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Superconducting proximity effect and zero-bias anomaly in transport through quantum dots weakly
attached to ferromagnetic leads
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The Andreev transport through a quantum dot coupled to two external ferromagnetic leads and one
superconducting lead is studied theoretically by means of the real-time diagrammatic technique in sequential
and cotunneling regimes. We show that the tunnel magnetoresistance (TMR) of the Andreev current displays a
nontrivial dependence on the bias voltage and the level detuning and can be described by analytical formulas in
the zero-temperature limit. The cotunneling processes lead to a strong modification of the TMR, which is most
visible in the Coulomb blockade regime. We find a zero-bias anomaly of the Andreev differential conductance in
the parallel configuration, which is associated with a nonequilibrium spin accumulation in the dot triggered by
Andreev processes.
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I. INTRODUCTION

The large tunability of quantum dot properties by appli-
cation of proper gate voltages makes these structures very
promising for spintronic and quantum information applica-
tions [1,2]. These nanoscale structures enable the observation
of various novel phenomena and exhibit effects known from
solid-state physics, atomic physics, or quantum optics [3].
Moreover, nanoscopic systems with quantum dots coupled to
ferromagnetic leads can exhibit a considerable tunnel mag-
netoresistance (TMR) effect and can be used for spin current
generation [4–8]. Theoretical and experimental investigations
of transport through such structures are thus of great current
interest. Transport properties of single quantum dots attached
to ferromagnetic leads have been extensively investigated both
experimentally [9–16] and theoretically [17–20]. The physics,
however, becomes much more interesting and fascinating
when these nanostructures are in proximity to a supercon-
ductor. In such hybrid structures, transport properties are
determined by the interplay of the spin-dependent tunneling
and superconducting correlations [21].

Hybrid nanoscopic structures consisting of quantum dots
attached to normal and superconducting external leads have
attracted great interest, mainly due to the possibility of creation
of nonlocal entangled electron pairs [22,23]. The generation of
entangled pairs is strictly connected with the processes known
as crossed Andreev reflections (CARs). In contrast to the usual
Andreev reflection, in CAR the hole is reflected back into the
electrode, which is spatially separated from the lead, from
which the incoming electron arrives. Such processes have been
investigated both theoretically and experimentally in hybrid
metallic structures [24–26]. Moreover, a very recently more
efficient and easy tunable Cooper-pair beam splitter has been
implemented by using double-quantum-dot structures [22,23].
Quantum dots thus provide an interesting and promising route
for manipulating entangled electrons by electrical means in a
controllable fashion, which no doubt is of great importance for
quantum computation and quantum information [1]. However,
to exploit them efficiently and reliably, it is crucial to
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understand various properties of such hybrid nanostructures,
including transport properties due to Andreev reflection.

In this paper, we therefore investigate the Andreev transport
through single-level quantum dots, with special focus on
the interplay of the spin-dependent and Andreev tunneling
processes. For this, we assume that the dot is coupled to
two ferromagnetic leads and one s-wave superconducting
electrode, where the coupling to ferromagnets is weak, while
the coupling to the superconductor can be arbitrary. We assume
that the magnetic moments of the ferromagnetic leads may
be aligned either in parallel or antiparallel. The difference in
these two magnetic configurations gives rise to the TMR of
the Andreev current. Since the amount of CAR is affected
by changes in the magnetic configuration, by studying the
behavior of the TMR one can obtain information about the
role of CARs in transport. We note that transport properties
of hybrid systems consisting of quantum dots coupled to
ferromagnetic and superconducting electrodes have already
been studied. The considerations, however, concerned the
case of one ferromagnetic and one superconducting lead
[21,27–30]. In such geometry, CARs are not allowed. On
the other hand, CAR was studied in the case of two normal
leads and one superconducting lead in the absence of intradot
Coulomb interactions [31,32]. Nevertheless, the Coulomb
interactions, which are strong in typical quantum dots, may
weaken the proximity effect induced on the dot or even
completely destroy it [33,34]. Thus, the effects of Coulomb
correlations should be regarded on an equal footing with
the other effects, such as, e.g., superconducting correlations,
nonequilibrium, and the magnetism of the leads. Moreover,
the case when the normal leads are replaced by ferromagnets
was studied theoretically, but only in the sequential tunneling
regime [33,34]. The sequential tunneling approximation may,
however, lead to incorrect predictions, especially for the
TMR in the Coulomb blockade regime [20]. The goal of the
present work is thus to extend theses studies, by calculating
the Andreev transport for realistic quantum dot parameters,
including both sequential and cotunneling processes.

To calculate the basic transport characteristics, in both
equilibrium and nonequilibrium, we employ the real-time
diagrammatic technique [35]. Particularly, by taking into
account the first- and second-order diagrams, we calculate
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the Andreev current, differential conductance, and TMR.
We discuss the influence of cotunneling processes on the
sequential Andreev transport, which has been studied in
Refs. [33] and [34], and show that it leads to a strong
modification of the TMR for bias voltages where the Andreev
current is suppressed due to the charging effects. Moreover, we
predict a zero-bias anomaly in the differential conductance of
the Andreev current for the parallel magnetic configuration
of the device, which is due to the nonequilibrium spin
accumulation in the dot induced by cotunneling processes.

The paper is organized as follows. In Sec. II we describe
the model and method used in calculations. Section III is
devoted to numerical results and their discussion. We first
analyze the dependence of the Andreev current and differential
conductance on the bias voltage and the detuning of the dot
level and then discuss the behavior of the associated TMR.
We also analyze the behavior of the zero-bias anomaly for
various model parameters. Finally, the conclusions are given
in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model Hamiltonian

We consider a single-level quantum dot tunnel coupled to
two ferromagnetic leads and one superconducting electrode,
as shown schematically in Fig. 1. The magnetizations of the
leads are assumed to be collinear, and the system can be
either in the parallel or the antiparallel magnetic configuration.
The magnetic configuration of the system can be switched by
applying a weak external magnetic field. Since there is also
a superconducting electrode attached to the dot, the magnetic

ΓL
σ

ΓS

ΓR
σ

μS = 0
Δ →∞

FIG. 1. (Color online) Schematic of a quantum dot strongly
coupled to an s-wave superconductor and weakly coupled to two
ferromagnetic leads. The coupling to the superconductor is described
by �S , while the spin-dependent couplings to ferromagnetic leads are
denoted �σ

L and �σ
R , respectively. Magnetizations of the ferromagnets

can form either a parallel or an antiparallel magnetic configuration,
as indicated. The superconducting gap � is assumed to be the largest
energy scale in the problem, |�| → ∞, and the electrochemical
potential of the superconducting lead is set to 0, μS = 0. ε denotes
the dot level energy and U is the Coulomb repulsion on the dot.

field that switches the orientations of the magnetizations of
ferromagnetic leads needs to be smaller than the corresponding
critical magnetic field of the superconductor. The Hamiltonian
of the system acquires the form

H =
∑

β=L,R

Hβ + HS + HQD + HT , (1)

where the first term, Hβ , describes the left (β = L) and
right (β = R) electrodes in the noninteracting quasiparticle
approximation, Hβ = ∑

kσ εkβσ c
†
kβσ ckβσ . Here, c†kβσ (ckβσ ) is

the creation (annihilation) operator of an electron with the
wave vector k and spin σ in the lead β, whereas εkβσ denotes
the corresponding single-particle energy. The second term in
Eq. (1) describes the s-wave BCS superconducting lead in the
mean-field approximation,

HS =
∑

k

∑
σ

εkSσ c
†
kSσ ckSσ

+
∑

k

(�∗ckS↓c−kS↑ + �c
†
−kS↑c

†
kS↓), (2)

with εkSσ denoting the relevant single-particle energy and �

being the order parameter of the superconductor. Without loss
of generality, the order parameter can be chosen real and
positive, � = |�|. The third term in Hamiltonian (1) describes
the single-level quantum dot and has the form

HQD =
∑

σ

εd†
σ dσ + Un↑n↓, (3)

where ε denotes the dot’s level energy and U is the corre-
sponding Coulomb repulsion energy.

Finally, the tunneling of electrons between all the leads
(L,R,S) and the quantum dot can be modeled by the
Hamiltonian

HT =
∑
kσ

∑
β=L,R,S

(
V

β

kσ c
†
kβσ dσ + h.c.

)
, (4)

with V
β

kσ denoting the relevant tunneling matrix elements. In
the following we assume that these matrix elements are k and σ

independent. The coupling of the dot to the ferromagnetic lead
(β = L,R) can be parametrized by �σ

β = 2π |V β |2ρσ
β , where

ρσ
β is the density of states of lead β for spin σ . Within the wide

band approximation the couplings become energy independent
and constant. By introducing the spin polarization of lead β,
pβ = (ρ+

β − ρ−
β )/(ρ+

β + ρ−
β ), the couplings can be written in

the form, �σ
L = �L(1 + σ̃p) and �σ

R = �R(1 ± σ̃p), with σ̃ =
1 for σ =↑, σ̃ = −1 for σ =↓, and the upper (lower) sign
in �σ

R corresponding to the parallel (antiparallel) magnetic
configuration.

As we are interested in the Andreev transport regime,
in our considerations we can take the limit of an infinite
superconducting gap, � → ∞. Then the quantum dot coupled
to the superconducting lead can be described by the following
effective Hamiltonian [36]:

H eff
QD = HQD − �S

2
d
†
↑d

†
↓ − �S

2
d↓d↑. (5)

It can be clearly seen that the superconducting proximity
effects are included in the last two terms in Eq. (5), where the
effective pair potential �S is the coupling strength between the
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dot and the superconducting electrode and acquires the form
�S = 2π |V S |2ρS . Here, ρS denotes the density of states of the
superconductor in the normal state, whereas V S is the relevant
tunnel amplitude between the dot and the superconducting
electrode.

The eigenstates of the effective dot’s Hamiltonian, (5),
can be easily found to be the singly occupied dot |σ 〉, with
either spin-up or spin-down, and the two states being the
superpositions of the empty |0〉 and doubly occupied |2〉 states:

|±〉 = 1√
2

(√
1 ∓ δ

2εA

|0〉 ∓
√

1 ± δ

2εA

|2〉
)

. (6)

The corresponding eigenenergies are E↑ = E↓ = ε and E± =
δ/2 ± εA, where δ = 2ε + U denotes the detuning from the

particle-hole symmetry point, whereas εA =
√

δ2 + �2
S /2

measures the energy difference between state |+〉 and state
|−〉.

The Andreev bound-state energies can be defined as
excitation energies of the effective dot Hamiltonian [34],

EA
αβ = α

U

2
+ β

2

√
δ2 + �2

S, (7)

where α,β = ±. These energies are defined by differences
between the eigenenergies of the dot decoupled from the
ferromagnetic leads. E++ (E+−) denotes the excitation from
the singly occupied state |σ 〉 to state |+〉 (|−〉), while the
excitation energies E−− and E−+ are related with the opposite
transitions.

We would like to note that by using the effective Hamilto-
nian, (5), we assumed that � is the largest energy scale in the
problem, which implies that � > U . Clearly, this condition
may not be fulfilled in any hybrid device with a quantum
dot coupled to a superconducting lead. However, there are
superconductors [37,38] in which the energy gap can be as
large as a couple of milli–electron volts, while the charging
energy in quantum dots depends on their size and can be
made arbitrarily low. Here, however, one needs to balance
between the charging and the thermal energies, so that the
finite-size and charging effects are not smeared out by thermal
fluctuations. Consequently, the experimental implementation
of hybrid quantum dots where the condition � > U is fulfilled
is feasible.

B. Calculation method

To calculate the transport characteristics of the considered
system we employ the real-time diagrammatic technique [35],
adopted for the case with a superconducting lead [39,40]. The
technique is based on the perturbation expansion of the reduced
density matrix and the relevant operators with respect to the
coupling strength to ferromagnetic leads. After integrating
out the noninteracting electronic degrees of freedom in the
ferromagnetic leads, the system is described by reduced
density matrix ρ̂, which, in the steady state, is governed by
the equation [35] ∑

χ ′
�χ,χ ′Pχ ′ = 0, (8)

where Pχ denotes an element of the reduced density matrix,
Pχ = 〈χ |ρ̂|χ〉, taken in the dot’s state |χ〉, whereas �χ,χ ′

are the self-energies corresponding to the evolution forward
in time from state |χ ′〉 to state |χ〉 and then backward in
time from state |χ〉 to state |χ ′〉. Note that Eq. (8) de-
scribes only diagonal elements of the reduced density matrix.
Generally, off-diagonal elements corresponding to coherent
superpositions of states |+〉 and |−〉 should also be considered.
However, in the case of �β � �S (β = L,R), as considered
in this paper, the transition rates between state |+〉 and state
|−〉 become irrelevant and can thus be neglected [34]. The
diagonal elements of the reduced density matrix, Pχ , simply
denote the probability of finding the dot (in the proximity with
superconductor) in state |χ〉. The current flowing from the
ferromagnetic β lead can be calculated from the formula [35]

Iβ = − ie

�

∑
χ,χ ′

�
Iβ

χ,χ ′Pχ ′ (9)

for β = L,R. Here, �
Iβ

χ,χ ′ denotes the generalized self-energy,
which takes into account the number of electrons transferred
through a given junction β.

In the weak-coupling regime, �β � kBT , Eq. (8) can
be solved order by order in the perturbation expansion in
the coupling strength to ferromagnetic leads. Each term of
expansion can be visualized graphically as a diagram (or
sum of diagrams) defined on the Keldysh contour, where the
vertices are connected by lines corresponding to tunneling
processes. The self-energies in respective order of expansion
can be calculated using the respective diagrammatic rules
[34,41]. Having determined the respective self-energies and
occupation probabilities, the current can then be calculated
in a given order of expansion. Here, we have calculated the
relevant contributions up to the second order of expansion
[41]. The first order of expansion corresponds to sequential
tunneling processes, which dominate the current for voltages
higher than a threshold voltage. Below the threshold, however,
the sequential tunneling is exponentially suppressed due to
the charging energy and the system is in the Coulomb
blockade regime. In the Coulomb blockade regime transport
is dominated by cotunneling processes, which involve two
correlated-in-time single tunneling events occurring through
virtual states of the system [42]. These processes are captured
by the second order of expansion. Note that in the hybrid
device considered here, these processes are also related to
transferring Cooper pairs between the ferromagnets and the
superconductor.

Due to the proximity of the superconducting lead and
Andreev processes between the dot and the superconductor,
the currents flowing through the left and right junctions are
generally not equal, IL = IR . The total current flowing into the
superconductor can thus be simply obtained from Kirchhoff’s
law:

IS = IL + IR. (10)

III. RESULTS AND DISCUSSION

In this section we present the numerical results for Andreev
transport through quantum dots in the limit of a large
superconducting gap. Particularly, we show the charge current
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injected (extracted) into (from) the superconducting lead and
the corresponding differential conductance. We also calculate
the TMR effect associated with the change of magnetic
configuration of the ferromagnetic leads from the parallel to
the antiparallel alignment. The latter quantity is defined as the
ratio

TMR = IAP
S − I P

S

I P
S

, (11)

where I P
S and IAP

S denote the Andreev current flowing into
the superconductor in the parallel and antiparallel magnetic
configurations, respectively.

For the three-terminal setup considered in this paper, the
TMR can be used to quantify the role of CAR, compared to
direct Andreev reflection (DAR) [33]. The rate of a direct
Andreev process is proportional to the product of the coupling
constants for spin-up and spin-down of the same junction. This
is contrary to CAR, the rate of which is proportional to the
product of respective couplings, but for different leads. Thus,
any change in the magnetic configuration leads to a change
in CAR, while direct Andreev processes are not affected.
Consequently, the TMR provides the relevant, though indirect,
information about CAR in the system, since any change in
TMR is related to a change in CAR. In an extreme situation
when the leads become half-metallic, only CARs are possible.
The current is then maximized in the antiparallel configuration
and completely suppressed in the parallel one.

In the numerical analysis we assume that the system is
symmetric, i.e., �L = �R = �/2 and pL = pR = p. We also
assume that the voltage drop is applied symmetrically between
the magnetic leads and the superconductor, μL = μR = eV

and μS = 0. For this configuration of applied voltages, the
effect of the left-right contact asymmetry is rather intuitive,
as it mainly leads to quantitative changes. For example,
increasing the spin polarization of one lead generally boosts
the TMR by a certain factor, while its bias and gate voltage
dependence qualitatively almost do not change. In our analysis
we also assume that the external magnetic field Bz required to
switch the magnetic configuration of the system from parallel
to antiparallel, and vice versa, is so small that it does not lead
to splitting of the dot level, i.e., Bz � �.

A. Andreev current and differential conductance

When applying a negative bias voltage, eV > 0 (note that
e < 0), one injects pairs of electrons into the superconductor,
whereas for a positive bias, eV < 0, the Cooper pairs tunnel
to ferromagnetic leads. If the two electrons coming from
the same lead enter the superconductor as a Cooper pair,
this process is called DAR. In turn, CAR occurs when the
electrons leaving from spatially separated ferromagnetic leads
are injected into the superconductor. For negative bias voltages
inverse processes take place. Particularly, a Cooper pair leaving
the superconductor can tunnel to the same ferromagnetic
electrode (DAR) or split into entangled electrons injected into
separate leads (CAR).

In the considered system the current flowing for a negative
electrochemical potential shift, eV < 0, is related to the
current flowing for eV > 0 by making the transformation
eV → −eV , δ → −δ, and IS → −IS . Thus, it is generally

/U

IS
P I0

/U

eV
/U

 
eV

/U
 

E++
A

E +
A

E+
A

E A

IS
AP I0

(a)

(b)

FIG. 2. (Color online) Absolute value of the total Andreev cur-
rent for (a) the parallel (I P

S ) and (b) the antiparallel (IAP
S ) magnetic

configuration as a function of the detuning δ = 2ε + U and applied
bias voltage V . Dashed lines indicate the position of the respective
Andreev bound states [see Eq. (7)] as denoted in (a). Parameters are
�S = 0.4, � = 0.01, and T = 0.02, with U ≡ 1 the energy unit, and
p = 0.5. The current is plotted in units of I0 = e�/�. The same color
scale is used in (a) and (b) to enable direct comparison.

sufficient to consider the case of only one bias polarization.
Before analyzing the magnetoresistive properties of our hybrid
device, let us first discuss the general behavior of the Andreev
current depending on the transport region. The bias voltage eV

and detuning δ = 2ε + U dependence of the absolute value
of the total current flowing between the superconducting and
the ferromagnetic leads is shown in Fig. 2 for the parallel
and antiparallel magnetic configurations. First, one can see
that the Andreev current becomes significant only for small
values of the detuning parameter δ. This is due to the fact that
the Andreev tunneling is optimized when the particle-hole
symmetry holds, i.e., in the case of δ → 0. Furthermore, the
Andreev current vanishes for low bias voltages, EA

−+ < eV <

115305-4



SUPERCONDUCTING PROXIMITY EFFECT AND ZERO- . . . PHYSICAL REVIEW B 89, 115305 (2014)

EA
+−, and for |δ| <

√
U 2 − �2

S , when the dot is occupied by
a single electron. As two electrons are required to form a
Cooper pair, no current is flowing into the superconductor.

For |δ| =
√

U 2 − �2
S , i.e., the point at which the two levels

EA
+− and EA

−+ cross each other [see Fig. 2(a)], the Andreev
current vanishes only for zero bias voltage. In turn, for

|δ| >

√
U 2 − �2

S , the current is suppressed for a finite region of
low bias voltage, namely, that which corresponds to an empty
or doubly occupied dot regime. The Andreev current starts to
flow when the chemical potentials of ferromagnetic leads cross
the Andreev bound-state energies EA

+− or EA
−+. The current

increases again when the next Andreev levels EA
++ or EA

−−
enter the bias window (see Fig. 2).

The above-described behavior is also clearly visible in the
dependence of the differential conductance on the bias voltage
eV and the detuning parameter δ, which is shown in Fig. 3.
Each time the electrochemical potential of ferromagnetic leads
eV meets the Andreev level, a peak appears in the differential
conductance. Generally, the bias voltage dependence of the
differential conductance reveals four peaks, except for the

values of detuning δ = ±
√

U 2 − �2
S , for which states EA

+− and

EA
−+ become degenerate (see Fig. 3 for δ ≈ ±U ). Furthermore,

the behavior of the transport characteristics is asymmetric
with respect to the bias reversal, which is nicely visible in
the differential conductance. More specifically, the magnitude
of the peak associated with the Andreev level EA

++ for eV > 0
and δ > 0 is larger than the amplitude of the corresponding
level EA

−− for eV < 0 (and δ > 0). A similar asymmetry can
be observed for the same Andreev states, but for opposite
detuning, δ < 0. The reason for this asymmetric behavior of
the Andreev current can be understood as follows. Let us
consider the asymmetry occurring for large positive values
of δ. In this case the energies ε and ε + U lie above the
chemical potential of the superconducting lead and the dot
is empty. When shifting the electrochemical potentials of
ferromagnetic leads down, eV < 0, there are no states in the
transport window and the tunneling rate of Cooper pairs into
superconductor becomes strongly suppressed. However, it is
sufficient to change either the sign of the bias voltage V or the
sign of the detuning δ to allow for Andreev tunneling. This
leads to a highly asymmetric dependence of the differential
conductance on the bias voltage and detuning, which is visible
in both the parallel and the antiparallel magnetic configurations
of the device (see Fig. 3).

The Andreev current flows due to both direct and crossed
Andreev processes. To quantify the role of these processes, one
can use ferromagnetic contacts and, by introducing the spin
dependence of tunneling processes, study how the current and
differential conductance depend on the magnetic configuration
of the device [33]. The presence of CAR reveals itself just in
the dependence of the Andreev current on the magnetic con-
figuration. More specifically, in the antiparallel configuration
both electrons forming a Cooper pair belong to either the
majority or the minority bands of the ferromagnets. On the
other hand, in the parallel configuration one of the electrons is
always a majority one, while the other is a minority one. The
conductance is then determined by the minority spin band of

/U   GS
AP (e2 /h)

  GS
P (e2 /h)

/U

eV
/U

 
eV

/U
 

E++
A

E +
A

E+
A

E A

(a)

(b)

FIG. 3. (Color online) Total differential conductance GS =
dIS/dV due to the Andreev current for (a) the parallel (GP

S) and
(b) the antiparallel (GAP

S ) magnetic configuration as a function
of the detuning δ = 2ε + U and applied bias voltage V . Dashed
lines indicate the position of the respective Andreev bound states.
Parameters are as in Fig. 2.

the ferromagnet. The current flowing in the parallel magnetic
configuration is therefore suppressed compared to the current
flowing in the antiparallel configuration. This can be clearly
seen in the bias voltage and detuning dependence of both
the current (see Fig. 2) and the differential conductance (see
Fig. 3). Note that this behavior is just opposite to the typical
quantum dot spin valves, where usually the conductance in
the parallel configuration is higher than that in the antiparallel
configuration [17,18,20].

Moreover, the differential conductance calculated for the
parallel alignment reveals another interesting feature. For

|δ| >

√
U 2 − �2

S , some negative values of the differential

conductance appear in the vicinity of EA
−+ (EA

+−) for a positive
(negative) electrochemical potential shift [see Fig. 3(a)]. This
can be understood by realizing that in the parallel configuration
there are more spin-up electrons than spin-down ones at
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the Fermi level of ferromagnetic leads. Since injecting (or
extracting) a Cooper pair to the superconductor involves
two spins of opposite directions, the rate of electron pairs
is mainly determined by the density of states of minority
carriers, which is the bottleneck for Andreev transport in the
parallel configuration. Such a spin imbalance leads to the
nonequilibrium spin accumulation in the dot that develops
when the dot occupancy is odd. The occupation of the spin-up
level then becomes greatly enhanced compared to that of the
spin-down level (the situation can be reversed by applying
the opposite bias voltage), suppressing the Andreev current
and giving rise to negative differential conductance. Upon
a further increase in the bias voltage, the occupancy of the
dot changes to even (for |eV | ≈ EA

++ or |eV | ≈ EA
−−) and

the dependence on the spin is weakened. Consequently, no
negative differential conductance occurs then. On the other

hand, for |δ| <

√
U 2 − �2

S and a low bias voltage, the dot is
in the Coulomb blockade regime and the Andreev current is
generally suppressed. Upon reaching the threshold voltage,
the singlet states of the dot start to participate in transport
and the current changes monotonically. We also note that for
the antiparallel magnetic configuration no negative differential
conductance occurs, since in this case both electrons forming
a Cooper pair belong to the same subband of the ferromagnets
and there is no spin accumulation.

B. Tunnel magnetoresistance

As mentioned above, the presence of crossed Andreev
processes can be revealed by studying the change in transport
properties when the magnetic configuration of the device is
varied. In this section we therefore analyze the behavior of
the TMR on the bias voltage and the detuning parameter δ.
Figure 4 presents both the total TMR and the TMR calculated
using only the first-order tunneling processes [TMR(1)]. In
addition, in Figs. 5 and 6 we show the bias voltage dependence
of the current, differential conductance, and TMR for two
values of detuning δ, for which the effect of second-order
processes is most visible. It is clearly visible that cotunneling
processes introduce qualitative differences in the behavior of
the TMR, compared to the TMR obtained considering only
first-order processes. First, it is shown that the sequential TMR
is positive in the whole transport regime [see Fig. 4(a)], while
the total TMR exhibits negative values for low bias voltages

and in the range of detuning parameter |δ| <

√
U 2 − �2

S [see

Fig. 4(b)]. Second, for |δ| >

√
U 2 − �2

S and for bias voltages

EA
+− < eV < EA

−+, the total TMR becomes finite, while the
sequential TMR is much suppressed. To explain the behavior
of the TMR on the transport regime, let us now discuss the
relevant cross sections of the density plots shown in Fig. 4.

In Fig. 5 we plot the bias dependence of the current
[Fig. 5(a)], the differential conductance [Fig. 5(b)] for parallel
and antiparallel configurations, and the TMR effect [Fig. 5(c)]
for detuning δ/U = 2. As described above, the voltage de-
pendence reveals asymmetry with respect to the bias reversal.
There are three steps in the Andreev current as a function of
the bias voltage, which correspond to the respective Andreev
peaks in the differential conductance [see Figs. 5(a) and 5(b)].

FIG. 4. (Color online) The tunnel magnetoresistance (TMR) of
the Andreev current as a function of the detuning δ and the bias
voltage V calculated by using only (a) sequential tunneling processes
[TMR(1)] and (b) the first- and second-order tunneling processes.
Parameters are the same as in Fig. 2. Dashed lines show the position
of Andreev bound states. The same color scale is used in (a) and (b)
to facilitate comparison.

One can also note the regime of suppressed current in the
parallel configuration visible for U/2 � eV � 3U/2 and the
associated negative differential conductance. The mechanism
leading to this behavior is explained in the previous section.
Let us therefore focus now on the behavior of the TMR
effect, which is plotted in Fig. 5(c). For a large detuning
δ there is, in principle, one transport regime where the
sequential tunneling approximation clearly gives an incorrect
result for the TMR. This is in the low-bias voltage regime
where the sequential processes are suppressed. The total
TMR then exhibits a plateau for EA

+− < eV < EA
−+ (−U/2 �

eV � U/2), whereas the corresponding TMR(1), calculated
taking into account only the first-order processes, is strongly
suppressed. When increasing the bias voltage, EA

−+ < eV <

EA
++ (U/2 � eV � 3U/2), the current becomes dominated
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FIG. 5. (Color online) (a) The Andreev current in the parallel
(solid line) and antiparallel (dashed line) magnetic configurations,
(b) the corresponding differential conductance, and (c) the tunnel
magnetoresistance (TMR). For comparison in (c) we also show the
TMR calculated using only sequential tunneling processes (dashed
line). Parameters are the same as in Fig. 2.

by sequential tunneling, however, second-order processes still
lead to a considerable modification of the TMR(1), namely,
to its lowering. On the other hand, for eV > EA

++ (eV �
3U/2) or eV < EA

+− (eV � −U/2), the effect of second-order
tunneling on the TMR is rather negligible.

Since TMR exhibits well-defined transport regions where
it is constant, one can derive some approximative analytical
formulas for the TMR. This can be done by assuming very
low temperatures, so that one can replace the Fermi functions
with step functions. Then the formula for TMR(1) calculated
for δ/U = 2 describing the value in the plateau (U/2 � eV �
3U/2) is given by

TMR(1) = 2(1 + εA)

(1 + 3εA)

2p2

1 − p2
, (12)

while the sequential TMR for bias voltages eV � 3U/2 is
given by

TMR(1) = ε2
A − 1

2ε2
A

2p2

1 − p2
. (13)
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FIG. 6. (Color online) The same as Fig. 5, calculated for detuning
δ = 0.

This analytical expression also describes the TMR for eV �
−3U/2. On the other hand, the TMR for −3U/2 � eV �
−U/2 reads

TMR(1) = 2(εA − 1)

(3εA − 1)

2p2

1 − p2
. (14)

Note that the εA-dependent ratio in Eq. (12) tends to unity
for δ = 2U , whereas the other two factors from Eqs. (13) and
(14) approach 0, so that TMR then vanishes. In the Coulomb
blockade regime, −U/2 � eV � U/2, the sequential TMR is
clearly wrong because the current is driven by cotunneling
processes. To find the formula for TMR in the cotunneling
regime, we assume zero temperature and low bias voltage.
Moreover, since the dot is in the singlet state, the only
relevant cotunneling processes are the spin-conserving ones
(elastic processes). Because we are interested in the TMR,
which is given by the appropriate ratio of the currents, it is
sufficient to consider only the dependence on the couplings
to ferromagnetic leads (the denominators of cotunneling rates
will cancel). The rate of a cotunneling process is proportional
to γ σσ̄

rr ′ ∼ �σ
r �σ̄

r ′ and corresponds to transferring the spin-σ
electron between the dot and the lead r and the spin-σ̄ electron
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between the dot and lead r ′. If r = r ′, the process is related to
direct Andreev tunneling, while for r = r ′ we have a crossed
Andreev process. Thus, the current is generally proportional to
IS ∼ ∑

r,r ′=L,R �σ
r �σ̄

r ′ , which, with the insertion of the proper
coupling constants for a given magnetic configuration, yields

I P
S ∼ �2(1 − p2) and IAP

S ∼ �2 (15)

for the parallel and antiparallel configurations, respectively.
The TMR is then given by

TMR = p2

1 − p2
. (16)

This formula approximates the TMR in the Coulomb blockade
regime when the ground state is a singlet state, which, for
assumed spin polarization, gives TMR = 1/3 [see Fig. 5(c)].

When the detuning is absent, the Andreev current becomes
maximized. This situation is shown in Fig. 6, where the bias
dependence of the current, differential conductance, and TMR
is presented. First, one can see that the transport characteristics
are now symmetric with respect to the bias reversal. The
current as a function of the bias voltage changes monotonically,
giving rise to four peaks in differential conductance [see
Figs. 6(a) and 6(b)]. On the other hand, the TMR out of the
Coulomb blockade regime takes well-defined values that can
be approximated by considering sequential processes as

TMR(1) = 2

3

2p2

1 − p2
(17)

at the plateau for voltages where the first step in the current
occurs as the voltage is increased from V = 0, and

TMR(1) = 1

2

2p2

1 − p2
(18)

in the high-voltage regime, |eV | > EA
±±. In the Coulomb

blockade regime, EA
−+ < eV < EA

+−, the dot is singly occu-
pied and the ground state is a doublet. Thus, there are both
spin-flip and non-spin-flip cotunneling processes allowed, and
providing a simple analytical formula for the TMR in this
transport regime is not possible. Moreover, nonequilibrium
spin accumulation also builds up in the dot with increasing
bias voltage. Altogether this leads to a nontrivial dependence
of the TMR on the applied bias, which is clearly different from
that predicted within the sequential tunneling approximation
[see Fig. 6(c)]. The total TMR has a minimum at the zero bias
and then starts to increase with the bias voltage, to drop again
just before the threshold for sequential tunneling, giving rise
to a local maximum.

Finally, we would like to note that although the analogy
to the Julliere model is rather unjustified here, since the
considered system is clearly different from a single ferro-
magnetic tunnel junction, the derived analytical formulas
for the TMR can be, oddly enough, expressed in terms of
TMRJull = 2p2/(1 − p2), which is the value characteristic of
a ferromagnetic tunnel junction [43].

C. Zero-bias anomaly

The highly nontrivial dependence of the TMR on the
bias voltage in the case of δ = 0 [see Fig. 6(c)] suggests
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FIG. 7. (Color online) Bias dependence of the Andreev differen-
tial conductance for the parallel and antiparallel magnetic configura-
tions calculated for the Coulomb blockade regime with δ = 0. Inset:
Relevant occupation probabilities for spin-up and spin-down levels.
Parameters are the same as in Fig. 2.

that the Andreev conductance must also reveal a nontrivial
behavior. This is indeed the case. While in the antiparallel
configuration the differential conductance shows a typical
parabolic dependence on the applied bias voltage, in the paral-
lel configuration, on the contrary, the differential conductance
first drops when the voltage is increased (see Fig. 7). This
gives rise to a maximum in the differential conductance in
the parallel configuration at zero bias. The maximum bears
a strong resemblance to the zero-bias anomaly predicted for
quantum dots coupled to ferromagnetic leads, which occurs
when the magnetic configuration of the device is antiparallel
[44]. Here, in the considered hybrid device, the zero-bias
anomaly develops in the parallel configuration and is a direct
consequence of the dependence of Andreev processes on
the spin polarization of ferromagnets. As shown in the inset
in Fig. 7, with increasing bias voltage, nonequilibrium spin
accumulation builds up in the dot: the occupation probability
of the spin-up level is different from that of the spin-down
level. As a consequence, tunneling of Cooper pairs becomes
suppressed and the differential conductance drops. With a
further increase in the bias voltage, the rate of Andreev
processes is enhanced and the conductance starts to increase
again, despite the presence of strong nonequilibrium spin
accumulation.

To discuss more specific features of the zero-bias anomaly
of the Andreev conductance in the parallel configuration,
in Fig. 8 we plot GP

S for different spin polarizations of the
ferromagnets, different detunings, and different temperatures.
When the spin polarization p is low [see the curve for p = 0.1
in Fig. 8(a)], the maximum in GP

S is hardly visible and starts
developing only when the spin polarization is increased (see
the curves for p � 0.3). Then, increasing p generally leads to
an enhancement of the relative height of the zero-bias anomaly,
although the magnitude of the conductance is gradually
decreased and should be fully suppressed for p → 1, where
it is no longer possible to form a Cooper pair since the
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ferromagnets support only one spin species. The enhancement
of the relative height of the peak in GP

S at zero bias is
related to the fact that by increasing p, the nonequilibrium
spin accumulation is also increased, which leads to a stronger
suppression of the conductance with increasing bias voltage.

The zero-bias anomaly occurs in the Coulomb blockade
regime when the dot occupation is odd and it is most
pronounced in the case of zero detuning δ = 0. When moving
away from the symmetry point, δ = 0, the relative height of
the maximum in GP

S is lowered, and for large enough detuning
it completely vanishes [see Fig. 8(b)]. This is simply related
to the fact that with increasing |δ|, the Coulomb blockade is
weakened and the role of the second-order processes is dimin-
ished compared to that of the first-order processes. In fact, the
role of various second-order processes in the formation of the
zero-bias peak can be understood from the bias dependence of
GP

S calculated for different temperatures [see Fig. 8(c)]. It is
clearly visible that with decreasing temperature, the width of

the zero-bias anomaly is decreased. This dependence is similar
to that observed for the zero-bias anomaly, which occurs in
the antiparallel configuration for typical quantum dot spin
valves [44]. It indicates the role of the single-junction spin-flip
cotunneling processes. In the considered three-terminal setup,
where the electrochemical potentials of both ferromagnets are
kept the same, such spin-flip processes can occur by involving
either the two ferromagnetic leads or just a single lead.
These processes do not contribute to the Andreev transport,
although the Cooper pairs can be created or annihilated in
virtual states; however, they can change the dot occupations
and thus indirectly affect the current. The rate of such
spin-flip processes is proportional to the temperature, γ σσ̄

rr ′ ∼
�σ

r �σ̄
r ′T ε2/(ε2 − �2

S/4)2. Consequently, with decreasing T the
amount of spin flips is reduced, so that the nonequilibrium spin
accumulation sets in for lower voltages, and the conductance
drop is also shifted towards lower biases. As a result, the
width of the zero-bias anomaly becomes linearly reduced with
decreasing temperature. In fact, the width of the maximum
at zero bias can also provide information about the energy
scale at which the transport processes start to dominate over
the spin-flip processes. Once this happens, nonequilibrium
spin accumulation develops in the dot and GP

S first drops,
to increase further with increasing bias voltage. We also note
that at very low temperatures, T → 0, slip-flip processes are
not present and the zero-bias anomaly does not develop. The
conductance is then due to the processes involving states |+〉
and |−〉, whose occupation is low but still finite, giving rise
to a finite Andreev current. Nevertheless, in the limit of a
very deep Coulomb blockade, U � �, the current between
the superconductor and the ferromagnetic leads becomes fully
suppressed.

IV. CONCLUSIONS

In this paper we have analyzed the Andreev current flowing
through a quantum dot connected to one superconducting and
two ferromagnetic leads in the sequential and cotunneling
regimes. The considerations were based on the real-time
diagrammatic technique, which allowed us to systematically
study the effect of cotunneling processes on the Andreev
current, differential conductance, and resulting TMR. The
Andreev current occurs in such a three-terminal setup due
to both DAR and CAR. Since upon changing the magnetic
configuration of the device, it is CAR which is affected, the
role of CAR in transport can be quantified by studying the
behavior of the TMR.

We have shown that, depending on the transport regime,
the TMR can take well-defined values and can be described by
simple analytical formulas. Moreover, we have also shown that
the cotunneling processes considerably modify the behavior of
TMR in the blockade regions where sequential processes are
suppressed. In the blockade regime where the dot ground state
is a singlet, the TMR exhibits a plateau with the value given by
p2/(1 − p2), which is in stark contrast to the highly suppressed
TMR obtained within the sequential tunneling approximation.
On the other hand, in the Coulomb blockade with a single
electron, the TMR exhibits a highly nontrivial dependence on
the bias voltage with a minimum at the zero bias, opposite to the
sequential TMR, which is constant. This nontrivial dependence
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results from a particular dependence of the Andreev current
and differential conductance on the applied bias voltage. While
in the antiparallel configuration the differential conductance
displays a parabolic dependence on the applied bias, in the
parallel configuration the conductance exhibits a peak at zero
bias. The zero-bias anomaly of the Andreev conductance
is related to a nonequilibrium spin accumulation on the
dot and a subtle interplay between the spin-flip cotunneling
processes that do not contribute to the Andreev current and
the processes that drive the current. Since the rate of
the former processes depends on the temperature, but that

of the latter processes on the applied bias voltage, the width
of the zero-bias anomaly strongly depends on the temperature
and is decreased with lowering T .

ACKNOWLEDGMENTS

We acknowledge support from Iuventus Plus Project No.
IP2011 059471 for the years 2012–2014. I.W. also acknowl-
edges support from EU Grant No. CIG-303 689. P.T. also
acknowledges support from the European Union under the
European Social Fund Operational Programme Human Capital
(POKL.04.01.01-00-133/09-00).

[1] D. D. Awschalom, D. Loss, and N. Samarth (eds.), Semiconduc-
tor Spintronics and Quantum Computation (Springer, Berlin,
2002).

[2] I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

[3] T. Brandes, Phys. Rep. 408, 315 (2005).
[4] S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber,
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