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Quantum-kinetic theory of steady-state photocurrent generation in thin films:
Coherent versus incoherent coupling
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The generation of photocurrents due to coupling of electrons to both classical and quantized electromagnetic
fields in thin semiconductor films is described within the framework of the nonequilibrium Green’s function
formalism. For the coherent coupling to classical fields corresponding to single field operator averages, an
effective two-time intraband self-energy is derived from a band decoupling procedure. The evaluation of coherent
photogeneration is performed self-consistently with the propagation of the fields by using for the latter a transfer
matrix formalism with an extinction coefficient derived from the electronic Green’s functions. For the “incoherent”
coupling to fluctuations of the quantized fields, which need to be considered for the inclusion of spontaneous
emission, the first self-consistent Born self-energy is used, with full spatial resolution in the photon Green’s
functions. These are obtained from the numerical solution of Dyson and Keldysh equations including a nonlocal
photon self-energy based on the same interband polarization function as used for the coherent case. A comparison
of the spectral and integral photocurrent generation pattern reveals a close agreement between coherent and
incoherent coupling for the case of an ultrathin, selectively contacted absorber layer at short circuit conditions.
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I. INTRODUCTION

Among the state-of-the-art theories used to describe
the operation of complex nanostructure-based optoelectronic
devices, e.g., quantum well and quantum dot lasers and
light-emitting diodes, quantum-kinetic formalisms are most
powerful in terms of both physical insight and predictive
power provided [1]. However, the simulation of devices such
as nanostructure-based solar cells requires the development
of a unified picture of quantum optics and quantum transport
[2], since an accurate description of both optics and charge
transport is crucial to capture the impact of complex dielectric
and electronic nanostructure potentials on the device perfor-
mance [3]. There, one is faced with the problem of different
representations of the quantum-kinetic theory conventionally
used. In quantum optics, the focus is on transient or ultrafast
phenomena, with standard descriptions based on density
matrix theory corresponding to the equal time Green’s function
formalism [4,5]. In quantum transport, the operating regime
of interest is the steady state, which on the quantum-kinetic
level is described by using the Fourier transform to the energy
domain of the relative time in the two-time Green’s function
[6,7].

In this paper, two different approaches to the solution
of the problem are presented. Both are concerned with
the formulation of an electron-photon self-energy compat-
ible with the steady-state nonequilibrium Green’s function
(NEGF) formalism of quantum transport. In the first case, the
self-energy describes the coupling of the electronic system
to coherent fields as obtained from classical solutions of
Maxwell’s equations. It establishes the connection to con-
ventional description of light attenuation in solar cells and
provides a computationally efficient treatment of stimulated
electron-photon processes within the NEGF formalism. The
second type of electron-photon self-energy relates to the
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nonlocal photon Green’s function (GF) on the level of quantum
statistical mechanics and includes the coupling to incoherent
field fluctuations. It enables a consistent description of optical
generation and radiative recombination by including the
coupling to any available photon modes of the device, from the
leaky modes occupied by incident solar photons to the guided
modes populated by spontaneous emission. This is an essential
prerequisite for the assessment of the radiative efficiency limit
in novel nanostructure-based solar cell devices.

The paper is organized as follows. After the formulation
of the general NEGF theory of optoelectronic processes for
a two-band semiconductor model in Sec. II, the effective
self-energy for coherent coupling is derived in Sec. III. The
main body of the paper is formed by Sec. IV on the application
of the NEGF theory to the simulation of charge carrier
photogeneration in thin semiconductor films for coupling to
classical, average fields and to the nonequilibrium statistical
ensemble average of field operator pairs. For both classical and
quantized fields, expressions for the local photogeneration rate,
the local absorption coefficient and the absorptance, as well as
the resulting photocurrent, are formulated in the microscopic
NEGF picture and evaluated via numerical simulation for a
prototypical thin-film solar cell architecture.

II. QUANTUM-KINETIC THEORY OF
ELECTRON-PHOTON INTERACTION

IN A TWO-BAND MODEL

The electronic model system under investigation is a simple
two-band model of a direct gap semiconductor film furnished
with ohmic contacts and coupled to an external photon field [8],
which is treated either classically or quantum mechanically.
The Hamiltonian of the electronic system thus reads

Ĥ = Ĥ0 + Ĥeγ + ĤC + Ĥdiss. (1)

Ĥ0 is the Hamiltonian of the noninteracting isolated meso-
scopic absorber plus the Hartree term U (r) from the solution
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of the macroscopic Poisson equation, corresponding to a mean-
field treatment of carrier-carrier interaction. Ĥeγ describes the
light-matter interaction and ĤC the (selective) coupling to
contacts. At this level, the theory is able to cover the operation
of an ideal solar cell. The generic term Ĥdiss encodes dissipative
processes such as electron-phonon interaction as well as
nonradiative recombination processes and is not considered
here. The carriers in conduction (c) and valence (v) bands
are described by field operators �̂b(r,t), b = c,v, defining the
charge carrier Green’s functions via

Gab(1,1′) ≡ − i

�
〈�̂a(1)�̂†

b(1′)〉C (2)

for band indices {a,b} ∈ {c,v} and 1 ≡ (r1,t1 ∈ C), where C
denotes the Keldysh contour [9]. The electromagnetic field is
described in terms of the vector potential operator, Â = Âcoh +
Âinc, which is decomposed into a coherent contribution Âcoh

corresponding to coherent light sources and a contribution Âinc

from incoherent light sources and from spontaneous emission.
The coherent vector potential is related to the time-dependent
part of the classical electric field E via the standard relation

− ∂

∂t
〈Âcoh(r,t)〉C = E(r,t). (3)

The photon Green’s function D, on the other hand, includes
the incoherent field fluctuations [10],

Dμν(1,2) = − i

μ0�
[〈Âμ(1)Âν(2)〉C − 〈Âμ(1)〉C〈Âν(2)〉C], (4)

where μ0 is the magnetic vacuum permeability.
In terms of the above field operators, the electron-photon

coupling component in the Hamiltonian for the electronic
system is expressed as follows:

[Heγ ]ab(t) =
∫

d3r�̂†
a(r,t)Ĥeγ (r,t)�̂b(r,t), (5)

Ĥeγ (r,t) = − e

m0
Â(r,t) · p̂. (6)

In the NEGF picture of photogeneration, the effect of irradi-
ation on the electronic system is considered in the form of
a self-energy that renormalizes the carrier Green’s function
in the solution of the Dyson equations. For weak coupling,
the self-energy can be derived within many-body perturbation
theory using the Hamiltonian (5), from the expansion of the
perturbed (photon assisted) carrier Green’s function

G(r,t ; r′,t ′) = − i

�

〈
e− i

�

∫
C dsĤeγ (s)�̂(r,t)�̂†(r′,t ′)

〉
C . (7)

To first order in the vector potential, perturbation theory results
in the singular self-energy term

�δ
eγ (1) = − e

m0
〈Â(1)〉C · p̂(1) ≡ − e

m0
Âcoh(1) · p̂(1), (8)

which corresponds to the interband term in the effective
Hamiltonian originating in the coupling to transverse pho-
tons. To second order in the vector potential, the self-
energy corresponds to the random phase approximation (RPA)

expression [11,12]

�RPA(1,2) = i�μ0

(
e

m0

)2 ∑
μν

p̂μ(1,1′)G(1,2)

× p̂ν(2)Dμν(2,1′)|1′=1, (9)

where p̂ is the momentum operator and p̂μ(1,1′) ≡ [p̂μ(1) −
p̂μ(1′)]/2. This self-energy can also be derived via functional
derivative techniques [13–15]. The photon Green’s functions
in (9) are obtained from the corresponding Dyson equations
[15,16]:∫

C
d3

[
D−1

0,μν(1,3) − �μβ(1,3)
]
Dβν(3,2) = δ‖,μν(1,2), (10)

where D0,μν is the free propagator defined by

D−1
0,μν(1,2) =

(

1 − 1

c2

∂2

∂t2
1

)
δμνδ(1,2), (11)

and δ‖,μν(1,2) = δ(t1 − t2)δ‖,μν(r1 − r2) is the transverse δ

function. In Eq. (10), � is the photon self-energy describing
the renormalization of the photon Green’s function due to
interaction with the electronic system. The RPA photon self
energy due to interband transitions [17] is given in terms of
electronic Green’s functions and momentum operator elements
as follows [11,12]:

�RPA
μν (1,2) = −i�μ0

(
e

m0

)2

p̂μ(1,1′)G(1,2)

× p̂ν(2)G(2,1′)|1′=1. (12)

For the comparison of the two types of electron-photon
self-energies, the effects of the singular interband term needs
to be transferred to an effective two-time intraband self-energy,
which can be achieved via a band decoupling procedure, as
shown below.

III. EFFECTIVE INTERBAND SELF-ENERGY
FOR COHERENT COUPLING

In the following, a band decoupling scheme similar to
that introduced in Ref. [18] will be applied to the two band
model. The procedure was given in the appendix of Ref. [19]
for a general singular self-energy term, but for the sake
of clarity and completeness will be repeated here for the
specific case of the electron-photon interaction [20]. Starting
point are the Kadanoff-Baym equations for contour-ordered
nonequilibrium Green’s functions [21],

G−1
0 (1,1)G(1,1′) = δ(1,1′) +

∫
C

d2 �(1,2)G(2,1′), (13)

[G†
0]−1(1′,1′)G(1,1′) = δ(1,1′) +

∫
C

d2 G(1,2)�(2,1′), (14)

where

[G−1
0 (1,1′)]ab =

{
i�

∂

∂t1
− [H0(r1)]a

}
δ(1,1′)δab, (15)
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and Gab is defined in (2). Real-time decomposition rules
[22] applied to (13) provide the coupled equations for the
retarded components of the intra- and interband Green’s
functions,

G−1
0,cc(1,1)GR

cc(1,1′) = δ(1,1′) + �δ
cv(1)GR

vc(1,1′)

+
∫

d2 �R
cc(1,2)GR

cc(2,1′), (16)

G−1
0,vv(1,1)GR

vc(1,1′) = �δ
vc(1)GR

cc(1,1′)

+
∫

d2 �R
vv(1,2)GR

vc(2,1′). (17)

Introducing the new quantity

G̃R
vv ≡ (

G−1
0,vv − �R

vv

)−1
(18)

in (17), the retarded interband GF can be written as

GR
vc(1,1′) =

∫
d2 G̃R

vv(1,2)�δ
vc(2)GR

cc(2,1′). (19)

Inserting the above expression in (16) yields a closed equation
for the intraband GF,

GR
cc(1,1′) = [

G−1
0,cc(1,1′) − �R

cc(1,1′)

−�δ
cv(1)G̃R

vv(1,1′)�δ
vc(1′)

]−1
(20)

≡ [
G̃−1

cc (1,1′) − �̃R
cc(1,1′)

]−1
, (21)

where the effective band-coupling self-energy �̃ was
defined,

�̃R
cc(1,1′) ≡ �δ

cv(1)G̃R
vv(1,1′)�δ

vc(1′). (22)

Similarly, the lesser and greater components of the
Green’s functions can be decoupled: starting from

G−1
0,cc(1,1)G<

cc(1,1′) = �δ
cv(1)G<

vc(1,1′)

+
∫

d2 �R
cc(1,2)G<

cc(2,1′)

+
∫

d2 �<
cc(1,2)GA

cc(2,1′), (23)

G−1
0,vv(1,1)G<

vc(1,1′) = �δ
vc(1)G<

cc(1,1′)

+
∫

d2 �R
vv(1,2)G<

vc(2,1′)

+
∫

d2 �<
vv(1,2)GA

vc(2,1′), (24)

the interband correlation or coherent polarization function is
written as

G<
vc(1,1′) =

∫
d2

[
G̃R

vv(1,2)�δ
vc(2)G<

cc(2,1′)

+ G̃<
vv(1,2)�δ

vc(2)GA
cc(2,1′)

]
, (25)

where

G̃<
vv(1,1′) ≡

∫
d2

∫
d3 G̃R

vv(1,2)�<
vv(2,3)G̃A

vv(3,1′) (26)

was introduced. Replacing the interband term in (23) then
yields the intraband correlation function

G<
cc(1,1′)

=
∫

d2
∫

d3 GR
cc(1,2)[�<

cc(2,3) + �̃<
cc(2,3)]GA

cc(3,1′)

(27)

with

�̃<
cc(1,1′) ≡ �δ

cv(1)G̃<
vv(1,1′)�δ

vc(1′). (28)

The expressions for the valence band self-energy corrections
are obtained from analogous derivations as

�̃α
vv(1,1′) = �δ

cv(1)G̃α
cc(1,1′)�δ

cv(1′), α = R,A, ≶ . (29)

We can now evaluate the effective band-coupling self-
energy expression using the singular interband self-energies
due to the coupling to coherent radiation or classical fields
given in the previous section [Eq. (8)] and compare it to the
self-energy for the coupling to incoherent radiation [Eq. (9)].
In steady-state conditions, the dependence on microscopic
time vanishes and the relative time dependence is Fourier
transformed to the energy domain. As shown in Ref. [14], using
the rotating wave approximation, the coherently driven inter-
band self-energies have a combined time-dependence ∝e±iωτ ,
where the sign depends on the band index and τ = t1 − t2 is
the relative time, which provides the Fourier transform

�̃≶
cc(r1,r2,E) =

∫
d�ω�δ

cv(r1,�ω)
∫

dτG̃≶
vv(r1,r2,τ )e

i
�

(E−�ω)τ�δ
vc(r2,�ω) (30)

=
∫

d�ω�δ
cv(r1,�ω)G̃≶

vv(r1,r2,E − �ω)�δ
vc(r2,�ω), (31)

and

�̃≶
vv(r1,r2,E) =

∫
d�ω�δ

vc(r1,�ω)G̃≶
cc(r1,r2,E + �ω)�δ

cv(r2,�ω). (32)

Inserting the explicit form of the coherent singular self-energies (8) and integrating over photon energies Eγ = �ω yields the
general polychromatic expression

�̃≶
aa(r1,r2,E) =

(
e

m0

)2 ∑
μν

∫
dEγ Aμ(r1,Eγ )pμ

ab(r1)G̃α
bb(r1,r2,E ∓ Eγ )A∗

ν(r2,Eγ )pν∗
ab(r2), (33)
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FIG. 1. (Color online) Schematic band diagram representation
of a flat band solar cell architecture with finite photocurrent flow
enabled by carrier selective contacts: electrons (e−) are blocked in
the conduction band at z = z0 via an infinite barrier potential in the
conduction band energy EC , while holes (h+) are reflected at z = zmax

due to a similar barrier potential in EV . For closer resemblance to
actual thin-film solar cell configurations, an additional back reflector
layer is considered in the optical simulations.

where the negative sign is for a = c and the electromagnetic
vector potential is normalized to the total intensity, i.e., it has
units (eV)

1
2 /(Am).

IV. PHOTOGENERATION IN THIN FILMS

A large variety of advanced optoelectronic devices with
nanoscale active region are based on ultrathin semiconductor
films. Here, as a simple model system for the evaluation of
electron-photon coupling, an intrinsic GaAs slab at short cir-
cuit conditions is used. Photocurrent rectification is achieved
via the imposition of carrier selective contacts, which is
sufficient for photovoltaic operation [23], and has already been
applied in the NEGF simulation of nanostructured solar cells
[24]. The architecture shown in Fig. 1 deviates minimally from

the standard flat band bulk situation in terms of electronic
structure, but provides at the same time complete charge
separation. For the system to show more resemblance to the
situation encountered in actual thin-film solar cell devices,
a silver back reflector contact layer is added to the right of
the slab for the optical simulation. Before comparing the
optoelectronic response of a given structure to classical and
quantized fields, the representation of the NEGF formalism is
adjusted to the slab system at hand.

A. Electronic and optical states in thin semiconductor films

In the layer structure with homogeneous transverse di-
mensions, the description of the optoelectronic properties can
be simplified by using a plane wave expansion of the field
operators for electrons and photons with respect to transverse
coordinates, i.e.,

�̂(r,t) = A− 1
2

∑
k‖

�̂(k‖,z,t)eik‖·r‖ , (34)

Â(r,t) = A− 1
2

∑
q‖

Â(q‖,z,t)eiq‖·r‖ , (35)

where A denotes the cross section area of the film. The
corresponding slab representation for the steady-state Green’s
functions is obtained from

G(r,r′,E) = A−1
∑

k‖

G(k‖,z,z′,E)eik‖·(r‖−r′
‖), (36)

Dμν(r,r′,E) = A−1
∑

q‖

Dμν(q‖,z,z′,E)eiq‖·(r‖−r′
‖). (37)

For each energy and transverse momentum vector, a separate
set of equations for the Green’s functions needs to be solved.
For the charge carriers, the steady-state integro-differential
equations derived from (13) and (14) read

GR(k‖,z,z′,E) = GR
0 (k‖,z,z′,E) +

∫
dz1

∫
dz2G

R
0 (k‖,z,z1,E)�R(k‖,z1,z2,E)GR(k‖,z2,z

′,E), (38)

G≶(k‖,z,z′,E) =
∫

dz1

∫
dz2G

R(k‖,z,z1,E)�≶(k‖,z1,z2,E)GA(k‖,z2,z
′,E), (39)

with

[E − Ĥ0(k‖,z)]GR
0 (k‖,z,z′,E) = δ(z − z′). (40)

The numerical evaluation of the above equations employs a
real-space basis in the dimension perpendicular to the film
and a plane-wave expansion in the in-plane dimensions in

combination with a two-band effective mass Hamiltonian for
the electronic structure [25].

The Dyson and Keldysh equations for the dyadic photon
Green’s functions are found in analogy to their electronic
counterparts in the following form (assuming again summation
over repeated polarization indices):

DR
μν(q‖,z,z′,E) = DR

0μν(q‖,z,z′,E) +
∫

dz1

∫
dz2DR

0μα(q‖,z,z1,E)�R
αβ(q‖,z1,z2,E)DR

βν(q‖,z2,z
′,E), (41)

D≶
μν(q‖,z,z′,E) =

∫
dz1

∫
dz2DR

μα(q‖,z,z1,E)[�≶
0αβ(q‖,z1,z2,E) + �

≶
αβ(q‖,z1,z2,E)]DA

βν(q‖,z2,z
′,E), (42)
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where the self-energy component related to the solution of
the homogeneous problem, i.e., incident fluctuations that are
independent from the state of the absorber, is given by [10,26]

�
≶
0μν(q‖,z,z′,E) =

∫
dz1

∫
dz2

[
DR

0

]−1
μα

(q‖,z,z1,E)

×D≶
0αβ(q‖,z1,z2,E)

[
DA

0

]−1
βν

(q‖,z2,z
′,E)

(43)

in terms of the Green’s functions of the unperturbed system.
These equations are solved in real space using a numerical
quadrature method [27].

The classical fields for the evaluation of the coherent self-
energy (33) are computed using a conventional transfer matrix
method (TMM), with extinction coefficient obtained from the
absorption coefficient computed within the NEGF formalism,
i.e., in complete consistency with the transport properties, such
as the photocurrent generated via coupling to the EM field, as
shown in the following.

B. Absorption and photogeneration

The local absorption coefficient at a fixed energy (∼Eγ ),
polarization (∼μ), and angle of incidence (∼q‖,Eγ ) is related
to the corresponding local and spectral photogeneration rate
g (per unit volume) and local photon flux � (per unit photon
energy) via

gμ(q‖,z,Eγ ) = �μ(q‖,z,Eγ )αμ(q‖,z,Eγ ). (44)

The spectral photogeneration rate can be obtained from the
expression for the local integral radiative interband volume
generation rate G in terms of electronic Green’s functions and
self-energies [19], which for charge carriers in the CB reads

Gc(z) = A−1
∑

k‖

∫
dz′

∫
dE

2π�
�<

cc(k‖,z,z′,E)

×G>
cc(k‖,z′,z,E) (45)

≡ A−1
∑

μ

∑
q‖

∫
dEγ gμ

c (q‖,z,Eγ ). (46)

In principle, the self-energy term contains all the scattering
mechanisms present in the interaction part of the Hamiltonian
(1). While the direct contribution of intraband scattering
vanishes upon energy integration over the band, dissipative

intraband processes, such as electron-phonon interaction, still
affect the rate via the dressing of the full GF in (46). At
the radiative limit, the photocurrent at zero bias voltage, i.e.,
the short circuit current density Jsc, is directly obtained from
the incident photon flux and the total absorptance of the slab,

Jsc = e

A
∑

q‖

∫
dEγ �(q‖,z0,Eγ ) · a(q‖,zmax,Eγ ), (47)

where the absorptance corresponds to the external quantum
efficiency EQE(q‖,Eγ ) in this limit. On the other hand, the
short circuit current derives from the quantities computed
within the NEGF formalism as follows [19]:

Jsc = jc(zmax) − jc(z0) =
∫ zmax

z0

dz∂zj (z) (48)

≡ e

∫ zmax

z0

dzGc(z), (49)

where jc denotes electron current in the conduction band,
which is given terms of the charge carrier Green’s functions via

jc(z) = lim
z′→z

e�

m0
(∂z − ∂z′ )A−1

∑
k‖

∫
dE

2π
G<

cc(k‖,z,z′,E).

(50)

Together, Eqs. (47) and (49) yield the following expression of
the absorptance in terms of the local generation spectrum:

aμ(q‖,zmax,Eγ ) = �−1
μ (q‖,z0,Eγ )

∫ zmax

z0

dzgμ(q‖,z,Eγ ).

(51)

1. Coupling to classical fields

For classical fields, the local photon flux is given in terms
of the modal components of the Poynting vector s and the
electromagnetic vector potential in the following way:

�μ(q‖,z,Eγ ) = sμ(q‖,z,Eγ )/Eγ (52)

= 2nr (q‖,z,Eγ )c0ε0�
−2Eγ |Aμ(q‖,z,Eγ )|2,

(53)

where nr is the local refractive index. Using the electron-
photon self-energy (33) in slab representation, i.e.,

�<
cc(k‖,z,z′,E) =

(
e

m0

)2 ∑
μν

pμ
cv(z)pν∗

cv (z′)A−1
∑

q‖

∫
dEγ [Aμ(q‖,z,Eγ )A∗

ν(q‖,z′,Eγ )G̃<
vv(k‖ − q‖,z,z′,E − Eγ )], (54)

in expression (46) for G, the local spectral photogeneration rate acquires the following form:

gμ(q‖,z,Eγ ) = i

�μ0
Aμ(q‖,z,Eγ )

∫
dz′A∗

μ(q‖,z′,Eγ )�>
μμ(q‖,z′,z,Eγ ), (55)

where � is the photon self-energy related to the nonequilibrium polarization function of the semiconductor slab and the
momentum matrix elements,

�>
μν(q‖,z,z′,Eγ ) = −i�μ0

(
e

m0

)2

pμ∗
cv (z)pν

cv(z′)P>
cv(q‖,z,z′,Eγ ), (56)
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with the RPA interband polarization function given in terms of the charge carrier GF as follows:

P>
cv(q‖,z,z′,Eγ ) = A−1

∑
k‖

∫
dE

2π�
G>

cc(k‖,z,z′,E)G<
vv(k‖ − q‖,z′,z,E − Eγ ). (57)

The absorptance of the slab of thickness d = zmax − z0 required for the optical estimate of the short circuit current via (47) is
thus given by

aμ(q‖,zmax,Eγ ) = �−1
μ (q‖,z0,Eγ )

i

�μ0

∫ zmax

z0

dz

∫ zmax

z0

dz′[Aμ(q‖,z,Eγ )A∗
μ(q‖,z′,Eγ )�>

μμ(q‖,z′,z,Eγ )]. (58)

To verify the accuracy of the numerical approach chosen to compute the microscopic nonlocal response of a thin semiconductor
slab, the numerical generation rate is compared to the analytical result for the integrand of (57) based on the exact Green’s
functions of homogeneous bulk material given in the Appendix. The material parameters used are mc = 0.067m0, mv = 0.25m0,
Eg = 1.42 eV ≡ Ec0, Ev0 = 0 eV and |p̄cv|2 = 25 eV×m0. Figure 2(a) shows the k‖ = 0 component of the local electron
generation rate spectrum for monochromatic illuminaton normalized to the local photon flux, which then basically amounts to
the evaluation of the energy integrand of the polarization function (57) at photon energy Eγ = 1.48 eV. The spectral and spatial
pattern are in excellent agreement with the analytical high-resolution result. The same holds for the k‖ integration of the spectral
rate, as inferred from Fig. 2(b).

In most cases relevant for optoelectronic devices, the electronic spatial correlations, i.e., the off-diagonal elements of the
interband polarization function, decay much faster than the amplitude of the vector potential inside the absorber, and A(z′) ≈ A(z)
can be assumed in (55). In this case, the local absorption coefficient acquires the simple form

αμ(q‖,z,Eγ ) = �c0

2nr (q‖,z,Eγ )Eγ

∫
dz′Re[i�>

μμ(q‖,z′,z,Eγ )] (59)

= �
2

2nr (q‖,z,Eγ )c0ε0Eγ

(
e

m0

)2

Re[pμ
cv(z)

∫
dz′pμ∗

cv (z′)P>
cv(q‖,z′,z,Eγ )], (60)

which is given solely in terms of the electronic structure
and does not include any information on the propagation of
the light. However, the inclusion of off-diagonal elements in
the electronic Green’s functions is crucial to account for the

FIG. 2. (Color online) Local electron generation rate as given
by the energy integrand of (46) for the two-band effective mass
model of a homogeneous (bulklike) GaAs slab under monochromatic
illumination with Eγ = 1.48 eV. The rate is normalized to the local
photon flux and to the maximum value. Both the k‖ = 0 component
(a) and the momentum integrated rate (b) show a good agreement
between the simulation based on the numerical solution of the NEGF
transport problem at zero bias and the analytical evaluation of (46)
using the exact GF expressions (A1) and (A2).

nonlocal nature of electron-photon interaction [28]. Figure 3(a)
shows the spatially averaged local absorption coefficient of
a homogeneous GaAs slab of 40-nm thickness for different
numbers of off-diagonals considered in the electronic Green’s
functions: more than 20% of the off-diagonals need to be
included for an acceptable reproduction of the full rank
result. For the slab thickness chosen, the full matrix yields
already an absorption coefficient in close agreement with
the analytical bulk result for the two-band model, as seen
in Fig. 3(b). The spatial resolution of the local absorption
coefficient is given in Fig. 3(c) for the bulklike system (“open”)
and the slab with carrier selective contacts (“selective”).
The minimum of the absorption of the open system close
to the contacts is due to the assumption of vanishing off-
diagonal contributions to the polarization function in (57)
from outside the slab, i.e., it assumed that there is no
coherence between the carrier wave functions inside the slab
absorber and in the contact, respectively. In the system with
selective contacts, either electron or hole Green’s functions
vanish at the contacts, causing nodes in the local absorption
coefficient.

The absorptance can also be computed directly from
the Poynting vector based on the fields obtained from
the TMM,

aμ(q‖,zmax,Eγ ) = 1 − sμ(q‖,zmax,Eγ )/sμ(q‖,z0,Eγ ),

(61)

for flux incident at z = z0. Figure 3(c) shows the close
agreement between the monochromatic photocurrent from the
absorptance as given by the integrand of (47) and the terminal
current obtained from the NEGF for the same monochromatic
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FIG. 3. (Color online) (a) Spatially averaged absorption coeffi-
cient of an electronically open 40-nm-thick GaAs slab, for consid-
eration of different fractions of off-diagonals in the charge carrier
Green’s functions. (b) The absorption coefficient from the full matrix
is in excellent agreement with the analytical result for bulk, while it is
slightly reduced and shows additional oscillatory features for selective
contacts. (c) Local absorption coefficient for open and selectively
contacted slab systems, with interferences from reflections and zero
magnitude minima from wave function nodes at closed contacts. (d)
Comparison of the photocurrent as obtained from the absorptance
with the terminal current from the full NEGF transport simulation
based on the same illumination and extinction coefficient.

illumination, using in the TMM an extinction coefficient
computed from the electronic structure in consistence
with a via

κμ(q‖,z,Eγ ) = αμ(q‖,z,Eγ )
�c0

2Eγ

(62)

= (�c0)2

4nr (q‖,z,Eγ )E2
γ

×
∫

dz′Re[i�>
μμ(q‖,z′,z,Eγ )] (63)

and for a 100-nm Ag back reflector (nr = 0.16, κ = 5.85).
The proper generation rate under consideration of the

spatial variation of the electromagnetic field inside the slab is
shown in Fig. 4 for both the bulklike slab and the system with
carrier-selective contacts under monochromatic illumination
at Eγ = 1.48 eV, 1 kW/m2, and normal incidence. The
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FIG. 4. (Color online) (a) Local generation rate spectrum for
open and selectively contacted 40-nm GaAs slab with 100-nm
Ag reflector and under monochromatic, normally incident light of
1 kW/m2 at Eγ = 1.48 eV. (b) Integrated local carrier generation
rate, which is identical for electrons and holes, with closed contacts
resulting in reflection-induced interference effects and boundary
nodes.

spectral generation patterns shown in Fig. 4(a) are identical
for electrons and holes, and show weak negative features
away from the resonance. However, the energy-integrated
local generation rate, displayed in Fig. 4(b) is strictly positive.
Again, the imposition of carrier-selective contacts modifies
the local absorption due to additional interferences from
reflections and magnitude zeros from wave function nodes
at closed contacts.

The local photocurrent spectrum induced in the open
bulklike slab system by the local carrier generation rate is
displayed in Fig. 5(a). In the absence of carrier selective
contacts, carriers diffuse symmetrically in both directions, with
the result of vanishing net integral current [Fig. 5(b)]. For the
selectively contacted system, the negative contributions in the
generation rate give rise to reverse flow at certain energies
(this was also observed for purely 1D systems in Ref. [29]), as
revealed in Fig. 5(c), however, like in the case of the generation
rate, the observable integral current is always positive and the
sum of electron and hole current contributions is perfectly
conserved, as shown in Fig. 5(d).
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FIG. 5. (Color online) (a) Spatially resolved photocurrent spec-
trum for the open slab under monochromatic illumination of 1 kW/m2

with Eγ = 1.48 eV; in the absence of carrier selective contacts,
diffusion leads to inverse current flow towards the minority contacts,
with the result of vanishing net current upon energy integration as
displayed in (b). (c) For carrier selective contacts, reverse current
components are small, and the net integral current (d) is strictly
positive and perfectly conserved.

2. Coupling to the photon GF

Using the slab expression for the steady-state RPA electron-
photon self-energy,

�≶(k‖,z,z′,E) = i�μ0

(
e

m0

)2 ∑
μν

p̂μ(z)p̂ν∗(z′)

×A−1
∑

q‖

∫
dEγ

2π�
[G≶(k‖ − q‖,z,z′,E − Eγ )

×D≶
μν(q‖,z,z′,Eγ )], (64)

in Eq. (46), the local modal generation rate acquires the
following form:

gμ(q‖,z,Eγ ) = −(2π�)−1
∑

ν

∫
dz′[D<

μν(q‖,z,z′,Eγ )

×�>
νμ(q‖,z′,z,Eγ )]. (65)

In terms of the photon slab Green’s functions defined in (37),
the contribution of the μ polarization to the z component of
the spectral Poynting vector reads

sμ
z (q‖,z,Eγ ) = − Eγ

2π�
lim
z′→z

∂z′Re[D>
μμ(q‖,z,z′,Eγ )

+D<
μμ(q‖,z,z′,Eγ )]. (66)

Figure 6 shows the close agreement of the optical energy
flux as computed via TMM and the photon NEGF formalism
with fully nonlocal photon self-energy � [27]. From the
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FIG. 6. (Color online) Photon energy flux in the selectively con-
tacted slab as computed via TMM and NEGF methods, showing the
close agreement of the two approaches for coherent light propagation,
i.e., in absence of spontaneous emission.

modal terms of local rate and photon flux, the local absorption
coefficient at given angle of incidence and polarization is then
given by (44) with �μ(q‖,z,Eγ ) = s

μ
z (q‖,z,Eγ )/Eγ , and from

(51), the absorptance follows as

aμ(q‖,zmax,Eγ ) = −[2π��μ(q‖,z0,Eγ )]−1

×
∫ zmax

z0

dz

∫ zmax

z0

dz′ ∑
ν

D<
μν(q‖,z,z′,Eγ )�>

νμ(q‖,z′,z,Eγ ).

(67)

It should be noted that the above expression for the absorptance
does not consider any increase in the photon flux due to
emission processes; to that end, the self-energy component
�> needs to be replaced by �̂ = �> − �< [10], which for
the present case of short circuit conditions is virtually identical
to �>. If reabsorption is neglected, the GF component D< is
directly proportional to the photon flux via D<

0 = D̂0 · �0,
where D̂0 is independent from the excitation due to the photon
flux �0 incident at z = z0 [27]. With that, the absorptance
acquires the form

aμ(q‖,zmax,Eγ ) = −(2π�)−1

×
∫ zmax

z0

dz

∫ zmax

z0

dz′ ∑
ν

D̂μν(q‖,z,z′,Eγ )�̂νμ(q‖,z′,z,Eγ ),

(68)

where D̂ = DRDR,−1
0 D̂0DA,−1

0 DA. This corresponds to the
result found in Ref. [10].

The numerical results for local generation rate and charge
carrier flow in the selectively contacted slab for coupling to
the photon GF are displayed in Fig. 7. As can be inferred
from Figs. 7(a) and 7(b) in comparison with Fig. 4, the values
of spectral and integral charge carrier generation rates agree
closely with those provided by the coherent coupling. The
same holds for the spectral and integral currents displayed
in Figs. 7(c) and 7(d), if compared to the results in Fig. 5.
Furthermore, as also shown in Fig. 7(b), the charge carrier
generation rate coincides exactly with the optical rate as
computed using (65), i.e., in terms of the photon GF and
self-energy.

The coincidence with the coherent coupling approximation
originates in the absence of (optical) coherence breaking
mechanisms in the situation under consideration, direct pho-
togeneration being a stimulated process. The photon GF can
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FIG. 7. (Color online) (a) Local charge carrier generation rate
spectrum, (b) local carrier generation rate and optical rate, (c)
local charge carrier current spectrum, and (d) integral current for
the selectively contacted slab system, as provided by the NEGF
formalism using the coupling to the photon GF. The results are in close
agreement with those from the coherent coupling approximation. The
local charge carrier generation rate coincides exactly with the optical
rate from photon self-energy and GF.

thus be directly related to the average fields [10,16]. This may
be compared to the case of electron transport in mesoscopic
systems, where in absence of phase breaking, i.e., incoherent
scattering mechanisms, the Landauer formalism based on a
transmission function obtained from an electronic version
of the TMM is equivalent to the NEGF picture of electron
transport [6].

V. CONCLUSIONS

In this paper, a description of charge carrier photogeneration
in thin semiconductor films within the NEGF formalism
was established. An effective electron-photon self-energy was
derived for coherent coupling to classical fields. Numerical
simulations were performed for a thin, selectively contacted
semiconductor slab with a back reflector. The results for charge
carrier generation rate and photocurrent computed using the
NEGF formalism of carrier transport coupled to the TMM
for the electromagnetic fields are in close agreement with

the predictions of both the optical estimate via the average
absorption coefficient and the full coupled NEGF solution for
the propagation of interacting charge carriers and photons.
Thus, the NEGF framework presented here is consistent with
the classical picture of light-matter coupling in the limit of
optically coherent processes, and, at the same time, enables the
consideration of both extraction and radiative recombination
of charge carriers in the presence of complex nanostructure
potentials. This unique capability turns the present approach
into a powerful instrument for the investigation of the radiative
efficiency limit in nanostructure-based solar cell devices.

For a quantitative analysis of photocurrent generation
in realistic device structures, in addition to the use of an
accurate description of the electronic structure, extension of the
formalism to radiative intraband mechanisms (e.g., free carrier
absorption) and nonradiative intra- and interband scattering
processes (e.g., electron-phonon and Auger) will be required.
The inclusion of such processes, however, while it modifies the
GF and self-energies of charge carriers and photons, it does
not affect the validity of the general expressions derived here
for absorptance, generation rate and photocurrent in terms of
the GF.
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APPENDIX: ELECTRONIC GREEN’S FUNCTIONS
FOR HOMOGENEOUS SLAB

For a homogeneous bulklike system, the effective mass
approximation of the slab representation of the steady-state
Green’s function components for noninteracting charge carri-
ers in quasiequilibrium conditions characterized by a quasi-
Fermi level μ takes the following form:

G<
b0(k‖,z,z′,E) = ifμb

(E)Ab0(k‖,z,z′,E), (A1)

G>
b0(k‖,z,z′,E) = −i[1 − fμ(E)]Ab0(k‖,z,z′,E), (A2)

Ab0(k‖,z,z′,E) = 2m∗
b

�2

cos
[
kb
z (k‖,E)(z − z′)

]
kb
z (k‖,E)

, (A3)

where

kb
z (k‖,E) =

√
2m∗

bE − �2k2
‖/�, b = c,v, (A4)

fμ(E) = {
exp[(E − μ)/kBT ] + 1

}−1
. (A5)
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