qubits (i.e., the distance of the inner dots)
is 120 nm, and the intraqubit dot distance is 80 nm.
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FIG. 3. (Color online) The evolution of the concurrences and the
three-tangle with the detunings ε1 = ε2 = ε3 = ε = 3.9 meV. The
thick blue line shows the three-tangle and the solid red line shows
the squared sum of the pairwise concurrences. At t = 0, all qubits
are initiated in the xy plane of the Bloch sphere. The qubits are
then allowed to evolve, and the concurrences and the three-tangle are
computed at each time step.

charge configurations. The time evolution of the full six-
electron wave function |
〉 is computed as |
(t + �t)〉 =
exp[−i�tH (t)/�]|
(t)〉, where H (t) is the Hamiltonian (1) at
time t . We project the wave function |
〉 onto the three-qubit
basis {|ijk〉}i,j,k=0,1, and compute the three-tangle τ123 and
the pairwise concurrences at each time step to study the
entanglement properties of the system. Here, we write the
singlet state S as 0 and the triplet state T0 as 1.

Figure 3 shows the evolution of the concurrences in the case
with the detunings held at ε1 = ε2 = ε3 = ε = 3.9 meV (the
further away dots are detuned to low potential). The system
is initiated in a product state |
〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ |ψ〉3, with
|ψ〉i = 1√

2
(|0〉 + eiφi |1〉), with random phases φi . Both the

pairwise concurrences and the three-tangle start to oscillate
as the qubits are evolved. Both oscillations follow a similar
modulated form, with fast carrier wavelike oscillations.

At around t = 0.46 ns, τ123 assumes the value of 1 (the
exact numerical maximum being τ123 = 0.999 998 7 in this
simulation). At the same time, the pairwise concurrences are
zero. These are both characteristics of GHZ states. Indeed,
the state is found to be a GHZ state, |GHZ〉, that can be
obtained from the more “typical” GHZ states |GHZα〉 =

1√
2
(|000〉 + eiα|111〉) by single-qubit rotations. Generally,

these one-qubit operations are given by rotating all three
qubits the angle of π/2 around an axis n̂(ϕ) = cos(ϕ)x̂ +
sin(ϕ)ŷ that lies in the xy plane of the Bloch sphere. For
example, the maximal tangle in Fig. 3 corresponds to rotating
the qubits π/4 around the x axis (ϕ = 0) so that |GHZ〉 =
eiπ/4·p(X⊗I⊗I+I⊗X⊗I+I⊗I⊗X)|GHZπ/2〉, where I is the identity,
and X is the x-Pauli matrix.

The value of the detuning affects the operation of the three-
qubit entangling procedure. Small detunings lead to small
differences in the charge distributions of the qubit states and
hence to slower operation. However, there are also qualitative
differences between the concurrence oscillations with different
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FIG. 4. (Color online) The evolution of the three-tangle with
different detunings ε1 = ε2 = ε3 = ε. At t = 0, all qubits are initiated
in the xy-plane of the Bloch sphere. The qubits are then allowed to
evolve, and the concurrences and the three-tangle are computed at
each time step. Upper left plot corresponds to ε = 3.5 meV, upper
right to ε = 3.775 meV, lower left to ε = 4.1 meV, and lower right
to ε = 4.5 meV.

detunings. The frequency of the carrier oscillations of τ123

varies in a quite complex manner compared to the modulating
envelope’s frequency as a function of the detuning ε. With
small or very high values of the detunings (ε < 3.6 meV or
ε > 4.4 meV), the modulation is very slow compared to the
carrier oscillations. This is demonstrated in the upper-left and
lower-right plots of Fig. 4. In these cases, it almost seems that
there is no modulation at all, but just τ123 oscillating between
0 and 1. In contrast, with the intermediate detuning values
(3.6 meV � ε � 4.4 meV), the oscillations can become quite
complicated, with two or three modulating envelopes on top
each other, as in the upper-right plot of Fig. 4.

IV. THREE-QUBIT GATE

When the detunings εn are held constant and there are
no magnetic field gradients between the dots of the qubits,
the three-qubit computational basis states are eigenstates
of the Hamiltonian (1). This is due to the fact that, in
the absence of magnetic field gradients and with constant
detuning, the S and T0 states are uncoupled in each of the
three qubits [20,21] and that there is no tunneling between
the qubits in our system (the qubit-qubit distances are long
enough that there is no overlap between wave functions in
different qubits). Projecting the Hubbard Hamiltonian onto the
computational basis {|ijk〉}i,j,k=1,2 thus results in a diagonal
matrix (this was also confirmed numerically using the Hubbard
model, and the off-diagonal terms were found to exactly
zero up to double precision) with the energies of the basis
states as its diagonal entries. The energies of the qubit basis
states are governed by the exchange energy J and by the
difference in the Coulomb repulsion between the singlet and
triplet states in two neighboring qubits �. The exchange
of, for example, qubit 1, J1, is defined here as the energy
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difference between |001〉 and |000〉, J1 = E001 − E000, and
the � value of, for example, qubits 1 and 2 is denoted by
�12 = E011 + E000 − E001 − E010.

Normalizing the energy of |000〉, E000, to zero, one
can write the energies of the computational basis states
as E001 = J1, E010 = J2, E100 = J3, E011 = J1 + J2 + �12,
E101 = J1 + J3 + �13, and E110 = J2 + J3 + �23. Outside
of the actual anticrossing area of the singlet charge states,
it holds similarly that E111 = J1 + J2 + J3 + �12 + �13 +
�23. However, in the anticrossing area, when the singlets are in
a superposition of the (1,1) and (0,2) charge states, their charge
distributions depend also on the qubit basis state in question. In
the doubly occupied triplet states, |011〉, |101〉, and |110〉, the
repulsion in the inner dots of the triangle forces the singlets
to localize into the outer dots with smaller detuning values
compared to the other basis states. This pushing effect lowers
the energies of the doubly occupied triplet states with respect
to E111, resulting in an additional contribution �123 to E111,
so that E111 = J1 + J2 + J3 + �12 + �13 + �23 + �123.

In the computational basis, the operation of the three-qubit
gate with the detunings held constant can thus be described
by a diagonal matrix with the aforementioned energies as its
diagonal entries. Writing the state of the system as an eight-
vector, � = (
i)8

i=1, whose ith component corresponds to the
qubit state that is the binary representation of i − 1, one can
write the diagonal effective Hamiltonian as

Heff = −�

2

{
3∑

n=1

JnVn − 1

2

∑
n<m

�nmUnm

+ �123

4
[(I − Z) ⊗ (I − Z) ⊗ (I − Z)]

}
. (4)

Here, V1 = I ⊗ I ⊗ Z, V2 = I ⊗ Z ⊗ I, and so on. �nmUnm

describes the coupling of qubits n and m, with U12 = I ⊗
(I − Z) ⊗ (I − Z) (and so on), where Z is the z-Pauli matrix.
Note that the form of Eq. (4) is the same as in the two-qubit
effective Hamiltonian in, for example, Refs. [23,30], apart
from the third term with �123. The third term describes an
effective three-qubit interaction arising from the singlet charge
distribution differences in the anticrossing area. Equation (4)
is not restricted to S-T0 qubits, it can in principle be used to
describe the general case of three qubits coupled via CPHASE

gates.
The evolution operator corresponding to the three-qubit

gate operation with constant detunings is given by U(t) =
exp(−itHeff/�). As Heff is diagonal, the gate operation on an
arbitrary state |
〉 in the computational basis corresponds to
multiplying each term |ijk〉 with a complex phase determined
by the energy of the basis state. The gate can therefore be
called a three-qubit version of the CPHASE gate.

In Eq. (4), the parameters Jn, �nm, and �123 are functions
of the detunings ε1, ε2, and ε3. Figure 5 shows the detuning
dependence of these parameters in the symmetric case, ε1 =
ε2 = ε3 = ε. As seen in the figure, the exchange J increases
approximately exponentially before the anticrossing (located
between ε = 3.6 meV and ε = 4.4 meV in this three-qubit
system), after which it behaves linearly as expected. The pair-
wise coupling � also starts off exponentially in ε, saturating
to a constant value when the singlets are fully in (0,2). The

3.5 4 4.5
0

0.1

0.2

0.3

0.4

ε (meV)

E
 (

m
eV

)

 

 

3 4 5
0

10

20

ε (meV)

Δ 12
3/Δ

nm

J
n

Δ
nm

Δ
123

FIG. 5. (Color online) The detuning dependence of the param-
eters Jn, �nm, and �123 of Eq. (4) in the symmetric case, ε1 =
ε2 = ε3 = ε (the parameters are computed with the Hubbard model).
The solid blue line shows the exchange Jn (J1 = J2 = J3 due
to symmetry), the dashed red line the two qubit coupling �nm

(�12 = �13 = �23 due to symmetry), and the thin black line the
three-qubit coupling �123. The inset shows the ratio �123/�nm as a
function of the detuning ε.

value stays approximately constant until decreasing to zero
again at the triplet transition to |T0(0,2)〉 that happens at much
larger detuning [(0,2)-triplets cannot be simulated with our
Hubbard model. In the two-qubit case, this transition happens
at around ε = 6.5 meV in our gauss-ED computations]. �123

has nonzero values only in the anticrossing area where the
singlets are in a superposition of their charge states.

In the general asymmetric cases, Jn increases as a function
of εn similarly as in Fig. 5 and is approximately constant in the
other two detunings (a small effect still remains resulting from
the aforementioned push effect). The pairwise coupling �nm

is an increasing function of both εn and εm, again saturating to
a maximum value when the singlets are in (0,2) in all of the
computational basis states. The behavior of �123 is somewhat
more complex. �123 is zero if any of the three qubits is below
the anticrossing area and when they are all above it. If at least
one of the qubits is in the anticrossing, and none of the qubits
are below it, �123 assumes positive values.

The behavior of the tangle oscillations can be analyzed
using the effective model, Eq. (4). As the system is symmetrical
with respect to the three qubits, the parameters in Eq. (4)
simplify to J1 = J2 = J3 = J and �12 = �13 = �23 = �.
The qubits are initiated in the xy plane [for simplicity,
now in the states |ψ〉i = 1√

2
(|0〉 + |1〉), i = 1,2,3; a similar

result applies for the general case]). In the notation of
Eq. (4), the full six-body wave function is now written as
� = 1/

√
8 × [1,1,1,1,1,1,1,1]T . The qubits are evolved with

constant detunings, (i.e., constant J , �, and �123), so that each
component of � obtains a phase factor according to Eq. (4).
Inserting the phases into Eq. (3) yields an analytic formula for
the evolution of the three-tangle,

τ123(t) = 1
16 |e(2�123+4�)it/� − 6e(�123+2�)it/� + 4e�it/�

+ 4e(�123+�)it/� − 3|. (5)

115322-4



MAXIMAL TRIPARTITE ENTANGLEMENT BETWEEN . . . PHYSICAL REVIEW B 89, 115322 (2014)

Equation (5) is indeed found to produce the same exact tangle
oscillations observed in the simulations. The frequencies of
the modulation and the carrier oscillations (e.g., in Fig. 3) are
given by � and by �123 + �, respectively. However, the phase
of the modulation varies, and in some cases, for example, with
ε = 3.8 meV, there is more than one modulation envelope on
top of each other.

In the cases of low and very high detunings, Eq. (5) can
be simplified. Outside of the anticrossing region, �123 ≈ 0
(relatively compared to �, see the inset in Fig. 5). With �123 =
0, Eq. (5) simplifies to

τ123(t) = 1
4

√
[1 − cos(t�/�)]3 [5 + 3 cos(t�/�)]. (6)

Equation (6) oscillates between 0 and 1 with the frequency
of f = �/2�π . We find that the corresponding oscillation
frequency can also be determined by studying the pairwise
concurrences, e.g., C12 in the case when only the qubits 1 and
2 are detuned, so that ε1 = ε2 = ε, ε3 = 0. In this case, the
pairwise concurrence is found to oscillate between 0 and 1 as
C12(t) = 1

2

√
2 − 2 cos(2πf t), with the same frequency f as

in Eq. (6).
Equation (6) thus allows one to predict the moment when

the |GHZ〉 state is obtained with the gate operation. It fits
quite well with the slowly modulating tangle shown in Fig. 6,
especially in the beginning of the oscillation. With longer
gate operation, the tangle given by Eq. (6) starts to deviate
more from the simulated one, as the modulation still exists
(the further away the detunings are from the anticrossing area,
the better �123 ≈ 0 holds).

In the anticrossing area, the singlet in, for example, |110〉
may be fully in the (0,2) state, while those of |100〉 are still in
a superposition of S(1,1) and S(0,2) due to higher Coulomb
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FIG. 6. (Color online) The evolution of the three-tangle with the
detunings ε = 3.5 meV. At t = 0, the qubits are initiated in the xy

plane of the Bloch sphere. The qubits are then allowed to evolve,
and the three-tangle is computed at each time step. The blue line
(dark solid line) shows the three-tangle computed by projecting the
wave function onto the qubit basis. The dashed black line shows the
approximated tangle according to Eq. (6). The cyan line (light solid
line) shows the long-lasting |GHZ〉 state obtained by switching off
the detunings when τ123 reaches its maximum. Here, the detunings
are decreased to zero in 0.5 ns, and the system is then allowed to
evolve again.

repulsion between the inner dots in |110〉. In this case,
�123 > 0, and Eq. (6) no longer holds. Instead, τ123 evolves in
a complex manner with carrier and envelope oscillations, as
seen in Fig. 3.

Next, we discuss using the three-qubit gate to create a
“long-lasting” GHZ state. The three-tangle keeps oscillating
as long as the exchange interaction in the qubits is nonzero. In
principle, turning the detunings off at the exact moment when
τ123 has reached its maximum yields a stationary |GHZ〉 state
(apart from decoherence effects [31–33] that are not currently
included in our model). However, due to the effect of the charge
state leakage [27], the detuning must be turned off gradually.
However, if the detuning is decreased slowly enough to ensure
an adiabatic passage from S(1,1) to S(0,2), the qubits keep
interacting during the decrease, and the state is no longer the
maximally entangled GHZ state.

With small detunings and slower gate operation (like
in Fig. 6), the decrease times can be longer. In addition,
smaller detunings can be turned off faster while still retaining
adiabaticity. Also, the less chaotic oscillations with small
detunings allow better predictability of the location of the τ123

maxima, via Eq. (6). In experiments, a longer gate-operation
time means more decoherence. Hence, a compromise between
fast operation and easy state preparation should be done in
possible experimental realizations of this entangling scheme.

The procedure is demonstrated in Fig. 6 as the cyan (solid
light) line. The qubits are again initiated in the xy plane and
allowed to evolve under exchange. The detunings are ε =
3.5 meV. When τ123 reaches its maximum, the detunings are
decreased to zero linearly in 0.5 ns. When the detunings have
reached zero, the system is allowed to evolve again. As seen
in the figure, the three-tangle stays at its maximum after the
detuning sweep.

V. EFFECTS OF ASYMMETRY

Last, we discuss the effect of asymmetry on the entan-
glement properties of the system [note that the asymmetrical
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FIG. 7. (Color online) The effect of geometric asymmetry
on the tangle oscillations. The qubit 1 in Fig. 2. is displaced from
the symmetric configuration with a vector of length d , pointing in the
positive x direction, so that r̃1,2 = r1,2 + d êx . The tangle evolution is
computed with the detunings held at ε = 3.5 meV as in Fig. 6.
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FIG. 8. (Color online) The effect of detuning asymmetry on the
tangle oscillations. Detunings are set to ε1 = ε, ε2 = ε + δ, and ε3 =
ε − δ, with ε = 3.5 meV, and the evolution of the three-tangle is
computed.

cases are also described by the effective model of Eq. (4)].
The symmetry was broken by adding a small displacement
vector di to the location of each dot, r̃i = ri + di , or by using
asymmetric detunings, ε1 = ε, ε2 = ε + δ1, and ε3 = ε + δ2.
Given the the vast number of degrees of freedom in these
schemes to break the symmetry of the system, it is difficult to
present a conclusive quantitative analysis on the effects of the
asymmetry. We thus discuss some general qualitative features
of the asymmetry properties and concentrate on a few selected
special cases with more detail.

In Fig. 7, the geometrical symmetry of the system was
broken by displacing qubit 1 with a vector of length d, pointing
in the positive x direction (see Fig. 2), so that r̃1,2 = r1,2 +
d êx . The detunings were set to ε = 3.5 meV (as in Fig. 6)
and the tangle evolution was computed. As seen in the figure,
the larger the displacement, the more chaotic the oscillations
become. However, the form of the first tangle-peak at t = 64 ns
stays very similar to the symmetric case in Fig. 6. The tangle
values at the first peak in the d = 5 nm, d = 10 nm, and
d = 15 nm cases are τ123 = 0.998, τ123 = 0.996, and τ123 =
0.978, respectively. A quite general feature of the geometric
asymmetry seems to be that the the oscillations often follow
a form similar to that of the symmetric case at the beginning
of the evolution (there are exceptions to this behavior, for
example, with very large asymmetries). This results probably
from the fact that the geometric asymmetry has little effect on
the charge distributions of the qubit basis states.

The effect of the detuning asymmetry below the anticross-
ing region is demonstrated in Fig. 8. Asymmetry in only
one of the detunings is not found to have a large effect on

the tangle evolution even with asymmetries on the order of
0.1 meV. Hence, the detunings are set to ε1 = ε, ε2 = ε + δ,
and ε3 = ε − δ, with ε = 3.5 meV, and the evolution of the
three-tangle is computed. With small δ, at least the first peak is
again preserved. However, as δ is increased above 0.05 meV,
the oscillations take a form completely different from that of
the symmetric case. Below the anticrossing area, the charge
distributions and hence also the Coulomb repulsion between
qubits are quite sensitive to the detunings.

Generally, the larger the asymmetry, the more chaotic the
concurrence oscillations become, as the energies of the qubit
states contain less symmetry (|001〉 and |010〉 are no longer
degenerate, and so on). A maximal τ123 = 1 GHZ state is still
obtained at some point of the time evolution in all tested cases,
even with very large dislocations or detuning differences (e.g.,
|di | = 15 nm, δ1 = −δ2 = 0.5 meV). However, with large
asymmetry the waveform of the concurrence oscillations no
longer follows the modulated form of Eq. (6). Asymmetry
in the geometry of the system results in the values of �nm

being different depending on the qubit pair in question, which
then complicates the wave form of the concurrence oscillations
given by the gate operation. Detuning asymmetry has a similar
effect by causing differences in the charge distributions of
the qubits. The system is thus susceptible to it below the
anticrossing area when the rise of �nm is exponential in ε.
With large detunings [singlets fully in (0,2)], the detuning
asymmetry has no effect on the concurrence oscillations.

VI. CONCLUSIONS

In conclusion, we have proposed an entangling three-qubit
gate based on the capacitative coupling of singlet-triplet qubits.
It provides a simple and efficient method for generating
maximally entangled tripartite states in the singlet-triplet
qubit architecture. We analyze the gate operation using an
accurate microscopic model and find that a GHZ state can
be generated. We derive an effective model for the gate
operation and analytical formulas for the evolution of three-
body entanglement. Using the formulas and our analysis, one
can determine the detuning pulse sequences to be used for
generating the GHZ states. We also show that, by turning off
the detunings at the right phase of the oscillation, one can create
a long-lasting GHZ state of maximal three-qubit entanglement.
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