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Metric space formulation of quantum mechanical conservation laws
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We show that conservation laws in quantum mechanics naturally lead to metric spaces for the set of related
physical quantities. All such metric spaces have an “onion-shell” geometry. We demonstrate the power of this
approach by considering many-body systems immersed in a magnetic field, with a finite ground state current.
In the associated metric spaces we find regions of allowed and forbidden distances, a “band structure” in metric
space directly arising from the conservation of the z component of the angular momentum.
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I. INTRODUCTION

Conservation laws are a central tenet of our understanding
of the physical world. Their tight relationship to natural sym-
metries was demonstrated by Noether in 1918 [1] and has since
been a fundamental tool for developing theoretical physics. In
this paper we demonstrate how these laws induce appropriate
“natural” metrics on the related physical quantities. Conser-
vation laws are central to the behavior of physical systems
and we show how this relevant physics is translated into the
metric analysis. We argue that this alternative picture provides
a new powerful tool to study certain properties of many-body
systems, which are often complex and hardly tractable when
considered within the usual coordinate space-based analysis,
while may become much simpler when analyzed within metric
spaces. We exemplify this concept by considering functional
relationships fundamental to current density functional theory
(CDFT) [2,3].

We will first introduce a way to derive appropriate “natural”
metrics from a system’s conservation laws. Second, as an ex-
ample application of the approach, we will explicitly consider
an important class of systems—systems with applied external
magnetic fields. In contrast with those to which standard
density functional theory (DFT) [4] can be applied, systems
subject to external magnetic fields are not simply characterized
by their particle densities as even their ground states may
display a finite current [2,3]. These systems are of great
importance, e.g., due to the emerging quantum technologies of
spintronics and quantum information where, for example, few
electrons in nano- or microstructures immersed in magnetic
fields are proposed as hardware units [5–9].

To analyze systems immersed in a magnetic field, we
will introduce a metric associated with the paramagnetic
current density, which can be associated with the angular
momentum components. We will show that, at least for systems
which preserve the z component of the angular momentum,
the paramagnetic current density metric space displays an
“onion-shell” geometry, directly descending from the related
conservation law. In recent work [10–12] appropriate metrics
for characterizing wave functions and particle densities within
quantum mechanics were introduced. It was shown that wave
functions and their particle densities both form metric spaces
with an “onion-shell” structure [10]. We will show that, within
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the same general procedure used for the paramagnetic current,
these metrics descend from the respective conservation laws.
We will then focus on ground states and characterize them
not only through the mapping between wave functions and
particle densities, but importantly through mappings involving
the paramagnetic current density. In fact, for systems with
an applied magnetic field, ground state wave functions are
characterized uniquely only by knowledge of both particle
and paramagnetic current densities (and vice versa), as
demonstrated within CDFT [2,3].

The rest of this paper is organized as follows: In Sec. II
we introduce our general approach to derive metric spaces
from conservation laws. We demonstrate the application
of this approach to wave functions, particle densities, and
paramagnetic current densities in Sec. III. We consider systems
subject to magnetic fields in Sec. IV. Here we use the metrics
derived from our approach to study the fundamental theorem
of CDFT. We present our conclusions in Sec. V.

II. DERIVATION OF METRIC SPACES
FROM CONSERVATION LAWS

A metric, or distance function, D over a set X satisfies the
following axioms for all x,y,z ∈ X [13,14]:

D(x,y) � 0 and D(x,y) = 0 ⇐⇒ x = y, (1)

D(x,y) = D(y,x), (2)

D(x,y) � D(x,z) + D(z,y), (3)

with (3) known as the triangle inequality. The set X with the
metric D forms the metric space (X,D). It can be seen from
the axioms (1)–(3) that many metrics could be devised for the
same set, some trivial. Here we introduce “natural” metrics
associated to conservation laws: this will avoid arbitrariness
and in turn will ensure that the proposed metrics stem from
core characteristics of the systems analyzed and contain the
related physics.

In quantum mechanics, many conservation laws take the
form

∫
|f (x)|pdx = c (4)

for 0 < c < ∞. For each value of 1 � p < ∞, the entire set of
functions that satisfy (4) belong to the Lp vector space, where
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the standard norm is the p norm [13]:

‖f (x)‖p =
[∫

|f (x)|pdx

] 1
p

. (5)

From any norm a metric can be introduced in a standard way
as D(x,y) = ‖x − y‖ so that with p norms we get

Df (f1,f2) := ‖f1 − f2‖p. (6)

However before assuming this metric for the physical functions
related to the conservation laws, an important consideration
must be made: Eq. (6) has been derived assuming the ensemble
{f } to be a vector space; this is in fact necessary to introduce
a norm. If we want to retain the metric (6), but restrict it to
the ensemble of physical functions satisfying (4), which does
not necessarily form a vector space, we must show that (6) is a
metric for this restricted function set. This can be done using
the general theory of metric spaces: given a metric space (X,D)
and S a nonempty subset of X, (S,D) is itself a metric space
with the metric D inherited from (X,D). The metric axioms
(1)–(3) automatically hold for (S,D) because they hold for
(X,D) [13,14]. Hence, we have a metric for the functions of
interest, as their sets are nonempty subsets of the respective
Lp sets.

The metric (6) is then the one that directly descends from the
conservation law (4). Conversely any conservation law which
can be recast as (4) (for example conservation of quantum
numbers) can be interpreted as inducing a metric on the
appropriate, physically relevant, subset of Lp functions. This
provides a general procedure to derive “natural” metrics from
physical conservation laws.

III. APPLICATIONS OF THE METRIC SPACE APPROACH

We now consider specific quantum mechanical functions
and conservation laws. Following Ref. [10] we use a con-
vention where wave functions are normalized to the particle
number N [15]. Then the particle density of an N -particle
system and its paramagnetic current density are defined as

ρ(r) =
∫

|ψ(r,r2, . . . ,rN )|2dr2 . . . drN, (7)

jp(r) = − i

2

∫
(ψ∗∇ψ − ψ∇ψ∗)dr2 . . . drN . (8)

First of all we note that ψ (r1,r2, . . . ,rN ) and ρ(r) are subject
to the following conservation laws (wave function norm and
particle conservation):

∫ ∣∣∣∣ψ(r1,r2, . . . ,rN )√
N

∣∣∣∣
2

dr1 . . . drN = 1, (9)

∫
ρ(r)dr = N. (10)

Similarly the paramagnetic current density jp(r) obeys∫
[r × jp(r)]zdr = 〈ψ |L̂z|ψ〉. (11)

For eigenstates of systems for which the z component of the
angular momentum is preserved we then have 〈L̂z〉 = m, with

m an integer, and (11) can be recast as∫
|[r × jp(r)]z|dr = |m|. (12)

For wave functions and particle densities our procedure leads
to the metrics introduced in Ref. [10] (N fixed) [11,12]

Dψ (ψ1,ψ2) =
[ ∫

(|ψ1|2 + |ψ2|2)dr1 . . . drN

− 2

∣∣∣∣
∫

ψ∗
1 ψ2dr1 . . . drN

∣∣∣∣
] 1

2

, (13)

Dρ(ρ1,ρ2) =
∫

|ρ1(r) − ρ2(r)|dr; (14)

for the paramagnetic current density, our procedure introduces
the following metric:

Djp⊥ (jp,1,jp,2) =
∫

|{r × [jp,1(r) − jp,2(r)]}z|dr. (15)

We note that Djp⊥ will be a distance between equivalence
classes of paramagnetic currents, each class characterized by
current densities having the same transverse component jp⊥ ≡
(jp,x,jp,y). Djp⊥ is gauge invariant provided that jp,1 and jp,2

are within the same gauge and [L̂z,Ĥ ] = 0.
Next we show that conservation laws naturally build within

the related metric spaces a hierarchy of concentric spheres,
or “onion-shell” geometry. If we set as the center of each
sphere the zero function f (0)(x) ≡ 0, and consider the distance
between it and any other element in the metric space, we
recover the p-norm expressions (5) directly descending from
the related conservation laws. This procedure induces in the
related metric spaces a structure of concentric spheres with
radii, in the cases considered here, of natural numbers to the
power of 1/p: all functions corresponding to the same value of
a certain conserved quantity will lay on the surface of the same
sphere. Specifically, for systems of N particles, wave func-
tions lie on spheres of radius

√
N , and particle densities on

spheres of radius N ; for the metric space of paramagnetic
current densities, all paramagnetic current densities with a
z component of the angular momentum equal to ±m lie on
spheres of radius |m|.

The first axiom of a metric (1) guarantees that the minimum
value for all distances is 0, and that this value is attained for two
identical states. The onion-shell geometry guarantees that, for
functions on the surface of the same sphere, i.e., which satisfy
a certain conservation law with the same value, there is also
an upper limit for their distance associated with the diameter
of the sphere. From (15) we see that for paramagnetic current
densities this upper limit is achieved in the limit of currents
which do not spatially overlap. This is also the case for particle
densities, as seen in (14).

Interestingly, and in contrast to wave functions and particle
densities [10], even when considering systems with the
same number of particles it may be necessary to consider
paramagnetic current densities with different values of m; in
terms of their metric space geometry, current densities that
have different values of |m| lie on different spheres. Therefore,
the maximum value for the distance between paramagnetic
current densities of a system of N particles is related to
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the upper limit of the number of spheres in the onion-shell
geometry. Using the triangle inequality we have in fact

Djp⊥

(
jp,m1 ,jp,m2

)
� Djp⊥

(
jp,m1 ,j

(0)
p

) + Djp⊥

(
j(0)
p ,jp,m2

)
= |m1| + |m2| � l1 + l2, (16)

where li is the quantum number related to the total angular
momentum of system i.

IV. STUDY OF MODEL SYSTEMS

We now concentrate on the sets of ground state wave
functions, related particle densities, and related paramagnetic
current densities. Since ground states are nonempty subsets of
all states, ground-state-related functions form metric spaces
with the metrics (13), (14), and (15). The importance of
characterizing ground states and their properties has been
highlighted by the huge success of DFT (in all its flavors)
as a method to predict devices’ and material properties [4,16].
Standard DFT is built on the Hohenberg-Kohn (DFT-HK) the-
orem [17], which demonstrates a one-to-one mapping between
ground state wave functions and their particle densities. This
theorem is highly complex and nonlinear in coordinate space.
However, Ref. [10] showed that the DFT-HK theorem is a
mapping between metric spaces, and may be very simple when
described in these terms, becoming monotonic and almost
linear for a wide range of parameters and for the systems
there analyzed. CDFT is a formulation of DFT for systems
in the presence of an external magnetic field. In CDFT [2,3]
the original HK mapping is extended (CDFT-HK theorem) to
demonstrate that ψ is uniquely determined only by knowledge
of both ρ(r) and jp(r) (and vice versa). This is the theorem we
will consider in this section.

To further our analysis, we now explicitly examine two
model systems with applied magnetic fields. They both consist
of two electrons parabolically confined that interact via
different potentials, Coulomb (magnetic Hooke’s atom) [18]
and inverse square interaction (ISI) [19], respectively. Both
systems may be used to model electrons confined in quantum
dots. The Hamiltonians for the magnetic Hooke’s atom and
the ISI system are

ĤHA =
2∑

i=1

{
1

2
[p̂i + A(ri)]

2 + 1

2
ω2

0r
2
i

}
+ 1

|r2 − r1| , (17)

ĤISI =
2∑

i=1

{
1

2
[p̂i + A(ri)]

2 + 1

2
ω2

0r
2
i

}
+ α

(r1 − r2)2
, (18)

(atomic units, � = me = e = 1). Here α is a positive constant,
A = 1

2 B × r (symmetric gauge), and B = ωccẑ is a homo-
geneous, time-independent external magnetic field. For these
systems 〈L̂z〉 is a conserved quantity. Following Refs. [2,18]
we disregard spin to concentrate on the features of the
orbital currents. For Hooke’s atom, we obtain highly precise
numerical solutions following the method in Ref. [20]. The ISI
system is solved exactly [19].

To produce families of ground states, for each system we
systematically vary the value of ω0 (while keeping all other
parameters constant), and for each value we calculate the
ground state wave function, particle density, and paramagnetic
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FIG. 1. (Color online) For the ISI system energy is plotted
against the confinement frequency for several values of the angular
momentum quantum number m (as labeled), and with constant
cyclotron frequency and interaction strength. Arrows indicate where
the value of m for the ground state changes.

current density. A reference state is determined by choosing
a specific ω0 value, and the appropriate metric is then used
to calculate the distances between it and each member of the
family. To ensure that we select ground states, varying ω0 may
require varying the quantum number m [18,19]. This is shown
for the ISI system in Fig. 1. Here, as ω0 increases, we must
decrease the value of |m| in order to remain in the ground
state. As a result of this property, within each family of ground
states, paramagnetic current densities will “jump” from one
sphere of the onion-shell geometry to another [see Fig. 3(a),
where the reference state is the “north pole” of its sphere]. To
obtain ground states with nonzero paramagnetic currents, we
must use ω0 values corresponding to m < 0 [18,19].

In Fig. 2, we plot each pair of distances for the two systems.
The reference states have been chosen so that most of the
available distance range can be explored both for the case
of increasing and for the case of decreasing values of ω0.
When considering the relationship between ground state wave
functions and related particle densities, Figs. 2(a) and 2(b),
our results confirm the findings in Ref. [10]: a monotonic
mapping, linear for low to intermediate distances, and where
vicinities are mapped onto vicinities; also curves for increasing
and decreasing ω0 collapse onto each other. However closer
inspection reveals a fundamental difference with Ref. [10],
the presence of a “band structure.” By this we mean regions
of allowed (“bands”) and forbidden (“gaps”) distances, whose
widths depend, for the systems considered here, on the value
of |m|. This structure is due to the changes in the value of the
quantum number m, which result in a substantial modification
of the ground state wave function (and therefore density) and
a subsequent large increase in the related distances.

When we focus on the plots of paramagnetic current densi-
ties’ against wave functions’ distances, Figs. 2(c) and 2(d),
we find that the “band structure” dominates the behavior.
Here the change in |m| has an even stronger effect, in that
dDjp⊥ /dDψ is noticeably discontinuous when moving from
one sphere to the next in jp metric space. This discontinuity
is more pronounced for the path |m| < |mref| than for the path
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FIG. 2. Results for ground states. Top: Hooke’s atom (reference state ω0 = 0.5,ωc = 5,mref = −5). Bottom: ISI system (reference state
ω0 = 0.62,ωc = 5.5,α = 5,mref = −10). Panels (a) and (b): Dρ vs Dψ ; (c) and (d): rescaled Djp⊥ vs Dψ ; (e) and (f): rescaled Djp⊥ vs Dρ .
Frequencies smaller than the reference are labeled with circles, larger with triangles.

|m| > |mref|. Similarly to Figs. 2(a) and 2(b), the mapping
of Dψ onto Djp⊥ maps vicinities onto vicinities and remains
monotonic, but for small and intermediate distances it is
only piecewise linear. In contrast with Dρ vs Dψ , curves

(a)

0

0.2

0.4

0.6

0.8

0 10 20 30 40

θ/
π

|m|

ωc=5.5, α=5, mref=-10

(b)

|mref|

θmax
θmin

Δθ

ref,q

FIG. 3. (Color online) (a) Sketch of the onion-shell geometry of
the metric space for paramagnetic current densities, where |mq | >

|mr | > |mref | (left) and |mref | > |ms | > |mt | (right). The reference
state is at the north pole on the reference sphere. The dark gray areas
denote the regions where ground state currents are located (“bands”),
with dashed lines indicating their widths. (b) Results of the angular
displacement of ground state currents for the ISI system. Lines are a
guide to the eye. Inset: Definition of relevant angles.

corresponding to increasing and decreasing ω0 do not collapse
onto each other.

Figures 2(e) and 2(f) show the mapping between particle
and paramagnetic current density distances: this has charac-
teristics similar to the one between Dψ and Djp⊥ , but remains
piecewise linear even at large distances.

We will now concentrate on the jp metric space to
characterize the “band structure” observed in Fig. 2. Within the
metric space geometry, we consider the polar angle θ between
the reference jp,ref and the paramagnetic current density jp of
angular momentum |m|. Using the law of cosines, θ is given
by

cos θ =
m2

ref + m2 − D2
jp⊥

(jp,ref,jp)

2|mref||m| . (19)

We define the polar angles corresponding to the two extremes
of a given band as θmin and θmax (inset of Fig. 3). The width of
each band is then �θ = θmax − θmin, and its position defined
by θmin. Now we can calculate the bands’ widths and positions
by sweeping, for each |m|, the values of ω0 corresponding to
ground states (Fig. 3).

For both systems under study, we find that as |m| increases
from |mref|, both θmax and θmin increase. This has the effect
of the bands moving from the north pole to the south pole
as we move away from the reference. Additionally, we find
that the bandwidth �θ decreases as |m| increases [sketched
in Fig. 3(a), left]. As |m| decreases from |mref|, we again find
that both θmax and θmin increase, with the bands moving from
the north pole to the south pole. However, this time, as |m|
decreases, �θ increases, meaning that the bands get wider as
we move away from the reference [sketched in Fig. 3(a), right].

Quantitative results for the ISI system are shown in
Fig. 3(b). We obtain similar results for Hooke’s atom (not
shown). The band on the surface of each sphere indicates where
all ground state paramagnetic current densities lie within that
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sphere. In contrast with particle densities or wave functions, we
find that, at least for the systems at hand, ground state currents
populate a well-defined, limited region of each sphere, whose
size and position display monotonic behavior with respect
to the quantum number m. This regular behavior is not at
all expected, as the CDFT-HK theorem does not guarantee
monotonicity in metric space, and not even that the mapping
of Dψ to Djp⊥ is single valued. In the CDFT-HK theorem
ground state wave functions are uniquely determined only by
particle and paramagnetic current densities together. In this
sense we can look at the panels in Fig. 2 as projections on
the axis planes of a 3-dimensional DψDρDjp⊥ relation. The
complexity of the mapping due to the application of a magnetic
field—the changes in quantum number m—is fully captured
by Djp⊥ only, as this is related to the relevant conservation
law. However the mapping from Dρ to Dψ inherits the “band
structure,” showing that the two mappings Djp⊥ to Dψ and Dρ

to Dψ are not independent.

V. CONCLUSION

In conclusion we showed that conservation laws induce
related metric spaces with an “onion-shell” geometry and
that they may induce a “band structure” in ground state
metric spaces, a signature of the enhanced constraints due

to the system conservation laws on the relation between wave
functions and the relevant physical quantities.

The method proposed may help with understanding ex-
tended HK theorems, such as, in the case at hand, the
CDFT-HK theorem. In this respect we find that in metric
spaces and for the systems considered, the relevant mappings
display distinctive signatures, including (piecewise) linearity
at short and medium distances, the mapping between ground
state ψ and jp resembling the one between ρ and jp,
and the mapping between ground state ψ and jp showing
different trajectories for increasing or decreasing Hamiltonian
parameters, in contrast with the mapping between ψ and ρ.
Features like this could be used to build or test (single-particle)
approximate solutions to many-body problems, e.g., within
DFT schemes.

Our results show that using conservation laws to derive
metrics makes these metrics a powerful tool to study many-
body systems governed by integral conservation laws.
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