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Floquet-Hubbard bound states in the continuum

Giuseppe Della Valle* and Stefano Longhi
Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy

(Received 20 December 2013; revised manuscript received 24 February 2014; published 19 March 2014)

We theoretically demonstrate that a type of robust two-particle bound state embedded in the continuum
(BIC), which we call Floquet-Hubbard (FH) BIC, can be induced in a homogeneous (i.e., defect-free) Hubbard
semilattice by an intense oscillating electric field. While single-particle BIC states are fragile states that exist
solely for specially tailored potentials, FH BIC states are found in a wide range of parameter space, do not require
fulfillment of resonance conditions, and are thresholdless. Analytical results are derived in the high-frequency
limit of field modulation by a multiple-time-scale asymptotic analysis of the ac-driven Hubbard Hamiltonian in
the two-particle sector. A FH BIC mode basically corresponds to a molecular state, in which the two particles
bind together, undergoing correlated tunneling on the lattice. Localization of the molecular state is induced by
the external oscillating field, which effectively attracts the molecular state at the edge of the semi-infinite lattice.
Our results can pave the way for the study and interpretation of strong-field phenomena in correlated-particles
physics.
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I. INTRODUCTION

The concept of a bound (i.e., normalizable) state embedded
in a continuum (BIC) of energies dates back to the beginnings
of quantum mechanics, with the pioneering work by von
Neumann and Wigner [1]. BIC states are generally found
in specially tailored potentials [2,3] or in systems where
two or more resonances interfere [4,5]. In the latter case,
the existence of the BIC states can be traced back to the
original idea of Fano interference [6], which has been observed
in a myriad of physical systems, from the classical to the
quantum world [7–12] (see also Ref. [13] and references
therein). BIC states also play an important role in quantum
transport on the nanoscale with application to nanoelectron-
ics [14] and spintronics [15]. Despite their ubiquity, BIC
states are recognized as fragile states that generally decay
into resonances by small perturbations [16], even though in
some cases a certain robustness against hybridization into
the continuum has been reported [17]. For these reasons,
engineering of BIC states has been demonstrated only in
special systems. As an example, photonic structures, allowing
robust control of parameters, turned out to be very promising
for the observation of BIC states [18–24], with potential
impact on several applications, from large-field amplification
and enhancement of optical nonlinearities to biosensing (as
discussed in Ref. [18]). Interestingly, not only bulk BIC
states [19] but also surface BIC states with algebraic [22] or
compact [23] localization have been observed using photonic
lattices. Also, very recently, BIC states driven by ac fields
have been studied by Floquet theory [14] and the concept of
Floquet BIC states has been introduced [25], i.e., BIC states
that arise in a time-periodic Hamiltonian. In particular, the
appearance of Floquet BIC states for a single particle hopping
on a defective lattice, induced by a strong oscillating force,
has been theoretically predicted. Nevertheless, such states
suffer from the same drawback as BIC states of stationary
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Hamiltonians, i.e., they are fragile and decay into resonances
when the system parameters are slightly perturbed.

As happened in other contexts, moving to the many-particle
framework makes the physics rather different. In a few recent
works, it has been shown that particle interaction enhances
the formation of BIC states and makes them robust [26–28].
Two-particle BIC states have been predicted to exist in
defective Hubbard lattices, either in the bulk [26,27] or
at the surface [28], but not in defect-free lattices. Such
previous studies have been limited to consider static (i.e.,
undriven) Hubbard lattices. On the other hand, application
of strong oscillating fields is known to strongly modify
the dynamical and spectral properties of Hubbard systems.
Strong fields can induce a dressing of the single- and many-
particle states of the static system and eventually give rise
to new phenomena, including the field-controlled superfluid-
to-Mott-insulator phase transition [29], dynamic unbinding
transitions in a periodically driven fermionic Mott-insulator
at half filling [30], switching of particle interaction from
repulsive to attractive [31], control of correlated tunneling and
superexchange spin interactions [32], field-induced ferromag-
netism [33], coherent destruction of correlation [34], and super
Bloch oscillations [35].

In this paper, we introduce a type of robust two-particle
bound state embedded in the continuum (BIC), which we
call Floquet-Hubbard bound state in the continuum (FH BIC).
Such states are induced in a defect-free Hubbard semilattice by
application of an intense oscillating electric field. As opposed
to single-particle Floquet BIC states [25], two-particle FH
BIC modes are found in a wide range of parameter space
and do not require fulfillment of resonance conditions, i.e.,
they are robust against perturbations of system parameters. A
FH BIC mode basically corresponds to a molecular state in
which the two particles bind together, undergoing correlated
tunneling on the lattice [36–39]. Localization of the molecular
state is induced by the external oscillating field, which
effectively attracts the molecular state at the edge of the semi-
infinite lattice. Analytical results, which explain the physical
mechanism underlying the formation of FH BIC modes, are
derived in the high-frequency limit of field modulation by a
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multiple-time-scale asymptotic analysis of the ac-driven Hub-
bard Hamiltonian.

The paper is organized as follows. In Sec. II, we present
Floquet numerical analysis of the two-particle ac-driven
Hubbard Hamiltonian on a semilattice, and show the existence
of FH BIC modes for a bichromatic driving field. In Sec. III,
we consider the high-frequency regime of driving and develop
multiple-time-scale asymptotic analysis to provide physical
insights into the mechanism underlying the formation of the
BIC states. In Sec. IV, we introduce a Bethe ansatz for
the FH BIC states in the high-frequency modulation regime
and determine analytically the domain of their existence in
parameter space. Finally, the main conclusions are outlined in
Sec. V.

II. PERIODICALLY DRIVEN TWO-PARTICLE
FERMI-HUBBARD MODEL ON A SEMILATTICE:

FLOQUET ANALYSIS

We consider two electrons with opposite spin hopping
on a one-dimensional homogeneous semilattice with nearest-
neighbor tunneling rate κ , driven by an intense oscillating
electric field E(t) [Fig. 1(a)]. The system is described by the
driven Fermi-Hubbard (FH) Hamiltonian (see, e.g., Ref. [40]
and references therein):

Ĥ = Ĥhop + Ĥint + Ĥdrive, (1)

FIG. 1. (Color online) (a) Sketch of the one-dimensional tight-
binding semilattice with applied ac electric field. The lattice is
homogeneous (i.e., defect free). (b) Fock-space representation of the
driven Hubbard Hamiltonian in the two-particle sector. The motion
of the two electrons with opposite spins on the one-dimensional
lattice in (a) is equivalent to the hopping dynamics of a single
particle on a two-dimensional driven semi-infinite square lattice.
(c) Effective static semilattice in the high-frequency limit retrieved
by multiple-time-scale asymptotic analysis.

where

Ĥhop = −�κ

∞∑
j=0

∑
σ=↑,↓

(â†
j+1,σ âj,σ + â

†
j,σ âj+1,σ ), (2)

Ĥint = U

∞∑
j=0

n̂j,↑n̂j,↓, (3)

Ĥdrive = −eaE(t)
∞∑

j=0

j (n̂j,↑ + n̂j,↓). (4)

In previous equations, e is the elementary charge, a is
the lattice constant, U > 0 is the on-site Coulomb repulsion
energy of the two electrons, â

†
j,σ and âj,σ are the creation and

annihilation operators, respectively, of a spin up (σ = ↑) or
spin down (σ = ↓) electron at lattice sites j = 0,1,2, . . ., and
n̂j,σ = â

†
j,σ âj,σ is the particle-number operator at lattice site j

for the σ spin electron. The external electric field can be written
as E(t) = E0f (t), where f (t) is a dimensionless function with
period T = 2π/ω and E0 is the oscillation amplitude. In the
case of noninteracting particles, i.e., for U = 0, the problem
reduces to the single-particle case, which was previously
studied by Garanovich and collaborators in Ref. [41]. Here
the external oscillating field can induce surface bound states
in the defect-free semilattice [41,42]. Such states, however,
are not BIC states, rather they are ordinary normalizable
states with a quasienergy outside the quasienergy spectrum of
scattered states. The experimental observation of field-induced
single-particle surface states of this kind was reported in
Ref. [43]. As we will show in our work, the interplay of
particle interaction and driving field enables one to observe
bound states with a quasienergy embedded into the spectrum
of scattered states, which we call Floquet-Hubbard BIC states
(FH BIC). To this aim, let us indicate by cn,m(t) the amplitude
probability to find the spin-up electron at lattice site n and the
spin-down electron at lattice site m, i.e., let us expand the state
vector |ψ(t)〉 of the system in Fock space as

|ψ(t)〉 =
∞∑

n,m=0

cn,m(t)â†
n,↑â

†
m,↓|0〉, (5)

with |0〉 being the vacuum state. The evolution equations of the
amplitude probabilities cn,m(t), as obtained after substitution
of the decomposition (5) into the Schrödinger equation
i�∂t |ψ〉 = Ĥ |ψ〉, read

i�
dcn,m

dt
= −�κ(cn−1,m + cn+1,m + cn,m−1 + cn,m+1)

+ [Uδn,m − (n + m)eaE0f (t)]cn,m, (6)

(n,m = 0,1,2,3, . . .), with c−1,m = cn,−1 = 0.
Note that the above equations are equivalent to those

governing the dynamics of a single electron hopping on a two-
dimensional semilattice with diagonal site energy detuning and
superposed ac driving field, as sketched in Fig. 1(b). Also, note
that due to the symmetry of the Hamiltonian of Eqs. (1)–(4)
with respect to particle exchange, the solutions to Eq. (6) can
be classified as even, if cm,n = cn,m, or odd, if cm,n = −cn,m,
with respect to particle exchange. Even solutions describe spin
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singlets, whereas odd solutions span the sector of spin triplets
(see, e.g., Ref. [40]).

To capture the effect of the oscillating external field, let us
introduce the scaled time τ = ωt and the gauge transformation
cn,m(τ ) = bn,m(τ ) exp[i
(τ )(n + m)], where


(τ ) = �

∫ τ

0
dτ ′f (τ/ω), (7)

and � = (eaE0)/(�ω) is the normalized forcing strength.
The amplitude probabilities bn,m(τ ) then satisfy the following
coupled equations:

i
bn,m

dτ
= − κ

ω
e−i
(τ )[bn−1,m + bn,m−1]

− κ

ω
ei
(τ )[bn+1,m + bn,m+1] + U

�ω
δn,mbn,m, (8)

with b−1,m = bn,−1 = 0.
The quasienergy spectrum of the driven Hubbard semilat-

tice can be numerically computed by standard Floquet analysis
of Eqs. (8). To this aim, we consider a finite lattice of N

sites (with possibly N a large number), and map the N × N

matrix of bn,m coefficients into a M = N2-dimensional column
vector B = {Bp} = (B0,B1,B2, . . . ,BM−1)T according to the
rule p = Nn + m. By doing so, the system of Eqs. (8)
is mapped into an equivalent ordinary differential equation
system whose general solution can be written in the following
form, according to Floquet theorem (see, e.g., Ref. [44]):

B(τ ) = P(τ )e−iRτ B(0), (9)

where B(0) is the initial value vector at time τ = 0, P(τ ) is a
M × M time-periodic matrix of period 2π with P(0) the iden-
tity matrix of rank M , and R is a M × M time-independent
matrix whose eigenvalues are the quasienergies (Floquet
exponents) of the system [44]. The quasienergies can thus be
computed from the eigenvalues η of the monodromy matrix
Q = e−iR2π connecting the solution over one oscillation cycle
(i.e., from τ = 0 to τ = 2π ) according to the rule

E = −�ω

2π
Im{ln(η)}, (10)

where the �ω factor is introduced to reframe the dynamics in
the original time coordinate t . As is well known, quasienergies
are defined apart from integer multiples of �ω, and conven-
tionally they are restricted to the interval −(�ω/2,�ω/2). To
determine the monodromy matrix, note that the qth column of
Q can be retrieved as the numerical solution to Eqs. (8) under
initial condition Bp(0) = δp,q with p = 0,1,2, . . . ,M − 1.

Once the quasienergies and corresponding quasienergy
eigenvectors are determined, the search of bound states, either
embedded (i.e., a BIC) or outside the spectrum of scattered
states, is done by inspection of the participation ratio R of
the N2 quasienergy eigenvectors. The participation ratio of a
quasienergy eigenmode bn,m(t) is defined as

R =
⎡
⎣ N−1∑

n,m = 0

|bn,m|2
⎤
⎦

2 / N−1∑
n,m = 0

|bn,m|4, (11)

and turns out to be a periodic function of time with period
2π/ω. Usually one can limit to consider the value of R at a

given instant of the oscillation cycle, for example, at t = 0.
For strongly localized (bound) states, R ∼ 1, and for extended
(scattered) states, R ∼ N2, whereas for extended molecular
(doublonic) states [i.e., extended states but localized along the
diagonal n = m in the lattice of Fig. 1(b)], R ∼ N . Hence,
for N large enough, one can easily detect the existence of
bound states, with quasienergy either embedded or outside
the quasienergy band of scattered states. In our numerical
simulations, we typically assumed N = 41 lattice sites.

We typically considered the weak-interaction regime U <

∼�κ and scanned a broad range of frequencies and ampli-
tudes of the electric field, assuming either a monochromatic
or a bichromatic wave form. With a monochromatic field
E(t) = E0 cos(ωt), we could not observe BIC quasienergy
eigenstates. Conversely, FH BIC states are found in the case of
a bichromatic field E(t) = E0[cos(ωt) + cos(2ωt + ϕ)] for a
wide range of values of normalized hopping rate ε = κ/ω,
normalized forcing amplitude �, phase shift ϕ, and for
a particle interaction energy U = ε2u�ω, with 0 � u � 1.
Examples of FH BIC states at a low (ε = 0.9), moderate (ε =
0.45), and high (ε = 0.1) modulation frequency are shown in
Fig. 2 for ϕ = 0. An important property of the FH BIC states
is that they are doublonic in nature, i.e., they emerge from the
Hubbard band of molecular states, and are localized at one edge
of the semilattice. This explains the physical origin of FH BIC
modes: particle interaction binds together the two particles,
which cannot dissociate because of quasienergy conservation
and thus undergo correlated tunneling [36,37]; the external
field then pushes the bound molecular state near the edge of
the lattice. The mechanism underlying field-induced surface
localization of the molecular state will be clarified in the next
section. In our numerical analysis, the doublonic nature of
the FH BIC states was ascertained by inspecting, in Fock
space, the quasienergy eigenstate with minimal participation
ratio (marked with red circles in the quasienergy spectra of
Fig. 2 and highlighted by arrows), as detailed in the lower
panels of Fig. 2. Note that in all three cases [Figs. 2(a)–2(c)],
the FH BIC state entails excitation of the diagonal elements
with negligible contribution from the neighboring diagonals.
This corresponds to both electrons occupying the same lattice
site, i.e., it is a Hubbard state, with negligible excitation of
single-particle states (corresponding to nondiagonal elements
in the lower panels of Fig. 2). Note also that the FH BIC state
is localized at the corner n = 0, m = 0 of the Fock lattice of
Fig. 1(b), so that it corresponds to a two-particle surface state
of the Tamm type in the original one-dimensional lattice. The
localization of the FH BIC increased under high-frequency
driving as compared to the low-frequency driving. Finally,
we found that if particle interaction is neglected, no BIC
states are observed for the driving conditions considered in
our simulations, even in the high-frequency regime, as shown
in Fig. 2(d). In this case, the state with minimum participation
ratio [which is, in any case, an order of magnitude larger as
compared to the participation ratio of the doublonic BIC in this
same driving regime, shown in Fig. 2(c)] entails excitation of
the antidiagonal elements only, with complete delocalization
along the antidiagonal. This state turns out to have zero energy
and π phase shift between the bn,m coefficients of neighboring
Fock basis elements. As discussed in Sec. IV B, the appearance
of this state is caused by truncation of the semilattice and has
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FIG. 2. (Color online) Quasienergy spectrum (top panels), participation ratio spectrum (middle panels), and BIC quasienergy eigenstate
|bn,m(0)|2 (bottom panels) for the two-particle semilattice driven under different regimes: (a) low frequency κ/ω = 0.9, � = 4.5, u = 0.5; (b)
moderate frequency κ/ω = 0.5, � = 4.2, u = 1; and (c) high frequency κ/ω = 0.1, � = 3.0, u = 1. (d) Same as (c) but for noninteracting
particles (u = 0). (e) Energy spectrum, participation ratio spectrum, and BIC eigenstate of the effective static lattice corresponding to the
high-frequency driving regime shown in (c). In the bottom panels, the amplitude coefficients are normalized to the peak value for clarity. Arrows
indicate the state with minimum participation ratio. The red box comprises the scattered doublonic states (belonging to the Mott-Hubbard
band).

no special physical meaning in a true (i.e., infinite) semilattice.
Finally, it should be noted that, as opposed to single-particle
Floquet BIC states recently predicted in Ref. [25], two-particle
FH BIC states are robust. In fact, single-particle Floquet BIC
states exist solely at very special values of normalized forcing
�, and are thus fragile states because even a small change
of the driving amplitude transforms the BIC (normalizable)
mode into a resonance (non-normalizable) state. Conversely,
FH BIC modes in the driven Hubbard model do not require
exact tuning of the external parameters, are robust against
parameter change or fluctuations, and are even thresholdless,
as discussed in the next sections.

III. MULTIPLE-TIME-SCALE ASYMPTOTIC ANALYSIS

To get deeper physical insights into the properties and
the mechanism underlying the formation of FH BIC states,
we performed a multiple-time-scale asymptotic analysis (MT-
SAA) of the driven two-particle Hubbard lattice in the high-
frequency limit ω � κ (see, for instance, [45,46]). To this aim,
let us look for a solution to Eqs. (8) as a power-series expansion

in the smallness parameter ε = κ/ω:

bn,m(τ ) = b(0)
n,m(τ ) + εb(1)

n,m(τ ) + ε2b(2)
n,m(τ ) + · · · . (12)

To remove the appearance of secularly growing terms in the
asymptotic analysis that would prevent the validity of above
expansion, let us introduce the multiple time scales,

τ0 = τ, τ1 = ετ, τ2 = ε2τ, . . . . (13)

This gives rise to the derivative rule d/dτ = ∂τ0 + ε∂τ1 +
ε2∂τ2 + · · · . Substitution of the ansatz (12) into Eqs. (8) and
collection of the terms of the same order in ε allows one to
derive a hierarchy of equations for successive corrections to
bn,m at various orders. At leading order (∼ε0), one simply
obtains ∂τ0b

(0)
n,m = 0, which yields

b(0)
n,m = Cn,m(τ1,τ2, . . .), (14)

where the amplitudes Cn,m vary on the slower time scales τ1,
τ2, . . . . The equations at higher orders (∼εk , k � 1) have the
general form

i∂τ0b
(k)
n,m = −i∂τk

Cn,m + G(k)
n,m

(
τ0; b(j<k)

n,m

)
, (15)
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where G(k)
n,m depends explicitly on τ0 and on the solutions b

(j )
n,m

at previous orders j = 0,1, . . . ,k − 1. To avoid the occurrence
of secular growing terms in the solution b(k)

n,m, the following
solvability condition must be satisfied:

i∂τk
Cn,m = 〈

G(k)
n,m

〉
, (16)

where 〈·〉 denote the dc component of the driving term G(k)
n,m.

Equation (16) determines the evolution of the amplitude Cn,m

on the slow time scale τk; the correction at order k can be then
calculated as

b(k)
n,m = −i

∫ τ0

0
dξ

(
G(k)

n,m − 〈
G(k)

n,m

〉)
. (17)

In particular, at order ∼ε, one has

G(1)
n,m = −(Cn−1,m + Cn,m−1)e−i
(τ0)

− (Cn+1,m + Cn,m+1)ei
(τ0), (18)

with C−1,m = Cn,−1 = 0. To further proceed in the analysis, it
is worth introducing the Fourier expansion of the phase term
exp[−i
(τ0)] by letting

exp[−i
(τ0)] = �0 +
∑
l 
=0

�l exp(ilτ0), (19)

where �l are the Fourier coefficients.
Note that at the present order of approximation, the

oscillating terms in Eq. (19) are averaged out in the solvability
condition of Eq. (16) (with k = 1). This is the so-called
rotating-wave approximation. Therefore, the evolution of
amplitude probabilities up to the time scale ∼1/(ωε) is given
by i(dCn,m/dt) = iω(∂τ0 + ε∂τ1 )Cn,m = iε∂τ1Cn,m, and reads

i
dCn,m

dt
= −�0κ(Cn−1,m + Cn,m−1)

−�∗
0κ(Cn+1,m + Cn,m+1), (20)

with C−1,m = Cn,−1 = 0. The latter equation system rep-
resents a homogeneous (defect-free) static semilattice with
renormalized tunneling rate �0κ . As is well known, this
lattice cannot sustain bound states, but rather scattered states
only. Therefore, multiple-scale asymptotic analysis ought to be
pushed beyond the rotating-wave approximation. To do this,
we have to consider �0 to be of the order of ε, meaning that
the driving field operates close to the coherent-destruction of
tunneling (CDT) condition [45] (see also the review paper of
Ref. [47]), so that higher-order processes can compete with
the renormalized tunneling at previous order. The evolution
equations of the amplitudes Cn,m on the slow time scale τ2

can then be obtained after some lengthy but straightforward
calculations following the procedure outlined above, once the
corrections to bn,m at order ∼ε are calculated using Eq. (17) and
the solvability condition at order ∼ε2 [Eq. (16)] is explicitly
written down. If we stop the asymptotic analysis at the order ε2,
the temporal evolution of the amplitude probabilities Cn,m(t),
valid up to the long time scale ∼1/(ωε2), now becomes

i�
dCn,m

dt
= −�κe(Cn−1,m + Cn+1,m + Cn,m−1 + Cn,m+1)

+V [δn,0 + δm,0]Cn,m + Uδn,mCn,m, (21)

FIG. 3. (Color online) Behavior of |�0| and ρ as a function of
the normalized field amplitude �. Vertical arrows point out the first
four values of � for which CDT is achieved. Red dots refer to the
driving conditions employed in the simulations of Fig. 2(c).

with C−1,m = Cn,−1 = 0. In Eqs. (21), we have set (without
loss of generality [48]) κe = |�0|κ , and V is an effective
boundary potential induced by the external field, whose
expression reads

V ≡ −
⎛
⎝ κ

ω

∑
l 
=0

|�l|2
l

⎞
⎠ �κ ≡ −ρ

�κ2

ω
, (22)

where ρ ≡ ∑
l 
=0 |�l|2/l. Equations (21) and (22) are the main

result of the multiple-scale analysis at order ∼ε2, and show
that the original defect-free driven semilattice of Fig. 1(b), in
the high-frequency regime and close to the CDT condition, is
equivalent to a static semilattice with renormalized tunneling
rate and boundary defects induced by the time-periodic
driving; see Fig. 1(c). Such field-induced edge defects in
the equivalent lattice model justify the appearance of surface
Tamm states of the Floquet type. An inspection of Eq. (22)
shows that this possibility is prevented under monochromatic
driving. Actually, in this case, the Fourier coefficients in
the expansion of Eq. (19) satisfy the condition |�−l| = |�l|
for any l 
= 0, resulting in V = 0 according to Eq. (22).
Hence, for a monochromatic driving field, the main effect is
renormalization of the hopping rate; however, localization of
bound molecular states is prevented [49]. This is not the case
for a bichromatic field for which, in general, |�−l| 
= |�l|.
As an example, in Fig. 3 we plot the behavior of |�0| and
ρ versus the normalized forcing amplitude � = eaE0/(�ω)
for a bichromatic field E(t) = E0 cos(ωt) + E0 cos(2ωt + ϕ)
with ϕ = 0. Note that the CDT condition is attained at � =
�0 
 2.4787,3.593,7.485,8.242, . . ., and that for a driving
amplitude � near �0, the parameter ρ (and hence the defect
energy V ) is nonvanishing.

To give a reason for the doublonic and BIC nature of the
Floquet BIC states found in the numerical simulations under
high-frequency bichromatic driving, we computed the energy
spectrum and participation ratio of the eigenstates for the ef-
fective static lattice detailed by Eqs. (21) and (22) [50]. Results
corresponding to the case of high-frequency driving reported
in Fig. 2(c) are shown in Fig. 2(e). The two spectra [top panels
in Figs. 2(c) and 2(e)] are in excellent quantitative agreement,
both for the single-particle states and for the doublonic states
of the Mott-Hubbard band (comprised in the rectangular box
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in Fig. 2). Most importantly, the effective static lattice predicts
exactly the same doublonic BIC state as the one observed in
the original driven lattice: energy E ′/(�κ) = 8.16 × 10−2 and
participation ratio R = 3.42, against quasienergy E/(�κ) =
8.13 × 10−2 and participation ratio R = 3.22. We performed
several simulations with different values of parameters and
found that in the high-frequency limit (i.e., ε < 0.1) and close
to CDT, the MT-SAA matches the Floquet numerical results
on the BIC state with an error e = (E ′ − E)/E ′, which is small,
of the order of ε2.

IV. PROPERTIES OF THE FLOQUET-HUBBARD BIC
STATE IN THE HIGH-FREQUENCY LIMIT

A. Existence conditions and intrinsic robustness

Since the solutions for the energy spectrum and correspond-
ing eigenstates of Eqs. (21) can be derived analytically, it is
possible to retrieve the exact conditions for the existence of
the FH BIC, at least in the regime where MT-SAA is accurate.
To do so, note that according to the Bethe ansatz [40], any
eigensolution to Eqs. (21) can be written as (see also [26,28])

Cn,m = (
A1z

n
1z

m
2 + A2z

−n
1 zm

2 + A3z
n
1z

−m
2 + A4z

−n
1 z−m

2

+ A5z
n
2z

m
1 + A6z

−n
2 zm

1 + A7z
n
2z

−m
1 + A8z

−n
2 z−m

1

)
× exp[−i(E ′/�)t], (23)

for n � m, and Cm,n = ±Cn,m. In Eq. (23), A1,A2, . . . ,A8 are
eight complex amplitudes to be determined, z1,2 = exp(ik1,2),
and k1,k2 are two complex wave numbers that define the energy
of the eigenstate according to the relation

E ′ = −�κe

(
z1 + z−1

1 + z2 + z−1
2

)
. (24)

A solvability condition is obtained by imposing the validity
of Eq. (23) and Eqs. (21) along the two defective lines
corresponding to m = n and n = 0 (or, equivalently, m = 0).
This way, a set of eight homogeneous linear equations for
the amplitudes Al is retrieved, namely, T v = 0, where v =
(A1,A2, . . . ,A8)T and T is a 8 × 8 matrix. Note that Hubbard
states having nonzero value of some diagonal elements (Cn,n)
ought to be even with respect to particle exchange, meaning
that the FH BIC state we are seeking can only exist for
spin-singlet Floquet states and not for spin triplets. If we
consider even states only, the nonzero elements of T turn
out to be given by

T11 = T48 = z1 + 1/z2 + (E ′ − U )/(2�κe),

T15 = T44 = z2 + 1/z1 + (E ′ − U )/(2�κe),

T22 = T36 = 1/z1 + 1/z2 + (E ′ − U )/(2�κe),

T27 = T33 = z1 + z2 + (E ′ − U )/(2�κe),
(25)

T51 = T62 = 1/z2 + V/(�κe),

T53 = T64 = z2 + V/(�κe),

T75 = T86 = 1/z1 + V/(�κe),

T77 = T88 = z1 + V/(�κe).

The homogeneous linear system T v = 0 admits a solution
for any k1 and k2 because det(T ) = 0. Therefore, k1 and
k2 are constrained only by the condition that Cn,m does not

diverge as n,m → ∞ (leading to a real energy spectrum E ′).
In particular, any FH doublonic bound state, with spectrum
either inside (a BIC) or not inside the band of scattered states,
ought to be represented by the solution with Al = 0 for l 
= 1,
Im{k1} > 0, Im{k1 + k2} > 0, for n � m, and Cm,n = ±Cn,m

for symmetry reasons. The conditions on k1,2 guarantee the
correct exponential decay towards zero as n,m → ∞ for a
doublonic state. Being A1 is the only nonzero amplitude in the
Bethe ansatz, the solvability condition T v = 0 simplifies to
T11 = T51 = 0, which, combined with Eq. (24), allows one to
determine the expressions for z1,2 as a function of the U , V ,
and κe parameters:

1

z1
= 1

2

(
�κe

V
− V + U

�κe

)
±

√
1

4

(
�κe

V
− V + U

�κe

)2

+ 1,

1

z2
= − V

�κe

. (26)

From Eq. (26), the complex wave numbers of the FH state are
then retrieved as k1,2 = i ln(1/z1,2). By imposing Im{k1} > 0
and Im{k1 + k2} > 0, it is found that a FH doublonic bound
state always exists for UV < 0, whereas for UV > 0, it is
forbidden only if |U |/�κe < 2(�κe/|V | − |V |/�κe). To be a
BIC state, its energy E ′ ought to be embedded in the interval
(−4�κe,4�κe) of the two-particle scattered eigenstates, and
this results in the following conditions for our case of repulsing
particles (U > 0):

f1(U ) < V/(�κe) < 0 for U < 4�κe,
(27)

f1(U ) < V/(�κe) < f2(U ) for U � 4�κe,

where

f1(U ) = − U

2�κe

−
√(

U

2�κe

)2

+ 1,

(28)

f2(U ) = 8 − 1

2

(
U

�κe

)2

− U

2�κe

√(
U

�κe

)2

− 16.

The inequalities given in Eqs. (27) and (28) define the domain
of existence of the FH BIC state in the high-frequency regime
and close to the CDT, which is shown in Fig. 4. Note
that the FH BIC state is thresholdless with respect to the
induced lattice defect V , provided that the interaction energy
U < 4�κe (which is in line with our hypothesis of weakly
interacting electrons). Indeed, in our simulations, we assumed
U = uε2

�ω = uε�κ = (uε/|�0|)�κe and for the driving pa-
rameters considered in the case of Figs. 2(c)–2(e), i.e., ε = 0.1,
|�0| = 7.18 × 10−2, u = 1, we have U 
 1.39�κe, i.e., in
accord with the thresholdless regime (cf. Fig. 4).

We conclude that in the high-frequency regime and close
to CDT, a FH BIC state always exists in a system of two
weakly interacting electrons hopping on a one-dimensional
semilattice driven by a bichromatic electric field. Note that
this is a completely distinctive feature of the many-body
system as compared to the single-particle system, since it is
well known that a single-particle Tamm state requires for its
existence an effective boundary defect potential V exceeding
in absolute value the effective tunneling rate �κe. Indeed, in the
simulations of Figs. 2(c) and 2(d), the effective static potential
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FIG. 4. (Color online) Domain of existence of the Floquet-
Hubbard BIC state under high-frequency driving limit (shaded area).
The FH BIC is thresholdless for U < 4�κe. Domain of existence of
the single-particle Floquet Tamm (FT) state is also shown (half line
on the vertical axis).

V = − 2.79×10−2
�κ , whereas �κe=|�0|�k 
 7.18×10−2

�κ ,
thus the formation of single-particle Tamm states is forbidden.
Note also that Eqs. (27) and (28) forbid the coexistence of FH
BIC states and single-particle Tamm states of the Floquet type
[Fig. 4(a)].

Finally, it is worth mentioning that (for U > 0) the
quasienergy of the FH BIC state is lower than the interaction
energy U , regardless of the value of V and κe parameters, i.e.,
the FH BIC energy lies below the effective Mott-Hubbard band
[U,(U 2 + 16�

2κ2
e )1/2] of scattered doublonic states [40]. This

means that the FH BIC mode is thermodynamically favored
among the Hubbard states of the driven semilattice.

B. Switching of the Floquet-Hubbard BIC localization
in a finite lattice

In our simulations, we considered a finite lattice, i.e., a
truncated semilattice. It is worth noting that truncation of the
semilattice causes a modification of Eqs. (21), and the correct
equivalent static lattice corresponding to the high-frequency
limit of a truncated driven semilattice with N sites (indexed
from 0 to N − 1) turns out to be the following:

i�
dCn,m

dt
= −�κe[Cn−1,m + Cn+1,m + Cn,m−1 + Cn,m+1]

+V [δn,0 + δm,0 − δn,N−1 − δm,N−1]Cn,m

+Uδn,mCn,m, (29)

with C−1,m = Cn,−1 = CN,m = Cn,N = 0. Indeed, as indi-
cated in previous sections (see note [50]), we implemented
Eqs. (29) and not Eqs. (21) in our simulations. Note that the
truncation of the semilattice induces a defect at the n = N − 1
and m = N − 1 boundaries with opposite sign as compared to
the defect induced at the n = 0 and m = 0 boundaries. Note
also that for noninteracting particles (U = 0), the truncated
semilattice becomes antisymmetric with respect to the antidi-
agonal of Fock space and this explains the origin of the state
with minimum participation ratio observed in Fig. 2(d), having
zero energy and complete delocalization along the antidiagonal
with π phase difference between neighboring sites (cf. Sec. II).
Actually, this state is represented by Cn,m = δn,N−1−m for even
n and Cn,m = −δn,N−1−m for odd n. It is not difficult to verify,

FIG. 5. (Color online) Switching of the FH BIC localization in
a small (N = 7) finite lattice: driving field (top panels), lattice site
energies (middle panels), and Fock-space representation of the FH
BIC (bottom panels) for (a) positive field amplitude (E0 > 0) and
(b) negative field amplitude (E0 < 0). Driving parameters and particle
interaction are the same as in the simulations of Fig. 2(c).

by direct substitution into Eqs. (29) with U = 0, that this is an
eigenstate of the lattice with zero energy.

Interestingly, we found that truncation effects can be
exploited to achieve switching of FH BIC localization from
one boundary to the other one. The concept is illustrated in
Fig. 5 for a small lattice with L = 7 sites. Rather generally,
for a given driving regime, the existence condition of the
FH BIC state can be fulfilled at one lattice boundary (at the
left edge for V > 0, at the right edge for V < 0), but not at
the opposite one. In the simulations of previous sections, we
considered a positive normalized field amplitude �, causing
the negative defective potential to be induced at the n = 0,
m = 0 boundaries [Fig. 5(a)]. The localization is reversed,
i.e., exactly the same FH BIC state is localized at the opposite
boundary n = N − 1, m = N − 1, by simply changing the
sign of the electric-field amplitude E0 (and thus of �), as
shown in Fig. 5(b). This can be easily understood by noting
that a sign change of � implies, according to Eq. (7), complex
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conjugation of Eq. (19), resulting in a change of sign in the
series of Eq. (22), and thus in V . Such a switching feature of
the FH BIC localization is possible even though the driving
field has zero mean value because for bichromatic driving a
sign change of the amplitude E0 does not correspond to a time
shift by half a period (contrary to, e.g., the monochromatic
case) [cf. top panels in Fig. 5].

V. CONCLUSION

In this work, we have numerically and analytically demon-
strated a type of two-particle BIC state in ac-driven semi-
infinite Hubbard lattices. As particle interaction is responsible
for correlated tunneling and the formation of a molecular
bound state (doublon) [36,37], the additional external field
introduces an effective attractive potential that localizes the
molecular state at the lattice edge. Noticeably, the quasienergy
of the particle bound state localized at the lattice surface
can be embedded into the quasienergy spectrum of scattered
states, i.e., it realizes a Floquet BIC state. As compared to

single-particle Floquet BIC states [28], which are fragile states
and whose existence requires fulfillment of certain resonance
conditions, the Hubbard-Floquet BIC states are intrinsically
robust and exhibit other peculiar features: they are the states
with the lowest quasienergy among the molecular states of
the driven Hubbard semilattice, and, in a finite lattice, their
localization can be switched from one boundary to the other
one by simply changing the direction of the bichromatic field.
Finally, it is worth noticing that our results hold for two
interacting bosons on a semilattice as well, since the FH
BIC state is symmetric under particle exchange regardless
of the statistics (fermionic or bosonic). Further investigations
should explore the effect of a phase shift between the two
components of the bichromatic driving, the existence of FH
states outside the continuum, and the possibility to generalize
the technique to higher-dimensional lattices. We believe that
our results could pave the way for the development of BIC
physics in the context of many-body theories, with application
to driven quasi-one-dimensional correlated crystals [51,52]
and quantum simulators of interacting-particles systems based
on cold atoms [53] or photonic lattices [54].
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Nature (London) 441, 853 (2006).
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