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The same bulk two-dimensional topological phase can have multiple distinct, fully chiral edge phases. We show
that this can occur in the integer quantum Hall states at ν = 8 and 12, with experimentally testable consequences.
We show that this can occur in Abelian fractional quantum Hall states as well, with the simplest examples
being at ν = 8

7 , 12
11 , 8

15 , 16
5 . We give a general criterion for the existence of multiple distinct chiral edge phases

for the same bulk phase and discuss experimental consequences. Edge phases correspond to lattices while bulk
phases correspond to genera of lattices. Since there are typically multiple lattices in a genus, the bulk-edge
correspondence is typically one-to-many; there are usually many stable fully chiral edge phases corresponding
to the same bulk. We explain these correspondences using the theory of integral quadratic forms. We show
that fermionic systems can have edge phases with only bosonic low-energy excitations and discuss a fermionic
generalization of the relation between bulk topological spins and the central charge. The latter follows from
our demonstration that every fermionic topological phase can be represented as a bosonic topological phase,
together with some number of filled Landau levels. Our analysis shows that every Abelian topological phase can
be decomposed into a tensor product of theories associated with prime numbers p in which every quasiparticle
has a topological spin that is a pnth root of unity for some n. It also leads to a simple demonstration that all
Abelian topological phases can be represented by U(1)N Chern-Simons theory parameterized by a K matrix.
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I. INTRODUCTION

In the limit of vanishing electron-electron interactions,
the edge excitations of an integer quantum Hall state form
a multichannel chiral Fermi liquid. These excitations are
stable with respect to weak interactions by their chirality [1].
However, the Coulomb energy in observed integer quantum
Hall states is larger than the energy of the lowest gapped
edge excitation. Therefore, interactions are not weak in these
experiments, and we must consider whether interactions with
gapped unprotected nonchiral excitations can alter the nature
of the gapless protected chiral edge excitations of an integer
quantum Hall state even when the bulk is unaffected. 1

In this paper, we show that sufficiently strong interactions
can drive the edge of an integer quantum Hall state with ν � 8
into a different phase in which the edge excitations form a
multichannel chiral Luttinger liquid while the bulk remains
adiabatically connected to an integer quantum Hall state of
noninteracting electrons. This chiral Luttinger liquid is also
stable against all weak perturbations, but it is not adiabatically
connected to the edge of an integer quantum Hall state of
noninteracting electrons even though the bulk of the system
is. For ν � 12, there are several possible such stable chiral
edge phases corresponding to the same bulk phase. The edge
excitations of many fractional quantum Hall states, such as the
principal Jain series with ν = n

2pn+1 form a multichannel chiral
Luttinger liquid, which is stable against weak perturbations
due to its chirality. We show that such edges can also be
subject to reconstruction into a different chiral Luttinger liquid

1In fact, the Coulomb energy is often larger than the bulk cyclotron
energy, too, so it is not a given that the bulk state is in the same
universality class as the noninteracting integer quantum Hall state,
but we will assume that this is true in this paper.

as a result of strong interactions with gapped unprotected
excitations at the edge. The new chiral Luttinger liquid is also
stable against all weak perturbations.

A similar phenomenon was recently analyzed in the context
of bosonic analogs of integer quantum Hall states [2]. Without
symmetry, integer quantum Hall states of bosons that only
support bosonic excitations in the bulk, not anyons, occur only
when the chiral central charge c− = cR − cL, the difference
between the number of right- and left-moving edge modes,
is a multiple of eight (or, equivalently, when the thermal Hall

conductance is κxy = c−
π2k2

BT

3h
with c− = 8k for integers k) [3].

There is a unique [4,5] bulk state for each possible value of
c− = 8k, but there are many possible chiral edge phases when
the chiral central charge is greater than 8: there are two chiral
edge phases for c− = 16, 24 chiral edge phases for c− = 24,
more than one billion for c− = 32, and larger numbers of
such edge phases for c− > 32. The transition between the two
possible chiral edge phases was studied in detail in the c− = 16
case [2,6].

These fermionic and bosonic quantum Hall states illustrate
the fact that the boundary-bulk correspondence in topological
states is not one-to-one. There can be multiple possible edge
phases corresponding to the same bulk phase. This can happen
in a trivial way: two edge phases may differ by unstable gapless
degrees of freedom, so that one of the edge theories is more
stable than the other [7–11]. (One interesting refinement of
this scenario is that the additional gapless degrees of freedom
can be protected by a symmetry so that, in the presence of
this symmetry, both edge phases are stable [12].) However,
our focus here is the situation in which there are multiple
edge phases, each of which is stable to weak perturbations
without any symmetry considerations and none of which is
more “minimal” than the others. In other words, in the integer
and fractional quantum Hall states that we discuss here, which
have the additional property that they are all chiral, all of the
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edge phases are on the same footing. Although they can bound
the same bulk, such edge phases generically have different
exponents and scaling functions for transport through point
contacts and tunneling in from external leads. In some cases,
the differences only show up in three-point and higher edge
correlation functions.

In Secs. VII A and VII B of this paper, we discuss fermionic
integer quantum Hall states at ν = 8 and 12, their possible
stable chiral edge phases, and the experimental signatures that
could distinguish these phases. In Sec. VII C, we discuss the
simplest fractional quantum Hall states with multiple chiral
edge phases, which occur at ν = 8

7 , 8
15 , 16

5 (fermions) and ν =
12
23 (bosons). Some of the edge phases that we construct do not
support gapless excitations with the quantum numbers of an
electron. When the Hall conductance is nonzero, the edge must
have gapless excitations; in a system of electrons, there must
be a finite-energy excitation everywhere in the system with
an electron’s quantum numbers. However, it is not necessary
that the electron be among the gapless edge excitations of an
electronic quantum Hall state; it may be a gapped excitation
at the edge, above the gapless excitations that are responsible
for carrying the Hall current.

Given the above statement that the same bulk phase can have
multiple distinct chiral edge phases, we should ask what breaks
down in the usual relation between bulk topological phases
and their associated edge spectra. By the usual relationship,
we mean the “integration by parts” of a bulk Abelian Chern-
Simons action that gives an edge theory of chiral bosons
with the same K matrix [13,14]. The answer is simply
that the usual relation focuses only upon the lowest-energy
excitations of a system and ignores higher-energy excitations.
These higher-energy excitations are necessarily adiabatically
connected to a topologically trivial band insulator in the bulk
and, generically, gapped excitations at the edge. Surprisingly,
interactions between these “trivial” modes and the degrees
of freedom responsible for the topologically nontrivial state
can drive an edge phase transition that leads to a distinct edge
phase without closing the bulk gap. We refer to the relationship
between these two distinct edge theories associated with the
same bulk as stable equivalence. At the level of the gapless
edge modes, this manifests itself in the form of an edge
reconstruction. While the interpolation at the edge necessarily
involves strong interactions, these can be understood using
standard Luttinger liquid techniques.

The relationship between the edge and the bulk can also be
viewed in the following manner. Each quasiparticle in the bulk
has a topological twist factor θa = e2πiha , with 0 < ha < 1. If
the edge is fully chiral, each such quasiparticle corresponds
to a tower of excitations. The minimum scaling dimension
for creating an excitation in this tower is min �a = ha + na

for some integer na . The other excitations in the tower are
obtained by creating additional bosonic excitations on top
of this minimal one; their scaling dimensions are larger than
the minimal one by integers. But if the edge has a different
phase, the minimal scaling dimension operator in this tower
may be min �a = ha + ña . Therefore, the spectrum of edge
operators can be different, even though the fractional parts
of their scaling dimensions must be the same. (In the case
of a fermionic topological phase, we must compare scaling

dimensions modulo 1
2 , rather than modulo 1. By fermionic

topological phase, we mean one which can only occur in a
system in which some of the microscopic constituents are
fermions. At a more formal level, this translates into the
existence of a fermionic particle which braids trivially with
all other particles.)

The purpose of this paper is to describe the precise condi-
tions under which two different edge phases can terminate the
same bulk state, i.e., are stably equivalent. These conditions are
intuitive: the braiding statistics of the quasiparticle excitations
of the bulk states must be identical and the chiral central
charges of the respective states must be equal.

Let us summarize the general relation between bulk Abelian
topological states and their associated edge phases in slightly
more mathematical terms. Edge phases are described by
lattices � equipped with an integer-valued bilinear symmetric
form B [15–20]. We collectively write these data as E =
(�,B). The signature of B is simply the chiral central charge
c− of the edge theory. Given a basis eI for �, the bilinear form
determines a K matrix KIJ = B(eI ,eJ ). In a bosonic system,
the lattice � must be even while in a fermionic system, the
lattice � is odd. (An odd lattice is one in which at least one basis
vector has (length)2 equal to an odd integer. The corresponding
physical system will have a fermionic particle that braids
trivially with all other particles. This particle can be identified
with an electron. An even lattice has no such vectors and,
therefore, no fermionic particles that braid trivially with all
other particles. Hence, it can occur in a system in which none of
the microscopic constituents are fermions. Of course, a system,
such as the toric code, may have fermionic quasiparticles that
braid nontrivially with at least some other particles.) Given the
lattice �, vertex operators of the edge theory are associated
with elements in the dual lattice �∗. For integer quantum
Hall states, �∗ = �, however, for fractional states � ⊂ �∗.
The operator product expansion of vertex operators is simply
given by addition in �∗.

Each bulk phase is characterized by the following data
concisely written as B = (A,q,c−mod 24) [16,18–22]: a finite
Abelian group A encoding the fusion rules for the distinct
quasiparticle types, a finite quadratic form q on A that gives
the topological spin to each particle type, and the chiral central
charge modulo 24. As we will discuss at length, since the
map E → B associating edge data E to a given bulk B is not
one-to-one, several different edge phases may correspond to
the same bulk phase. We will provide an in-depth mathematical
description of the above formalism in order to precisely
determine when two distinct edge phases correspond to the
same bulk phase. To determine all of the edge phases that can
bound the same bulk, one can perform a brute force search
through all lattices of a given dimension and determinant. (For
low-dimensional cases, the results of such enumeration is in
tables in Ref. [31] and in, for instance, Nebe’s online Catalogue
of Lattices.) Moreover, one can use a mass formula described
in Sec. V to check if a list of edge phases is complete.

We will exemplify the many-to-one nature of the map
E → B through various examples. The most primitive example
occurs for integer quantum Hall states. For such states,
the lattice is self-dual �∗ = � so there are no nontrivial
quasiparticles. For c− < 8, there is a unique edge theory for
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the fermionic integer quantum Hall state, however, at c− = 8,
there are two distinct lattices: the hypercubic latttice I8 and the
E8 root lattice. Therefore, the associated gapless edge theories
corresponding to each lattice may bound the same bulk state;
there exists an edge reconstruction connecting the two edge
phases. Fractional states for which A is nontrivial enrich this
general structure.

A rather remarkable corollary of our analysis is the
following: all rational Abelian topological phases in 2 + 1
dimensions [(2 + 1)D] can be described by Abelian Chern-
Simons theory. By rational we mean that there are a finite
number of bulk quasiparticle types, i.e., the group A has finite
order. As may be seen by giving a physical interpretation to
a theorem of Nikulin [23], the particle types, fusion rules,
and topological twist factors determine a genus of lattices,
from which we can define an Abelian Chern-Simons theory.
A second result that follows from a theorem of Nikulin [23] is
that any fermionic Abelian topological phase can be mapped
to a bosonic topological phase, together with some number of
filled Landau levels.

The remainder of this paper is organized as follows. We
begin in Sec. II by reviewing the formalism used to describe
the bulk and boundary excitations of Abelian Hall states. As a
means to both motivate the general mathematical structure and
because of their intrinsic interest, we provide two examples of
stable equivalence in the fractional quantum Hall setting in
Sec. III and summarize their physically distinct signatures.
In Sec. IV, we abstract from these two examples the general
method for understanding how distinct edge phases of a single
bulk are related via an edge phase transition. In Sec. V, we
explain the bulk-edge correspondence through the concepts
of stable equivalence and genera of lattices. In Sec. VI, we
explain how fermionic topological phases can be represented
by bosonic topological phases together with some number of
filled Landau levels. In Sec. VII, we analyze observed integer
and fractional quantum Hall states that admit multiple stable,
fully chiral edge phases. In Sec. VIII, we explain how a number
of theorems due to Nikulin, that we use throughout the text,
apply to the description of all Abelian topological field theories
in (2 + 1)D. We conclude in Sec. IX. We have three appendices
that collect ideas used within the text.

II. PRELIMINARIES

A. Edge theories

In this section, we review the formalism that describes the
edges of conventional integer and Abelian fractional quantum
Hall states. We begin with the edges of fermionic integer
quantum Hall states. We assume that the bulks of these states
are the conventional states that are adiabatically connected to
the corresponding states of noninteracting fermions. As we
will see in later sections, the edge structure is not uniquely
determined, even if we focus solely on chiral edge phases that
are stable against all weak perturbations.

All integer quantum Hall states have one edge phase that
is adiabatically connected to the edge of the corresponding
noninteracting fermionic integer quantum Hall state. This edge
phase has effective action S0 + S1, where

S0 =
∫

dx dt ψ
†
J [i∂t + At + vJ (i∂x + Ax)] ψJ (1)

and J = 1,2, . . . ,N . We shall later study two interesting
examples that occur when N = 8 or 12. The operator ψ

†
J

creates an electron at the edge in the J th Landau level; vJ

is the edge velocity of an electron in the J th Landau level.
Interedge interactions take the form

S1 =
∫

dx dt
(
tJK (x) ei(kJ

F −kK
F )x ψ

†
J ψK + H.c.

+ vJKψ
†
J ψJ ψ

†
KψK + · · · ). (2)

The . . . in Eq. (2) represent higher-order tunneling and
interaction terms that are irrelevant by power counting. We
neglect these terms and focus on the first two terms. Electrons
in different Landau levels will generically have different Fermi
momenta. When this is the case, the tunneling term [the
first term in Eq. (2)] will average to zero in a translationally
invariant system. In the presence of disorder, however, tIJ (x)
will be random and relevant [e.g., in a replicated action which
is averaged over tIJ (x)]. Moreover, it is possible for the Fermi
momenta to be equal; for instance, in an N -layer system in
which each layer has a single filled Landau level, the Fermi
momenta will be the same if the electron density is the same in
each layer. Fortunately, we can make the change of variables:

ψJ (x) →
[
P exp

(
i

∫ x

−∞
dx ′M(x ′)

)]
JK

ψK (x),

where M(x) is the matrix with entries MJK =
tJK (x ′) ei(kJ

F −kK
F )x ′

/v, v = ∑
J vJ /N , and P denotes

anti-path-ordering. When this is substituted into Eq. (1), the
first term in Eq. (2) is eliminated from the action S0 + S1.
This is essentially a U(N) gauge transformation that gauges
away intermode scattering. An extra random kinetic term
proportional to (vJ − v)δIJ is generated, but this is irrelevant
in the infrared when disorder averaged.

The second term in Eq. (2) is an interedge density-density
interaction; vJK is the interaction between edge electrons in the
J th and Kth Landau levels. This interaction term can be solved
by bosonization. The action S0 + S1 from Eqs. (1) and (2) can
be equivalently represented by the bosonic action

S =
∫

dx dt

(
1

4π
δIJ ∂tφ

I ∂xφ
J − 1

4π
VIJ ∂xφ

I ∂xφ
J

+ 1

2π

∑
I

εμν∂μφIAν

)
, (3)

where VII ≡ vI + vII (no summation) and VIJ ≡ vIJ for I �=
J . The electron annihilation operator is bosonized according
to ψJ ∼ ηJ eiφJ

. Here ηJ is a “Klein factor” satisfying ηJ ηK =
−ηKηJ for J �= K , which ensures that ψJ ψK = −ψKψJ .
Products of even numbers of Klein factors can be diagonalized
and set to one of their eigenvalues, ±1, if all terms in the
Hamiltonian commute with them. They can then be safely
ignored. This is the case in all of the models studied in this
paper. This action can be brought into the following diagonal
form (setting the external electromagnetic field to zero for
simplicity):

S =
∫

dx dt

(
1

4π
δIJ ∂t φ̃

I ∂xφ̃
J − 1

4π
vI δIJ ∂xφ̃

I ∂xφ̃
J

)
(4)
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with an orthogonal transformation φI = OI
J φ̃J that diag-

onalizes VIJ according to OI
LVIJ OJ

K = ṽLδLK . Two-point
correlation functions take the form

〈
eimI φ

I

e−imKφK 〉 =
N∏

J=1

1

(x − ṽJ t)mI mKOI
J OK

J

. (5)

There is no sum over J in the exponent on the right-hand side
of Eq. (5). The electron Green function in the I th Landau level
is a special case of this with mK = δIK .

It is now straightforward to generalize the preceding
discussion to the case of an arbitrary Abelian integer or
fractional quantum Hall state [14]. For simplicity, we will
focus on the case of fully chiral phases in which all edge
modes move in the same direction. Such phases do not, in
general, have a free fermion representation and can only be
described by a chiral Luttinger liquid. They are characterized
by equivalence classes of positive-definite symmetric integer
K matrices K , and integer charge vectors t that enter the chiral
Luttinger liquid action according to

SLL =
∫

dx dt

(
1

4π
KIJ ∂tφ

I ∂xφ
J − 1

4π
VIJ ∂xφ

I ∂xφ
J

+ 1

2π
tI εμν∂μφIAν

)
. (6)

The fields in this action satisfy the periodicity condition
φI ≡ φI + 2πnI for nI ∈ Z. Two phases, characterized by the
pairs (K1,t1) and (K2,t2), are equivalent if K1 = WT K2W and
t1 = t2W , where W ∈ GL(N,Z) since the first and third terms
in the two theories can be transformed into each other by the
change of variables φI = WI

J φ̃J . So long as W ∈ GL(N,Z),
the periodicity condition satisfied by φ̃J is precisely the same
as the periodicity condition satisfied by φI . The matrix VIJ

consists of marginal deformations that do not change the
phase of the edge but affect the propagation velocities. [If
we wish, we can think of each phase as a fixed surface under
renormalization group (RG) flow, and the VIJ s are marginal
deformations that parametrize the fixed surface.] All such
chiral edge theories are stable to all weak perturbations by
the same reasoning by which we analyzed integer quantum
Hall edges. The simplest fermionic fractional quantum Hall
edge theory is that of the Laughlin ν = 1

3 state, for which
K = (3) and t = (1) (a 1 × 1 matrix and a 1-component vector,
respectively). Integer quantum Hall edges are the special case,
KIJ = δIJ or, allowing for basis changes, K = WT W with
W ∈ GL(N,Z).

It is useful to characterize these phases by lattices �

rather than equivalence classes of K matrices. Let ea
I be the

eigenvector of K corresponding to eigenvalue λa: KIJ ea
J =

λaea
I . We normalize ea

J so that ea
J eb

J = δab and define a metric
gab = λaδab. Then, KIJ = gabe

a
I e

b
J or, using vector notation,

KIJ = eI · eJ . We will be focusing mostly on positive-definite
lattices, so that gab has signature (N,0) but we will occa-
sionally deal with Lorentzian lattices, for which we take gab

has signature (p,N − p). The metric gab defines a bilinear
form B on the lattice � (and its dual �∗): this just means
we can multiply two lattice vectors eI ,eJ together using the
metric eI · eJ = ea

I gabe
b
J = B(eI ,eJ ). The N vectors eI define

a lattice � = {mI eI |mI ∈ Z}. The GL(N,Z) transformations

K → WT KW are simply basis changes of this lattice, so we
can equally well describe edge phases by equivalence classes
of Kmatrices or by lattices �. The conventional edge phases
of integer quantum Hall states described above correspond to
hypercubic lattices ZN , which we will often denote by the
corresponding K matrix in its canonical basis IN . The ν = 1

3
Laughlin state corresponds to the lattice � = Z with dual
�∗ = 1

3Z. 2 The connection of quantum Hall edge phases to
lattices can be exploited more easily if we make the following
change of variables Xa = ea

I φ
I , in terms of which the action

takes the form

S = 1

4π

∫
dx dt(gab∂tX

a∂xX
b − vab∂xX

a∂xX
b). (7)

The variables Xa satisfy the periodicity condition X ≡ X +
2πy for y ∈ � and vab ≡ VIJ f I

a f J
b , where f I

a are basis vectors
for the dual lattice �∗, satisfying f I

a ea
J = eLa(K−1)LI ea

J = δI
J .

Different edge phases (which may correspond to different
bulks or the same bulk; the latter is the focus of this paper) are
distinguished by their correlation functions. The periodicity
conditions on the fields Xa dictate that the allowed exponential
operators are of the form eiv·X, where v ∈ �∗. These operators
have scaling dimensions

dim[eiv·X] = 1
2 |v|2. (8)

They obey the operator algebra

: eiv1·X :: eiv2·X :∼: ei(v1+v2)·X : , (9)

where : . . . : denotes normal ordering. Thus, the operator
spectrum and algebra are entirely determined by the underlying
dual lattice �∗.

In a quantum Hall state, there are two complementary
ways of measuring some of the scaling exponents. The first
is a quantum point contact (QPC) at which two edges of a
quantum Hall fluid are brought together at a point so that
quasiparticles can tunnel across the bulk from one edge to the
other. Even though a single edge is completely stable against
all weak perturbations, a pair of oppositely directed edges will,
in general, be coupled by relevant perturbations

S = ST + SB +
∫

dt
∑
v∈�∗

vv eiv·[XT −XB ]. (10)

Here, T ,B are the two edges, e.g., the top and bottom edges of
a Hall bar; we will use this notation throughout whenever it is
necessary to distinguish the two edges. The RG equation for
vv is

dvv

d�
= (1 − |v|2)vv. (11)

If v · fI tI �= 0, the above coupling transfers v · fI tI units of
charge across the junction and this perturbation will contribute
to the backscattered current according to

I b ∝ |vv|2 V 2|v|2−1. (12)

2This statement assumes the periodicity convention φ ≡ φ + 2πn

for n ∈ Z.
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A second probe is the tunneling current from a metallic lead:

S = Sedge + Slead +
∫

dt
∑
v∈�

tv[ψ†
lead∂ψ

†
lead∂

2ψ
†
lead . . .]eiv·X.

The term in square brackets [. . . ] contains n factors of ψ
†
lead and

n(n − 1)/2 derivatives, where n = v · fI tI must be an integer.
The RG equation for tv

dtv

d�
=

(
1 − n2

2
− 1

2
|v|2

)
tv. (13)

The contribution to the tunneling current from tv (assuming
n �= 0) is

I tun ∝ |tv|2 V |v|2+n2−1. (14)

Here, we have assumed that the spins at the edge of the
quantum Hall state are fully spin polarized and that tunneling
from the lead conserves Sz. If, however, either of these
conditions is violated, then other terms are possible in the
action. For instance, charge-2e tunneling can take the form

tpair

∫
dt ψ

†
lead,↑ψ

†
lead,↓ eiv·X, (15)

where v · fI tI = 2. Then, we have tunneling current

I tun ∝ |tv|2 V |v|2+1. (16)

Generically, two lattices �1 and �2 can be distinguished
by the possible squared lengths |v|2 for v ∈ �∗

1. In many
cases of interest, the shortest length, which will dominate the
backscattered current discussed above, is enough to distinguish
two edge phases of the same bulk. However, sometimes, as in
the case of the two bosonic integer quantum Hall states with
c = 16 discussed in Ref. [2], the spectrum of operator scaling
dimensions (not just the shortest length, but all lengths along
with degeneracies at each length level) is precisely the same
in the two theories, so they could only be distinguished by
comparing three-point correlation functions. In either case,
different edge phases can be distinguished by their correlation
functions.

B. Bulk theories

In a later section, we will explain how bulk phases
correspond to the mathematical notion of a genus of lattices,
while their associated edge theories are given by lattices within
a genus (or in the case of fermionic theories, a pair of genera,
one odd and one even). In order to explain the relation between
the genus of a lattice and a bulk Abelian phase, we recall some
facts about Abelian topological phases.

Suppose that we have a (2 + 1)D Abelian topological phase
associated to a lattice �. Choosing a basis eI for the lattice �,
we define KIJ = eI · eJ and write a bulk effective action

S =
∫

d3x

(
1

4π
εμνρKIJ aI

μ∂νa
J
ρ + 1

2π
j

μ

I aI
μ

)
. (17)

A particle in this theory carrying charge mI under the gauge
field aI can be associated with a vector v ≡ mI fI , where fI is
the basis vector of �∗ dual to eI and satisfying (K−1)IJ eJ =
fI . Recall that because � ⊂ �∗, any element in � can be
expressed in terms of the basis for �∗, however, the converse

is only true for integer Hall states for which � = �∗. Particles
v, v′ ∈ �∗ satisfy the fusion rule v × v′ = v + v′ and their
braiding results in the multiplication of the wave function
describing the state by an overall phase e2πiv·v′

. Since this
phase is invariant under shifts v → v + λ for λ ∈ �, the
topologically distinct particles are associated with elements of
the so-called discriminant group A = �∗/�. The many-to-one
nature of the edge-bulk correspondence is a reflection of the
many-to-one correspondence between lattices � and their
discriminant groups A. Equivalent bulk phases necessarily
have identical discriminant groups so our initial choice of
lattice is merely a representative in an equivalence class of
bulk theories.

We now define a few terms. A bilinear symmetric form on
a finite Abelian group A is a function b : A × A → Q/Z such
that for every a,a′,a′′ ∈ A,

b(a + a′,a′′) = b(a,a′′) + b(a′,a′′)

and b(a,a′) = b(a′,a). As all bilinear forms considered in this
paper will be symmetric, we will simply call them bilinear
forms with symmetric being understood. A quadratic form q

on a finite Abelian group A is a function q : A → Q/Z such
that q(na) = n2q(a) for every n ∈ Z, and such that

q(a + a′) − q(a) − q(a′) = b(a,a′)

for some bilinear form b : A × A → Q/Z. In this case, we
say that q refines b, or is a quadratic refinement of b. A
bilinear b or quadratic form q is degenerate if there exists
a nontrivial subgroup S ⊂ A such that b(s,s ′) = 0 or q(s) = 0
for every s,s ′ ∈ S. Throughout this paper, all bilinear and
quadratic forms will be assumed nondegenerate. Each K

matrix K determines a symmetric bilinear form B on Rn

via B(x,y) = xT Ky that takes integer values on the lattice
Zn ⊂ Rn. Every other lattice � ⊂ Rn on which B is integral
can be obtained by acting on Zn by the orthogonal group
{g ∈ GL(N,R) : gKgT = K} of K . On the other hand, an
integral symmetric bilinear form is equivalent to a lattice
according to the construction before Eq. (7) in Sec. II A. We
are therefore justified in using the terminology “lattice” and
“K matrix” in place of “integral symmetric bilinear form”
throughout this paper. Every diagonal entry of a K matrix
K is even if the (length)2 of every element in the lattice ZN

is even. We call K even if this is the case, and otherwise
it is odd. Even K matrices determine integral quadratic forms
on ZN via Q(x) = 1

2 xT Kx, while for odd K matrices they
are half-integral. When we simply write bilinear or quadratic
form or, sometimes, finite bilinear form or finite quadratic
form, we will mean a nondegenerate symmetric bilinear form,
or nondegenerate quadratic form, whose domain is a finite
Abelian group. Throughout, we abbreviate the ring Z/NZ of
integers modulo N as Z/N .

The S matrix of the theory can be given in terms of the
elements of the discriminant group:

S[v],[v′] = 1√|A|e
−2πiv·v′ = 1√|A|e

−2πimI (K−1)IJ m′
J , (18)

where v = mI fI ,v′ = m′
J fJ ∈ �∗, and |A| is the dimension of

the discriminant group. The bracketed notation [v] indicates an
equivalence class of elements [v] ∈ �∗/� = A. Our normal-
ization convention is to represent elements in the dual lattice
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�∗ with integer vectors mI . The bilinear form B on �∗ reduces
modulo � to define a finite bilinear form on the discriminant
group �∗/� via

b([mI fI ],[m′
J fJ ]) = B(mI fI ,m′

J fJ ) = mI (K−1)IJ m′
J .

The topological twists θ[v], which are the eigenvalues of the T

matrix, are defined by

T[v],[v′] = e− 2πi
24 c− θ[v] δ[v],[v′], (19)

where

θ[v] = eπiv·v. (20)

Note that Eq. (19) implies that the theory is invariant
under shifts of c− by 24 so long as the topological twists
θ[v] are invariant, but its modular transformation properties,
which determine the partition function on 3-manifolds via
surgery [24], is sensitive to shifts by c− �= 0 (mod 24).

If the topological twists are well defined on the set of
quasiparticles A, then they must be invariant under v �→ v + λ,
where λ ∈ �, under which

θ[v] �→ θ[v+λ] = θ[v] e
πiλ·λ. (21)

If the K matrix is even, so that we are dealing with a bosonic
theory, λ · λ is even for all λ ∈ �. If the K matrix is odd,
however (i.e., if the system is fermionic), then there are some
λ ∈ � for which λ · λ is odd. In this case, the topological twists
are not quite well defined, and more care must be taken, as we
describe in Sec. VI. Given the above definition, only T 2 is well
defined.

In a bosonic Abelian topological phase, we can define a
finite quadratic form q on the discriminant group, usually
called the discriminant form, according to

q([v]) = 1
2 v2 = 1

2mI (K−1)IJ mJ mod Z, (22)

where v = mI fI . In a topological phase of fermions, we will
have to define q with more care, as we discuss in Sec. VI. Thus,
we postpone its definition until then and will only discuss
Abelian bosonic topological phases in the remainder of this
section. In terms of the discriminant form q, the T matrix
takes the form

θa = e2πiq(a), (23)

and the S matrix takes the form

Sa,a′ = 1√|A|e
2πi[q(a−a′)−q(a)−q(−a′)] (24)

= 1√|A|e
−2πi[q(a+a′)−q(a)−q(a′)]. (25)

The equation for the S matrix makes use of the fact that the
finite bilinear form b can be recovered from the finite quadratic
form according to b(a,a′) = q(a + a′) − q(a) − q(a′). (It is
satisfying to observe that the relation between the bilinear
form b and the discriminant form q coincides exactly with
the phase obtained by a wave function when two particles
are twisted about one another.) While the introduction of the
discriminant form may appear perverse in the bosonic context,
we will find it to be an essential ingredient when discussing
fermionic topological phases.

In any bosonic topological phase, the chiral central charge
is related to the bulk topological twists by the following
relation [25]:

1

D
∑

a

d2
a θa = e2πic−/8. (26)

Here D = √∑
a d2

a is the total quantum dimension, da is the
quantum dimension of the quasiparticle type a, and θa is the
corresponding topological twist/spin. c− = c − c is the chiral
central charge. In an Abelian bosonic phase described by an
even matrix K , the formula simplifies to

1√|A|
∑
a∈A

e2πiq(a) = e2πic−/8 (27)

since da = 1 for all quasiparticle types. Here |A| = √| det K|
and c− = r+ − r− is the signature of the matrix, the difference
between the number of positive and negative eigenvalues. [We
will sometimes, as we have done here, use the term signature
to refer to the difference r+ − r−, rather than the pair (r+,r−);
the meaning will be clear from context.] Notice that e2πiq(a)

is just the topological twist of the quasiparticle represented by
a ∈ �∗/�. This is known as the Gauss-Milgram sum in the
theory of integral lattices.

Let us pause momentarily to illustrate these definitions in a
simple example, namely, the semion theory described by the
K matrix K = (2). This theory has discriminant group A =
Z/2Z = Z2 and, therefore, two particle types, the vacuum
denoted by the lattice vector [0] and the semion s = [1]. Recall
that our normalization convention is to take the bilinear form on
A to be b([x],[y]) = x · 1

2 · y; the associated quadratic form is
then q([x]) = 1

2b([x],[x]). The discriminant form, evaluated on

the semion particle, is given by q([1]) = 1
2 · 12

2 . The T matrix

equals exp(−2πi/24)diag(1,i), and the S matrix S = 1√
2
(1 1
1 −1).

Evaluating the Gauss-Milgram sum confirms that c− = 1.
In order to determine the discriminant group from a given K

matrix, we can use the following procedure. First, we compute
the Gauss-Smith normal form of the K matrix, which can be
found using a standard algorithm [26]. Given K , this algorithm
produces integer matrices P , Q, D such that

K = PDQ. (28)

Here both P and Q are unimodular |det P | = |det Q| = 1, and
D is diagonal. The diagonal entries of D give the orders of a
minimal cyclic decomposition of the discriminant group

A �
∏
J

Z/DJJ ,

with the fewest possible cyclic factors, giving yet another set
of generators for the quasiparticles. Although more compact,
this form does not directly lend itself towards checking the
equivalence of discriminant forms.

Now recall that the bases of � and �∗ are related by K:

eI = KIJ fJ . (29)

Substituting the Gauss-Smith normal form, this can be rewrit-
ten as

(P −1)ILeL = DIKQKJ fJ . (30)
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The left-hand side is just a basis change of the original lattice.
On the right-hand side, the row vectors of Q that correspond
to entries of D greater than 1 give the generators of the cyclic
subgroups of the discriminant group. A nontrivial example is
given in Appendix A.

III. TWO ILLUSTRATIVE EXAMPLES OF BULK
TOPOLOGICAL PHASES WITH TWO

DISTINCT EDGE PHASES

The chiral Luttinger liquid action is stable against all small
perturbations involving only the gapless fields in the action
in Eq. (6) [or, equivalently in the integer case, the action
in Eq. (1)]. This essentially follows from the chirality of
the theory, but it is instructive to see how this plays out
explicitly [1]. However, this does not mean that a given bulk
will have only a single edge phase [27]. A quantum Hall
system will have additional gapped excitations which we can
ignore only if the interactions between them and the gapless
excitations in Eq. (6) are weak. If they are not weak, however,
we can not ignore them and interactions with these degrees of
freedom can lead to an edge phase transition [2].

We will generally describe the gapped excitations with
a K matrix equal to σz = (1 0

0 −1). We may imagine this K

matrix arising from a thin strip of ν = 1 fluid living around
the perimeter of our starting Hall state [27]. For edge phase
transitions between bosonic edges theories, we should instead
take the gapped modes to be described by a K matrix equal to
σx = (0 1

1 0). It is important to realize that the existence of the
localized (gapped) edge modes described by either of these K

matrices implies the appropriate modification to the Chern-
Simons theory describing the bulk topological order. This
addition does not affect the bulk topological order [28]; without
symmetry, such a gapped state is adiabatically connected to a
trivial band insulator.

We will illustrate this with two concrete examples. We begin
with the general edge action

S =
∫

dx dt

(
1

4π
KIJ ∂tφ

I ∂xφ
J

− 1

4π
VIJ ∂xφ

I ∂xφ
J + 1

2π
tI εμν∂μφIAν

)
. (31)

The first example is described by the K matrix

K1 =
(

1 0
0 11

)
, (32)

with t = (1,−1)T . This is not an example that is particularly
relevant to quantum Hall states observed in experiments (we
will discuss several examples of those in Sec. VII) but it is
simple and serves as a paradigm for the more general structure
that we discuss in Secs. V and VI.

Let us suppose that we have an additional left-moving
and additional right-moving fermion which, together, form a
gapped unprotected excitation. The action now takes the form

S =
∫

dx dt

(
1

4π
(K1 ⊕ σz)IJ ∂tφ

I ∂xφ
J

− 1

4π
VIJ ∂xφ

I ∂xφ
J + 1

2π
tI εμν∂μφIAν

)
, (33)

where we have now extended t = (1,−1,1,1)T . The K matrix
for the two additional modes is taken to be σz. We will comment
on the relation to the σx case in Secs. IV and V.

If the matrix VIJ is such that the perturbation

S ′ =
∫

dx dt u′ cos(φ3 + φ4) (34)

is relevant, and if this is the only perturbation added to
Eq. (33), then the two additional modes become gapped and
the system is in the phase (32). Suppose, instead, that the only
perturbation is

S ′′ =
∫

dx dt u′′ cos(φ1 − 11φ2 + 2φ3 + 4φ4). (35)

This perturbation is charge conserving and spin zero (i.e., its
left and right scaling dimensions are equal). If it is relevant,
then the edge is in a different phase. To find this phase, it is
helpful to make the basis change:

WT (K1 ⊕ σz)W = K2 ⊕ σz, (36)

where

K2 =
(

3 1
1 4

)
(37)

and

W =

⎛
⎜⎝

0 0 1 0
0 −2 0 1

−2 3 0 −2
1 −7 0 4

⎞
⎟⎠ . (38)

Making the basis change φ = Wφ′, we see that

φ1 − 11φ2 + 2φ3 + 4φ4 = φ′
3 + φ′

4. (39)

Therefore, the resulting phase is described by (37).
To see that these are, indeed, different phases, we can

compute basis-independent quantities, such as the lowest
scaling dimension of any operator in the two theories. In the K1

theory, it is 1
22 while in the K2 theory, it is 3

22 . Measurements
that probe the edge structure in detail can, thereby, distinguish
these two phases of the edge. Consider, first, transport through
a QPC that allows tunneling between the two edges of the Hall
bar, as described in Sec. II A. In the state governed by K1, the
most relevant backscattering term is cos(φT

2 − φB
2 ). Applying

Eq. (12), the backscattered current will depend on the voltage
according to

I b
1 ∝ V −9/11. (40)

An alternative probe is given by tunneling into the edge from
a metallic lead. The most relevant term in the K1 edge phase
that tunnels one electron into the lead is ψ

†
leade

iφT
1 . Applying

Eq. (14) yields the familiar current-voltage relation

I tun
1 ∝ V. (41)

In contrast, in the phase governed by K2, the most relevant
backscattering term across a QPC is given by cos(φ′T

2 − φ′B
2 ),

which from Eq. (12) yields the current-voltage relation

I b
2 ∝ V −5/11, (42)
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while the most relevant single-electron tunneling term is given
by ψ

†
leade

−3iφ′T
1 −iφ′T

2 , which yields the scaling from Eq. (14)

I tun
2 ∝ V 3. (43)

Since the two edge theories given by K1 and K2 are
connected by a phase transition just on the edge, we may expect
they bound the same bulk Chern-Simons theory. Indeed, the
bulk quasiparticles can be identified up to ambiguous signs
due to their fermionic nature. First, the discriminant group
of the K1 theory is Z/11. We define a quasiparticle basis
for this theory as ψj ≡ (−j, − 6j )T , j = 0,1, . . . ,10. [While
the cyclic nature of the group Z/11 implies the identification
(a,b) ≡ (a′,b′) mod (1,11) for a,b,a′,b′ ∈ Z, we choose the
above basis in order to ensure charge conservation.] The S

matrix is given by Sjj ′ = 1√
11

e− 72πi
11 jj ′

. For the other theory
given by K2, the discriminant group obviously has the same
structure with the generator being (0,1)T and the quasiparticles
are denoted by ψ ′

j . The S matrix is given by S ′
jj ′ = 1√

11
e− 6πi

11 jj ′
.

Now, we make the following identification:

ψ ′
j ←→ ψj . (44)

This identification preserves the U(1) charge carried by each
quasiparticle. The S matrices are also identified:

Sj,j ′ = 1√
11

e− 72πi
11 jj ′ = 1√

11
e− 6πi

11 jj ′ = S ′
jj ′ . (45)

Since the diagonal elements of S are basically T 2, it follows
that the topological spins are also identified up to ±1.

Our second example is

K ′
1 =

(
1 0
0 7

)
, (46)

with t = (1,1)T . As before, we suppose that a nonchiral pair of
modes comes down in energy and interacts strongly with the
two right-moving modes described by (46). The action now
takes the form

S =
∫

dx dt

(
1

4π
(K ′

1 ⊕ σz)IJ ∂tφ
I ∂xφ

J

− 1

4π
VIJ ∂xφ

I ∂xφ
J + 1

2π
tI εμν∂μφIAν

)
. (47)

If the matrix VIJ is such that the perturbation

S ′ =
∫

dx dt u′ cos(φ3 + φ4) (48)

is relevant and this is the only perturbation added to Eq. (47),
then the two additional modes become gapped and the system
is in the phase in Eq. (46). Suppose, instead, the only
perturbation is the following:

S ′′ =
∫

dx dt u′′ cos(φ1 + 7φ2 + φ3 + 3φ4). (49)

This perturbation is charge conserving and spin zero. If it is
relevant, then the edge is in a different phase. To find this
phase, it is helpful to make the basis change

W ′T (K ′
1 ⊕ σz)W

′ = K ′
2 ⊕ σz, (50)

where

K ′
2 =

(
2 1
1 4

)
(51)

and

W ′ =

⎛
⎜⎝

2 1 0 −1
1 −1 0 −1
0 0 −1 0

−3 2 0 3

⎞
⎟⎠. (52)

Making the basis change φ = W ′φ′, we see that

φ1 + 7φ2 + φ3 + 3φ4 = φ′
4 − φ′

3. (53)

Therefore, the resulting phase is described by (51). This is
a different phase, as may be seen by noting that the lattice
corresponding to Eq. (51) is an even lattice while the lattice
corresponding to Eq. (46) is odd.

The difference between the two edge phases is even more
dramatic than in the previous example. One edge phase has
gapless fermionic excitations while the other one does not!
This example shows that an edge reconstruction can relate a
theory with fermionic topological order to one with bosonic
topological order. Again, these two edge phases of the ν = 8

7
can be distinguished by the voltage dependence of the current
backscattered at a quantum point contact and the tunneling
current from a metallic lead. In the K ′

1 edge phase (46), the
backscattered current at a QPC is dominated by the tunneling
term cos(φT

2 − φB
2 ); using Eq. (12) this yields the current-

voltage relation

I b
1 ∝ V −5/7, (54)

while the single-electron tunneling into a metallic lead is
dominated by the tunneling term ψ

†
leade

iφT
1 , which, using

Eq. (14), yields the familiar linear current-voltage scaling

I tun
1 ∝ V. (55)

In the K ′
2 edge phase (51), the backscattered current at a QPC is

dominated by the backscattering term cos(φ′T
2 − φ′B

2 ), yielding

I b
2 ∝ V −3/7. (56)

The tunneling current from a metallic lead is due to the
tunneling of charge-2e objects created by the edge operator
eiφ′

1+4iφ′
2 . If we assume that the electrons are fully spin

polarized and Sz is conserved, then the most relevant term
that tunnels 2e into the metallic lead is ψ

†
lead∂ψ

†
leade

iφ′T
1 +4iφ′T

2 .
Using Eq. (14) the tunneling current is proportional to a very
high power of the voltage:

I tun
2 ∝ V 7. (57)

Again, although the theories look drastically different, we
can show that the bulk S matrices are isomorphic. First, the
discriminant group of the K ′

1 theory isZ/7 whose generator we
can take to be the (0,4) quasiparticle. We label all quasiparticles
in this theory as ψj ≡ (0,4j ), j = 0,1, . . . ,6. The S matrix
is given by Sjj ′ = 1√

7
e− 32πi

7 jj ′
. For the other theory given by

K ′
2, the discriminant group is generated by (0,1)T and we

denote the quasiparticles by ψ ′
j . The S matrix is given by
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S ′
jj ′ = 1√

7
e− 4πi

7 jj ′
. Now we make the following identification:

ψ ′
j ←→ ψj . (58)

The S matrices are then seen to be identical:

Sj,j ′ = 1√
7
e− 32πi

7 jj ′ = 1√
7
e− 4πi

7 jj ′ = S ′
jj ′ . (59)

IV. EDGE PHASE TRANSITIONS

In the previous section, we gave two simple examples of
edge phase transitions that can occur between two distinct
chiral theories. In this section, we discuss how edge transitions
can occur in full generality.

The chiral Luttinger liquid action is stable against all
perturbations involving only the gapless fields in the action
in Eq. (6) [or, equivalently in the integer case, the action in
Eq. (1)]. However, as we have seen in the previous section,
strong interactions with gapped excitations can drive a phase
transition that occurs purely at the edge. While the bulk is
completely unaffected, the edge undergoes a transition into
another phase.

On the way to understanding this in more generality, we
first consider an integer quantum Hall state. At the edge
of such a state, we expect additional gapped excitations
that we ordinarily ignore. However, they can interact with
gapless excitations. (Under some circumstances, they can
even become gapless [27].) Let us suppose that we have an
additional left-moving and an additional right-moving fermion
which, together, form a gapped unprotected excitation. Then
additional terms must be considered in the action. Let us first
consider the case of an integer quantum Hall edge. The action
in Eqs. (1) and (2) becomes S0 + S1 + Su with

Su =
∫

dx dt(ψ†
N+1(i∂t + vN+1i∂x)ψN+1

+ ψ
†
N+2(i∂t − vN+2i∂x)ψN+2 + uψ

†
N+1ψN+2 + H.c.

+ vI,N+1ψ
†
I ψIψ

†
N+1ψN+1 + vI,N+2ψ

†
I ψIψ

†
N+2ψN+2

+ LN,L), (60)

where ψN+1, ψN+2 annihilate right- and left-moving excita-
tions which have an energy gap u for vI,N+1 = vI,N+2 = 0. So
long as vI,N+1 and vI,N+2 are small, this energy gap survives,
and we can integrate out ψN+1, ψN+2, thereby recovering the
action S0 + S1 in Eqs. (1) and (2), but with the couplings
renormalized. However, if vI,N+1 and vI,N+2 are sufficiently
large, then some of the other terms in the action, which we
have denoted by LN,L in Eq. (60), may become more relevant
than u. These include terms such as

LN,L = uIψ
†
I ψN+2 + H.c. + . . . . (61)

In order to understand these terms better, it is helpful
to switch to the bosonic representation, where there is no
additional overhead involved in considering the general case

of a chiral Abelian state, integer, or fractional:

S =
∫

dx dt

(
1

4π
(K ⊕ σz)IJ ∂tφ

I ∂xφ
J − 1

4π
VIJ ∂xφ

I ∂xφ
J

+
∑
mI

umI
cos(mIφ

I ) + 1

2π

∑
I

εμν∂μφIAν

)
. (62)

Here, I = 1,2, . . . ,N + 2; and (K ⊕ σz)IJ is the direct sum
of K and σz: (K ⊕ σz)IJ = KIJ for I = J = 1,2, . . . ,N ,
(K ⊕ σz)IJ = 1 for I = J = N + 1, (K ⊕ σz)IJ = −1 for
I = J = N + 2, and (K ⊕ σz)IJ = 0 if I ∈ {1,2, . . . ,N},
J ∈ {N + 1,N + 2} or vice versa. The interaction ma-
trix has VI,N+1 ≡ vI,N+1, VI,N+2 ≡ vI,N+2. The mI ’s must
be integers because the φI ’s are periodic. For instance,
mI = (0,0, . . . ,0,1,−1) corresponds to the mass term
u(ψ†

N+1ψN+2 + H.c.) in Eq. (60), so umI
= u. In the last term,

we are coupling all modes equally to the electromagnetic field,
i.e., this term can be written in the form tI εμν∂μφIAν with
tI = 1 for all I . This is the natural choice since we expect
additional fermionic excitations to carry electrical charge e.

In general, most of the couplings umI
will be irrelevant at

the Gaussian fixed point. An irrelevant coupling can not open
a gap if it is small enough to remain in the basin of attraction
of the Gaussian fixed point. However, if we make the coupling
large enough, it may be in the basin of attraction of another
fixed point and it may open a gap. We will not comment
more on this possibility here. However, we can imagine tuning
the VIJ ’s so that any given umI

is relevant. To analyze this
possibility, it is helpful to change to the variables Xa = ea

I φ
I ,

in terms of which the action takes the form

S =
∫

dx dt

(
1

4π
ηab∂tX

a∂xX
b − 1

4π
vab∂xX

a∂xX
b

+
∑
mI

umI
cos

(
mIf

I
a Xa

) + 1

2π

∑
I

f J
a εμν∂μXaAν

)
.

(63)

ea
I and f I

a are bases for the lattice �N+2 and its dual �∗
N+2,

where the lattice �N+2 corresponds to K ⊕ σz. The variables
Xa satisfy the periodicity condition X ≡ X + 2πy for y ∈
�N+2. Note that, since one of the modes is left moving, the
Lorentzian metric ηab = diag(1N−1,−1) appears in Eq. (63).

Since f I
a is a basis of the dual lattice �∗

N+2, the cosine term
can also be written in the form∑

v∈�∗
N+2

uv cos (v · X) .

The velocity/interaction matrix is given by vab = VIJ f I
a f J

b .
Now suppose that the velocity/interaction matrix takes the
form

vab = v Oc
aδcdO

d
b, (64)

where O ∈ SO(N + 1,1). Then we can make a change of
variables to X̃a ≡ Oa

bX
b. We specialize to the case of a single

cosine perturbation associated with a particular vector in the
dual lattice v0 ≡ pI fI which we will make relevant (we have
also set Aν = 0 since it is inessential to the present discussion).
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Now Eq. (63) takes the form

S = 1

4π

∫
dx dt

(
ηab∂t X̃

a∂xX̃
b − vδab∂xX̃

a∂xX̃
b

+uv0 cos
(
pIf

I
a (O−1)abX̃

b
) )

. (65)

If this perturbation has equal right and left scaling dimensions
(i.e., is spin zero), then its scaling dimension is simply twice
its left scaling dimension with corresponding beta function

duv0

d�
= (

2 − q2
N+2

)
uv0 , (66)

where qb ≡ pIf
I
a (O−1)ab. The transformation O−1 can be

chosen to be a particular boost in the (N + 2)-dimensional
space RN+1,1. Because qa is a null vector (i.e., a lightlike
vector) in this space, by taking the boost in the opposite
direction of the “spatial” components of qa , we can “Lorentz
contract” them, thereby making qN+2 as small as desired. Thus,
by taking vab of the form (64) and choosing O ∈ SO(N + 1,1)
so that q2

N+2 < 2, we can make this coupling relevant.
When this occurs, two modes, one right moving and one

left moving, will acquire a gap. We will then be left over with
a theory with N gapless right-moving modes. The gapless
excitations exp(iv · X) of the system must commute with v0 · X
and, since the cosine fixes v0 · X, any two excitations that differ
by v0 · X should be identified. Thus, the resulting low-energy
theory will be associated with the lattice � defined by � ≡
�⊥/�‖, where �⊥,�‖ ⊂ �N+2 are defined by �⊥ ≡ {v ∈
�N+2 | v · v0 = 0} and �‖ ≡ {nv0 | n ∈ Z}. If gI is a basis for
�, then we can define a K matrix in this basis K̃IJ = gI · gJ .
The low-energy effective theory for the gapless modes is

S =
∫

dx dt

(
1

4π
K̃IJ ∂tφ

I ∂xφ
J − 1

4π
ṼIJ ∂xφ

I ∂xφ
J

+ 1

2π
t̃I εμν∂μφIAν

)
. (67)

When v0 = (0,0, . . . ,0,1,−1) is the only relevant operator,
φN+1 and φN+2 are gapped out. Therefore, � = � and K̃IJ =
KIJ . However, when other operators are present, � could be a
different lattice � � �, from which it follows that K̃IJ �= KIJ

(and, K̃ �= WT KW for any W ).
We motivated the enlargement of the theory from K

to K ⊕ σz by assuming that an additional pair of gapped
counterpropagating fermionic modes comes down in energy
and interacts strongly with the gapless edge excitations. This
counterpropagating pair of modes can be viewed as a thin
strip of ν = 1 integer quantum Hall fluid or, simply, as a
fermionic Luttinger liquid. Of course, more than one such
pair of modes may interact strongly with the gapless edge
excitations, so we should also consider enlarging the K matrix
to K ⊕ σz ⊕ σz . . . ⊕ σz. We can generalize this by imagining
that we can add any one-dimensional system to the edge of a
quantum Hall state. (This may not be experimentally relevant
to presently observed quantum Hall states, but as a matter
of principle, this is something that could be done without
affecting the bulk, so we should allow ourselves this freedom.)
Any clean, gapless 1D system of fermions is in a Luttinger
liquid phase (possibly with some degrees of freedom gapped).

Therefore, K ⊕ σz ⊕ σz . . . ⊕ σz is actually the most general
possible form for the edge theory.

One might wonder about the possibility of attaching a thin
strip of a fractional quantum Hall state to the edge of the
system. Naively, this would seem to be a generalization of our
putative most general form K ⊕ σz ⊕ σz . . . ⊕ σz. To illustrate
the issue, let us consider a bulk ν = 1 integer quantum Hall
(IQH) state and place a thin strip of ν = 1

9 fractional quantum
Hall (FQH) state at its edge. The two edges that are in close
proximity can be described by the following K matrix:

K =
(

1 0
0 −9

)
. (68)

As discussed in Ref. [9], this edge theory can become fully
gapped with charge-nonconserving backscattering. Then we
are left with the outer chiral edge of the thin strip, which is
described by K = (9), which can only bound a topologically
ordered ν = 1

9 Laughlin state. The subtlety here is that a
thin strip of the fractional quantum Hall state has no two-
dimensional bulk and should be considered as a purely one-
dimensional system. Fractionalized excitations, characterized
by fractional conformal spins only make sense when a true 2D
bulk exists. If the width of the strip is small, so that there is
no well-defined bulk between them, then we can only allow
operators that add an integer number of electrons to the two
edges. We can not add fractional charge since there is no bulk
which can absorb compensating charge. Thus, the minimal
conformal spin of any operator is 1

2 . In other words, starting
from a one-dimensional interacting electronic system, one can
not change the conformal spin of the electron operators. So
attaching a thin strip of FQH state is no different from attaching
a trivial pair of modes.

In a bosonic system, we can not even enlarge our theory
by a pair of counterpropagating fermionic modes. We can
only enlarge our theory by a Luttinger liquid of bosons or,
equivalently, a thin strip of σxy = 2e2

h
bosonic integer quantum

hall fluid [9,12,29]. Such a system has K matrix equal to
σx , which only has bosonic excitations. Equivalently, bosonic
systems must have even K matrices, matrices with only even
numbers along the diagonal, because all particles that braid
trivially with every other particle must be a boson. Since the
enlarged matrix must have the same determinant as the original
one because the determinant is the ground state degeneracy of
the bulk phase on the torus [17], we can only enlarge the theory
by σx , the minimal even unimodular matrix. Therefore, in the
bosonic case, we must enlarge our theory by K → K ⊕ σx .

In the fermionic case, we must allow such an enlargement
by σx as well. We can imagine the fermions forming pairs and
these pairs forming a bosonic Luttinger liquid which enlarges
K by σx . In fact, it is redundant to consider both σz and σx : for
an odd matrix K , W (K ⊕ σz)WT = K ⊕ σx , where

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 y1 −y1

0 1 . . . 0 y2 −y2
...

...
...

...
...

...
0 0 . . . 1 yN −yN

0 0 . . . 0 1 −1
x1 x2 . . . xN s 1 − s

⎞
⎟⎟⎟⎟⎟⎟⎠. (69)

115116-10



BULK-EDGE CORRESPONDENCE IN (2 + 1)-DIMENSIONAL . . . PHYSICAL REVIEW B 89, 115116 (2014)

Here the vector x has an odd (length2), i.e., xT Kx is odd; by
definition of K odd, such an x must exist. The vector y is
defined as y = −Kx and the integer s by s = 1

2 (1 − xT Kx).
Thus, K ⊕ σx is GL(N + 2,Z)-equivalent to K ⊕ σz and our
previous discussion for fermionic systems could be redone
entirely with extra modes described by σx . However, if K is
even, then K ⊕ σx is not GL(N + 2,Z)-equivalent to K ⊕ σz.

We remark that although σz enlargement and σx enlarge-
ment are equivalent for fermionic states when topological
properties are concerned, they do make a difference in charge
vectors: the appropriate charge vector for the σz block should
be odd and typically taken to be (1,1)T . However, the charge
vector for the σx block must be even and needs to be determined
from the similarity transformation.

To summarize, a quantum Hall edge phase described by
matrix K1 can undergo a purely edge phase transition to
another edge phase with GL(N,Z)-inequivalent K2 (with
identical bulk) if there exists W̃ ∈ GL(N + 2k,Z) such that

K2 ⊕ σx ⊕ . . . ⊕ σx = W̃ T (K1 ⊕ σx ⊕ . . . ⊕ σx) W̃ (70)

for some number k of σx’s on each side of the equation. In a
fermionic system with K1 odd, an edge phase transition can
also occur to an even matrix K2 if

Keven
2 ⊕ σz ⊕ . . . ⊕ σx = W̃ T

(
Kodd

1 ⊕ σx ⊕ . . . ⊕ σx

)
W̃ .

(71)

V. STABLE EQUIVALENCE, GENERA OF LATTICES, AND
THE BULK-EDGE CORRESPONDENCE FOR ABELIAN

TOPOLOGICAL PHASES

A. Stable equivalence and genera of lattices

In the previous section, we saw that a bulk Abelian quantum
Hall state associated with K1 has more than one different stable
chiral edge phase if there exists GL(N,Z)-inequivalent K2 and
W̃ ∈ GL(N + 2k,Z) such that

K2 ⊕ σx ⊕ . . . ⊕ σx = W̃ T (K1 ⊕ σx ⊕ . . . ⊕ σx) W̃ . (72)

This is an example of a stable equivalence; we say that K1 and
K2 are stably equivalent if, for some n, there exist signature
(n,n) unimodular matrices Li such that K1 ⊕ L1 and K2 ⊕ L2

are integrally equivalent, i.e., are GL(N + 2n,Z)-equivalent.
If there is a choice of Li’s such that both are even, we will
say that K1 and K2 are “σx-stably equivalent” since the Li’s
can be written as direct sums of σx’s. We also saw in Eq. (71)
that when K1 is odd and K2 is even, we will need L2 to be an
odd matrix. We will call this “σz-stable equivalence” since L2

must contain a σz block. We will use U to denote the signature
(1,1) even Lorentzian lattice associated with σx . Then σx-
stable equivalence can be restated in the language of lattices
as follows. Two lattices �1, �2 are σx-stably equivalent if
�1 ⊕ U . . . ⊕ U , and �2 ⊕ U . . . ⊕ U are isomorphic lattices.
Similarly, Uz will denote the Lorentzian lattice associated with
σz. Occasionally, we will abuse notation and use σx and σz to
refer to the corresponding lattices U , Uz.

Stable equivalence means that the two K matrices are
equivalent after adding “trivial” degrees of freedom, i.e.,
purely 1D degrees of freedom that do not require any change to
the bulk. This is analogous to the notion of stable equivalence

of vector bundles, according to which two vector bundles are
stably equivalent if and only if isomorphic bundles are obtained
upon joining them with trivial bundles.

We now introduce the concept of the genus of a lattice or
integral quadratic form. Two integral quadratic forms are in
the same genus [30,31] when they have the same signature
and are equivalent over the p-adic integers Zp for every prime
p. Loosely speaking, equivalence over Zp can be thought of
as equivalence modulo arbitrarily high powers of p, i.e., in
Z/pn for every n. The importance of genus in the present
context stems from the following statement of Conway and
Sloane [31]:

Two integral quadratic forms K1 and K2 are in the same
genus if and only if K1 ⊕ σx and K2 ⊕ σx are integrally
equivalent.

Proofs of this statement are, however, difficult to pin down
in the literature. It follows, for instance, from results in
Ref. [30] about a refinement of the genus called the spinor
genus. Below, we show how it follows in the even case
from results stated by Nikulin [23]. This characterization of
the genus is nearly the same as the definition of σx-stable
equivalence given in (72), except that Eq. (72) allows multiple
copies which is natural since a physical system may have
access to multiple copies of trivial degrees of freedom. Its
relevance to our situation follows from the following theorem
that we demonstrate below:

Two K matrices K1 and K2 of the same dimension,
signature, and type are stably equivalent if and only if K1 ⊕ σx

and K2 ⊕ σx are integrally equivalent, i.e., only a single copy
of σx is needed in Eq. (72).

Thus, any edge phase that can be reached via a phase
transition involving multiple sets of trivial 1D bosonic degrees
of freedom (described by K matrix σx) can also be reached
through a phase transition involving only a single such set. We
demonstrate this by appealing to the following result stated
by Nikulin [23] (which we paraphrase but identify by his
numbering):

Corollary 1.16.3. The genus of a lattice is determined by its
discriminant group A, parity, signature (r+,r−), and bilinear
form b on the discriminant group.

Since taking the direct sum with multiple copies of σx does
not change the parity, or bilinear form on the discriminant
group, any K1 and K2 that are σx-stably equivalent are in the
same genus. The theorem then follows from the statement [31]
above that only a single copy of σx is needed.

In the even case, the theorem follows directly from two
other results found in Nikulin [23]:

Corollary 1.13.4. For any even lattice � with signature
(r+,r−) and discriminant quadratic form q, the lattice � ⊕ U

is the only lattice with signature (r+ + 1,r− + 1) and quadratic
form q.

Theorem 1.11.3. Two quadratic forms on the discriminant
group are isomorphic if and only if their bilinear forms are
isomorphic and they have the same signature (mod 8).

If lattices �1 and �2 are in the same genus, they must
have the same (r+,r−) and bilinear form b. According to
Theorem 1.11.3, they must have the same quadratic form,
namely q([x]) = 1

2b([x],[x]), which is well defined in the
case of an even lattice. Then, Corollary 1.13.4 tells us that
�1 ⊕ U is the unique lattice with signature (r+ + 1,r− + 1)
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and quadratic form q. Since �2 ⊕ U has the same signature
(r+ + 1,r− + 1) and quadratic form q, �1 ⊕ U ∼= �2 ⊕ U .
Thus, we see that any two even K matrices in the same genus
are integrally equivalent after taking the direct sum with a
single copy of σx . Of course, our previous arguments that used
Nikulin’s Corollary 1.16.3 and the characterization of genus
from Conway and Sloane [31] are stronger since they apply to
odd matrices.

B. Bulk-edge correspondence

Since the quadratic form q([u]) gives the T and S matrices
according to Eqs. (23) and (25), we can equally well say that
the genus of a lattice is completely determined by the particle
types, T matrix, S matrix, and right- and left-central charges.
For a bosonic system, the genus completely determines a bulk
phase. Conversely, a bulk topological phase almost completely
determines a genus: the bulk phase determines (c+ − c−) mod
24 while a genus is specified by (c+,c−). However, if the
topological phase is fully chiral, so that it can have c− = 0, then
it fully specifies a family of genera that differ only by adding
central charges that are a multiple of 24, i.e., 3k copies of the
E8 state for some integer k (see Sec. VII A for a discussion of
this state). Thus, up to innocuous shifts of the central charge
by 24, we can say the following:

A bulk bosonic topological phase corresponds to a genus of
even lattices while its edge phases correspond to the different
lattices in this genus.

The problem of detemining the different stable edge phases
that can occur for the same bosonic bulk is then the problem
of determining how many distinct lattices there are in a genus.

In the fermionic case, the situation is more complicated. A
fermionic topological phase is determined by its particle types,
its S matrix, and its central charge (mod 24). It does not have
a well-defined T matrix because we can always change the
topological twist factor of a particle by −1 simply by adding
an electron to it. According to the following result of Nikulin,
these quantities determine an odd lattice:

Corollary 1.16.6. Given a finite Abelian group A, a bilinear
form b : A × A → Q/Z, and two positive numbers (r+,r−),
then, for sufficiently large r+,r−, there exists an odd lattice for
which A is its discriminant group. b is the bilinear form on the
discriminant group, and (r+,r−) is its signature.

Since the S matrix defines a bilinear form on the Abelian
group of particle types, this theorem means that the quantities
that specify a fermionic Abelian topological phase are compat-
ible with an odd lattice. Clearly, they are also compatible with
an entire genus of odd lattices since σx-stable equivalence
preserves these quantities. Moreover, by Corollary 1.16.3,
there is only a single genus of odd lattices that are compatible
with this bulk fermionic Abelian topological phase. However,
Corollary 1.16.3 leaves open the possibility that there is
also a genus of even lattices that is compatible with this
fermionic bulk phase, a possibility that was realized in one
of the examples in Sec. III. This possibility is discussed in
detail in Sec. VI. However, the general result that we can
already state, up to shifts of the central charge by 24, is
as follows:

A bulk fermionic topological phase corresponds to a genus
of odd lattices while its edge phases correspond to the different

lattices in this genus and, in some cases (specificed in Sec. VI),
to the different lattices in an associated genus of even lattices.

In principle, one can determine how many lattices there are
in a given genus by using the Smith-Siegel-Minkowski mass
formula [31] to evaluate the weighted sum∑

�∈g

1

|Aut(�)| = m(K) (73)

over the equivalence classes of lattices in a given genus g. Each
equivalence class of forms corresponds to a lattice �. The
denominator is the order of the automorphism group Aut(�)
of the lattice �. The right-hand side is the mass of the genus of
K , which is given by a complicated but explicit formula (see
Ref. [31]).

Given a K matrix for a bosonic state, one can compute
the size of its automorphism group,3 which gives one term
in the sum in (73). If this equals the mass formula on the
right-hand side of Eq. (73), then it means the genus has only
one equivalence class. If not, we know there is more than one
equivalence class in the genus. Such a program shows [32]
that, in fact, all genera contain more than one equivalence class
for N > 10, i.e., all chiral Abelian quantum Hall states with
central charge c > 10 have multiple distinct stable chiral edge
phases. For 3 � N � 10, there is a finite set of genera with
only a single equivalence class [33]; all others have multiple
equivalence classes. The examples of ν = 16 analyzed in
Ref. [2] and ν = 12

23 that we gave in Sec. VII are, in fact, the
rule. Bosonic chiral Abelian quantum Hall states with a single
stable chiral edge phase are the exception, they can only exist
for c � 10 and they have been completely enumerated [33].

This does not tell us how, given one equivalence class, to
find other equivalence classes of K matrices in the same genus.
However, one can use the Gauss reduced form [31] to find all
quadratic forms of given rank and determinant by brute force.
Then we can use the results at the end of previous section to
determine if the resulting forms are in the same genus.

C. Primary decomposition of Abelian topological phases

According to the preceding discussion, two distinct edge
phases can terminate the same bulk phase if they are both in
the same genus (but not necessarily only if they are in the same
genus in the fermionic case). It may be intuitively clear what
this means, but it is useful to be more precise about what we
mean by “the same bulk phase.” In more physical terms, we
would like to be more precise about what it means for two
theories to have the same particle types and S and T matrices.
In more formal terms, we would like to be more precise about
what is meant in Nikulin’s Theorem 1.11.3 by isomorphic
quadratic forms and bilinear forms. In order to do this, it helps
to view an Abelian topological phase in a somewhat more
abstract light. When viewed from the perspective of an edge
phase or, equivalently, a K matrix, the bulk phase is determined
by the signature (r+,r−), together with the bilinear form on
the discriminant group �∗/� induced by the bilinear form

3For generic K matrices without any symmetries, the automorphism
group often only consists of two elements: W = ±IN×N .
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on the dual lattice �∗ determined by K . As we have seen,
these data uniquely specify a nondegenerate quadratic form
q : �∗/� → Q/Z on the discriminant group. Therefore, we
may view the genus more abstractly in terms of an arbitrary
finite Abelian group A and a quadratic form q : A → Q/Z,
making no direct reference to an underlying lattice. We will
sometimes call such a quadratic form a finite quadratic form
to emphasize that its domain is a finite Abelian group. The
elements of the group A are the particle types in the bulk
Abelian topological phase.

Now suppose we have two bulk theories associated with
Abelian groups A, A′, quadratic forms q : A → Q/Z, q ′ :
A′ → Q/Z, and chiral central charges c−, c′

−. These theories
are the same precisely when the chiral central charges satisfy
c− ≡ c′

− mod 24, and when the associated quadratic forms
are isomorphic. This latter condition means that there exists a
group isomorphism f : A′ → A such that q ′ = q ◦ f . Note
that if the quadratic forms are isomorphic then the chiral
central charges must be equal (mod 8) according to the
Gauss-Milgram sum. However, the bulk theories are the same
only if they satisfy the stricter condition that their central
charges are equal modulo 24.

The implications of this become more apparent after
observing that any Abelian group factors as a direct sum
A � ⊕pAp over primes dividing |A|, where Ap ⊂ A is the
p-primary subgroup of elements with order a power of p.
Any isomorphism f : A′ → A must respect this factorization
by decomposing as f = ⊕pfp, with each fp : A′

p → Ap.
Furthermore, every finite quadratic form decomposes into a
direct sum q = ⊕pqp of p-primary forms; we call qp the
p-part of q. This ultimately leads to a physical interpretation
for p-adic integral equivalence: if p is odd, two K matrices
are p-adically integrally equivalent precisely when the p-parts
of their associated quadratic forms are isomorphic. Additional
subtleties arise when p = 2 but, as we will see, these are the
reason for the distinction between σx and σz equivalence.

The image of a given finite quadratic form q is a finite cyclic
subgroup N−1

q Z/Z ⊂ Q/Z isomorphic to Z/Nq , where Nq is
the level of the finite quadratic form q. The level is the smallest
integer N such that q factors through Z/N , implying that the
topological spins of particles in Aq are Nq th roots of unity.
Because the level of the direct sum of finite quadratic forms
is the least common multiple of the levels of the summands,
the level of q = ⊕pqp is equal to the product Nq = ∏

p Nqp

of the levels of the qp. If p is odd, the level of qp is the order
of the largest cyclic subgroup of Ap, while it is typically twice
as big for q2. Physically, this means that the entire theory
uniquely factors into a tensor product of anyon theories such
that the topological spins of the anyons in the pth theory are
pth-power roots of unity. This decomposition lets us express
a local-to-global principle for finite quadratic forms: q and q ′
are isomorphic iff qp and q ′

p are for every p. Indeed, if one
views prime numbers as “points” in an abstract topological
space,4 this principle says that q and q ′ are globally equivalent
(at all primes) iff they are locally equivalent at each prime
dividing |A|.

4This space is known as Spec(Z). Rational numbers are identified
with functions on this space according to their prime factorizations.

Further information about the prime theories is obtained by
decomposing each Ap into a product

Ap �
mp∏

m=0

(Z/pm)dpm (74)

of cyclic groups, where dp0 , . . . ,dpmp−1 � 0 and dpmp > 0.
When p is odd, there is a one-to-one correspondence between
bilinear and quadratic forms on Ap because multiplication by
2 is invertible in every Z/pm. Furthermore, given a quadratic
form qp on Ap for odd p, we claim there always exists an
automorphism g ∈ Aut(Ap) that fully diagonalizes qp relative
to a fixed decomposition (74) such that

qp ◦ g =
⊕

m

(
q+

pm ⊕ . . . ⊕ q+
pm ⊕ q±

pm︸ ︷︷ ︸
dpm terms

)
, (75)

where

q+
pm (x) = 1

pm
2−1x2 mod Z, q−

pm (x) = 1

pm
up2−1x2 mod Z,

and up is some fixed nonsquare modulo pn. A dual perspective
is that, given qp, it is always possible to choose a decomposi-
tion (74) of Ap relative to which qp has the form of the right-
hand side of (75). However, not every decomposition will work
for a given qp because Aut(Ap) can mix the different cyclic
factors. For example, Aut((Z/p)d ) � GL(d,Z/p) mixes the
cyclic factors of order p. There will also be automorphisms
mixing lower-order generators with ones of higher order,
such as the automorphism of Z/3 ⊕ Z/9 = 〈α3,α9〉 defined
on generators by α3 �→ α3 and α9 �→ α3 + α9. Physically,
this means that the anyon theory associated to Ap further
decomposes into a tensor product of “cyclic” theories, although
now such decompositions are not unique because one can
always redefine the particle types via automorphisms of Ap.

D. p-adic symbols

Two K matrices are p-adically integrally equivalent iff
the diagonalizations of the p-parts of their associated finite
quadratic forms coincide. The numbers dpm and the sign of
the last form in the mth block thus form a complete set of
invariants for p-adic integral equivalence of K matrices. These
data are encoded into the p-adic symbol, which is written
as 1±d

p0 p±d
p1 (p2)±d

p2 . . . (terms with dpm = 0 are omitted)
and can be computed using Sage [34]. Two K matrices
are p-adically integrally equivalent iff their p-adic symbols
coincide.

The p-adic symbol can be computed more directly by
noting that K matrices are equivalent over the p-adic integers
when they are equivalent by a rational transformation whose
determinant and matrix entries do not involve dividing by p.
Such transformations can be reduced modulo arbitrary powers
of p and give rise to automorphisms of the p-part Ap of the
discriminant group. Given a K matrix K , there always exists a
p-adically integral transformation g putting K into p-adically
block-diagonalized [31] form

gKgT = Kp0 ⊕ pKp1 ⊕ p2Kp2 ⊕ . . . , (76)

where det(Kpm ) is prime to p for every m.
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A more direct characterization of the genus can now be
given: Two K matrices are in the same genus iff they are
related by a rational transformation whose determinant and
matrix entries are relatively prime to twice the determinant
or, rather, to the level N of the associated discriminant forms.
Such a transformation suffices to simultaneously p-adically
block diagonalize K over the p-adic integers for every p

dividing twice the determinant, and a similar reduction yields
the entire quadratic form on the discriminant group, with
some extra complications when p = 2. Such a nonintegral
transformation mapping two edge theories as g(�1) = �2

does not, however, induce fractionalization in the bulk since
it reduces to an isomorphism between the discriminant groups
�∗

1/�1 → �∗
2/�2. For example, the ν = 12

11 K matrices (32)
and (37) are related by the following rational transformation
that divides by 3:(

1 0

−1/3 1

)(
3 1

1 4

)(
1 −1/3

0 1

)
=

(
1 0

0 11

)
.

One might be tempted to look at this transformation and
conclude that one of the particle types on the left-hand side has
undergone fractionalization and divided into 3 partons (due to
the − 1

3 entries in the matrix), thereby leading to the phase on
the right-hand side. But in mod 11 arithmetic, the number 3 is
invertible, so no fractionalization has actually occurred.

When p �= 2, the p-adic symbol can be directly computed
from any such p-adic block diagonalization, as the term
(pm)±dpm records the dimension dpm = dim(Kpm ) and sign ±
of det(Kpm ), the latter being given by the Legendre symbol(

det(Kpm )

p

)
=

{+1 if p is a square mod p,

−1 if p is not a square mod p.

In this case, it is further possible to p-adically diagonalize all of
the blocks Kpm , in which case there exists a p-adically integral
transformation g that diagonalizes the form Q(x) = 1

2 xT K−1x
on the dual lattice �∗ such that its reduction modulo � takes
the form (75).

When p = 2, it is possible that only some of the blocks K2m

in the decomposition (76) can be 2-adically diagonalized [31]
(we call these blocks odd). The remaining even blocks can
only be block diagonalized into 2 × 2 blocks of the form
(2a b

b 2c) with b odd, or rather, some number of copies of σx

and (2 1
1 2). As with odd p, the 2-adic symbol associated to

such a block diagonalization records the dimensions d2m of the
blocks, together with the signs of the determinants det(K2m ),
which are given by the Jacobi symbols(

2

det(K2m )

)
=

{+1 if det(K2m ) ≡ ±1 mod 8,

−1 if det(K2m ) ≡ ±3 mod 8

and record whether or not det(Kpm ) is a square mod 8. In
addition to these data, the 2-adic symbol also records the
parities as well as the traces TrK2m mod 8 of the odd blocks.
An additional complication is that a given K matrix can be
2-adically diagonalized in more than one way, and while the
dimensions and parities of the blocks will be the same, the signs
and traces of the odd blocks, and thus the 2-adic symbols, can
be different. While this makes checking 2-adic equivalence
more difficult, it is nonetheless possible to define a canonical

TABLE I. Here we list the p-adic symbols and discriminant
quadratic forms for various K matrices appearing in this paper,
beginning with the canonical 2-adic symbol in every case, followed
by the symbols for each prime dividing the determinant. Each block
contains inequivalent-but-stably-equivalent matrices. The last few
rows contain K matrices giving rise to some of the exceptional 2-adic
quadratic forms mentioned in the text.

K matrix p-adic symbols Quadratic form(1 0
0 7

)
1+2

0 1+17+1 q+
7(2 1

1 4

)
1+2

even 1+17+1(1 0
0 11

)
1−2

4 1+111+1 q+
11(3 1

1 4

)
(3 0

0 5

)
1+2

0 1−13+1 1−15+1 q+
3 ⊕ q+

5(2 1
1 8

)
1+2

even 1−13+1 1−15+1(2 3
3 16

)
1+2

even 1+123+1 q+
23(4 1

1 6

)
KA4 1−4

even 1+35+1 q+
5

5 ⊕ I3 1−4
0 1+35+1

KE8 1+8
even 0

I8 1+8
0

KE8 ⊕ I4 1+12
4 0

I12

KD+
12( 2

2

)
2+2

even q+
2,2

KD4 1−2
even2−2

even q−
2,2(4 2

2 4

)
2−2

even 1+13+1 q−
2,2 ⊕ q+

3

2-adic symbol [31] that is a complete invariant for 2-adic
equivalence. We record these canonical 2-adic symbols for
many of the K matrices considered in this paper in Table I.

The reason for the additional complexity when p = 2 is
because multiplication by 2 is not invertible on the 2-primary
part (Q/Z)2 of Q/Z. This implies that if q refines a bilinear
form on a 2-group then so does q + 1

2 mod Z, and sometimes
these refinements are not isomorphic. For example, there is
only one nondegenerate bilinear form b2(x,y) = xy

2 mod Z
on Z/2, with two nonisomorphic quadratic refinements
q±

2 (x) = ± x
4 mod Z. Each of these refinements has level 4

and corresponds, respectively, to the semion K = (2) and its
conjugate K = (−2). These give the S and T matrices

S2 = 1√
2

(
1 1

1 −1

)
, T ±

2 = e∓ 2πi
24

(
1

±i

)
.

On Z/2 × Z/2, there are two isomorphism classes of
nondegenerate bilinear forms. The first class is represented
by

(b2 ⊕ b2)(x,y) = 1
2 (x1y1 + x2y2) mod Z

and has the S matrix

S2 ⊗ S2 = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠.
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All the refinements in this case have level 4 and are given by
tensor products of semions. Up to isomorphism, this gives three
refinements q+

2 ⊕ q+
2 , q+

2 ⊕ q−
2 , and q−

2 ⊕ q−
2 , determined by

the K matrices (2
2), (2

−2), and (−2
−2) with c− = 2, 0, − 2,

respectively.
The second class of bilinear forms on Z/2 × Z/2 contains

the single form

b2,2(x,y) = 1
2 (x1y2 + x2y1) mod Z

and gives the S matrix

S2,2 = 1

2

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎠.

It is refined by two isomorphism classes q±
2,2 of quadratic

forms with T matrices T ±
2,2 = diag(1, ± 1, ± 1, − 1) (these

have level 2, the exception to the rule), up to the usual phase
of −2πic−/24. The form q+

2,2 is given by the K matrix ( 2
2 )

and corresponds to the toric code. The form q−
2,2 is given by

the K matrix

KD4 =

⎛
⎜⎜⎜⎝

2 0 1 0

0 2 −1 0

1 −1 2 −1

0 0 −1 2

⎞
⎟⎟⎟⎠

of SO(8)1 or, equivalently, by the restriction of the quadratic
form associated to the K matrix (4 2

2 4) to the 2-part of
its discriminant group Z/2 × Z/2 × Z/3. Again, these are
distinguished by their signatures, which are 0 and 4 mod 8. The
2-adic diagonalizations of these K matrices contain examples
of even blocks, as illustrated in to even blocks in Table I.

Further complexity arises for higher powers of 2: There are
two bilinear forms b±

4 on Z/4, and four b
1,3,5,7
2m on each Z/2m

when m � 3. There are also four quadratic forms q
1,3,5,7
2m on

Z/2m for every m � 2, all with level 2m+1. Therefore, the bi-
linear forms b±

4 have two refinements each, while the rest have
unique refinements. On top of all this, even more complexity
arises from the fact that factorizations of such forms are not
typically unique. It is therefore less straightforward to check
equivalence of 2-adic forms. It is nonetheless still possible
to define a canonical 2-adic symbol [31] that is a complete
invariant for 2-adic equivalence of K matrices. However, this
symbol carries strictly more information than the isomorphism
class of the 2-part of the discriminant form because it knows
the parity of K . To characterize the even-odd equivalences that
we investigate in the next section, the usual 2-adic equivalence
is replaced with equivalence of the 2-parts of discriminant
forms as in the odd p case above.

The 2-adic symbol contains slightly more information
than just the equivalence class of a quadratic form on the
discriminant group. This is evident in our even-odd examples,
for which all p-adic symbols for odd p coincide, with the only
difference occurring in the 2-adic symbol. It is, however, clear
that two K matrices Keven and Kodd of different parities are
stably equivalent precisely when either Keven ⊕ 1 and Kodd ⊕ 1

are in the same genus or, otherwise, when Keven ⊕ σz and
Kodd ⊕ σz are in the same genus. A detailed study of the 2-adic
symbols in this context will appear elsewhere.

VI. STABLE EQUIVALENCE BETWEEN ODD AND
EVEN MATRICES: FERMIONIC BULK STATES WITH

BOSONIC EDGE PHASES

We now focus on the case of fermionic systems, which
are described by odd K matrices (i.e., matrices that have at
least one odd number on the diagonal). We ask the following:
Under what circumstances is such a K matrix equivalent, upon
enlargement by σz (or σx , since it makes no difference for an
odd matrix), to an even K matrix enlarged by σz:

Kodd ⊕ σz = WT (Keven ⊕ σz)W? (77)

This question can be answered using the theory of quadratic
refinements [21,22].

As we have alluded to earlier, the naive definition of a
quadratic form on the discriminant group breaks down for odd
matrices. To be more concrete, 1

2 u2 (mod 1) is no longer well
defined on the discriminant group. In order to be well defined
on the discriminant group, shifting u by a lattice vector λ ∈ �

must leave q(u) invariant modulo integers, so that e2πiq(u) in
Eq. (23) is independent of which representative in �∗ we take
for an equivalence class in A = �∗/�. When K is odd, there
are some vectors λ in the original lattice � such that

q(u + λ) ≡ q(u) + 1
2 mod 1. (78)

Physically, such a vector is just an electron (λ · λ is an
odd integer). One can attach an odd number of electrons
to any quasiparticle and change the exchange statistics by
−1. In a sense, the discriminant group should be enlarged to
A ⊕ (A + λodd): quasiparticles come in doublets composed of
particles with opposite fermion parity, and therefore opposite
topological twists. The Gauss-Milgram sum over this enlarged
set of quasiparticles is identically zero, which is a clear
signature that the Abelian topological phase defined by an odd
K matrix is not a topological quantum field theory (TQFT) in
the usual sense.

While the T matrix is not well defined for a fermionic
theory, the S matrix, which is determined by the discriminant
bilinear form b([v],[v′]), makes perfect sense. This is because
a full braid of one electron around any other particle does not
generate a nontrivial phase.

Given a bilinear form b, a systematic approach for defining
a quadratic form that is well defined on the discriminant
group comes from the theory of quadratic refinements. The
crucial result is that a given bilinear form can always be
lifted to a quadratic form q on the discriminant group. The
precise meaning of “lifting” is that there exists a well-defined
discriminant quadratic form such that b([v],[v′]) = q([v +
v′]) − q([v]) − q([v′]) [21,22]. With q, the topological twists
are well defined: e2πiq(u) = e2πiq(u+λ) for all u ∈ �∗ and
λ ∈ �. We will give a constructive proof for the existence
of such a q, given any odd K matrix.

Once the existence of such a quadratic form q([v]) is
established, we can evaluate the Gauss-Milgram sum (27) and
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determine c− mod 8. We then appeal to the following result of
Nikulin [23]:

Corollary 1.10.2. Given an Abelian group A, a quadratic
form q on A, and positive integers (r+,r−) that satisfy the
Gauss-Milgram sum for q, there exists an even lattice with
discriminant group A, quadratic form q on the discriminant
group, and signature (r+,r−), provided r+ + r− is sufficiently
large.

Using Corollary 1.10.2, we immediately see that an even
lattice characterized by (A,q,c−mod 8) exists, whose Gram
matrix is denoted by Keven. Recall that the chiral central charge
c− is equal to the signature σ = r+ − r− of the lattice. Next
we show that Keven is σz-stably equivalent to the odd matrix we
started with: namely, (77) holds for this Keven. Since Keven and
K share the same discriminant group and S matrix, they are
stably equivalent upon adding unimodular lattices, according
to Theorem 1.1.9. In other words, there exist unimodular
matrices U and U ′ such that

K ⊕ U � Keven ⊕ U ′. (79)

Apparently, U ′ must be odd. We now add to both sides of the
equation the conjugate of U ′ denoted by U ′:

K ⊕ (U ⊕ U ′) � Keven ⊕ (U ′ ⊕ U ′). (80)

On the right-hand side, U ′ ⊗ U ′ is equivalent to σz ⊕ σz ⊕
. . . σz. On the left-hand side, U ⊕ U ′ can be transformed to
the direct sum of In where n = σ (U ) − σ (U ′) = σ (Keven) −
σ (K) and several σz/x’s. Here In is the |n| × |n| identity matrix
and when n is negative we take it to be −I|n|. If n �= 0 mod 8,
then Keven has a different chiral central charge as K . Therefore,
we have arrived at the following theorem:

For any odd K matrix, K ⊕ In is σz-stably equivalent to an
even K matrix for an appropriate n.

The physical implication is that by adding a certain number
of Landau levels the edge phase of a fermionic Abelian
topological phase is always stably equivalent to a purely
bosonic edge phase which has no electron excitations in its
low-energy spectrum.

The possible central charges of the bosonic edge theory
are cferm + n + 8m for m ∈ Z. We can consider a fermionic
system with an additional 8m + n Landau levels, where
m is the smallest positive integer such that 8m + n > 0.
Such a fermionic theory has precisely the same discriminant
group as the original fermionic theory and, consequently, is
associated with precisely the same bosonic system defined by
the refinement q([u]). So even if the original fermionic theory
does not have a stable chiral edge phase with only bosonic
excitations, there is a closely related fermionic theory with
some extra filled Landau levels which does have a chiral edge
phase whose gapless excitations are all bosonic. A simple
example of this is given by the ν = 1

5 Laughlin state, which
has K = 5. The corresponding bosonic state has c = 4, so
the ν = 1

5 Laughlin state does not have a chiral edge phase
whose gapless excitations are all bosonic. However, the central
charges do match if, instead, we consider the ν = 3 + 1

5 = 16
5

state. This state does have a bosonic edge phase, with K matrix

KA4 =

⎛
⎜⎝

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

⎞
⎟⎠ (81)

corresponding to SU(5)1. [Ordinarily, the Cartan matrix for
SU(5) is written with −1s off diagonal, but by a change of
basis we can make them equal to +1.]

In the following we demonstrate concretely how to obtain a
particular discriminant quadratic form q, starting from the odd
lattice given by K . We already know that the naive definition
1
2 u2(mod1) does not qualify as a discriminant quadratic form.
In order to define a quadratic form on the discriminant group,
we first define a quadratic function Qw(u) according to

Qw(u) = 1
2 u2 − 1

2 u · w (82)

for w ∈ �∗. Such a linear shift preserves the relation between
the quadratic function (T matrix) and the bilinear form (S
matrix):

Qw(u + v) − Qw(u) − Qw(v) = u · v. (83)

[Notice that u · v is the symmetric bilinear form b(u,v) in
Stirling’s thesis [22].] Notice that at this stage Qw is not yet a
quadratic form on A, being just a quadratic function.

If, for any λ ∈ �, Qw satisfies Qw(u + λ) ≡ Qw(u) mod1
or, in other words,

λ · λ ≡ λ · w mod 2, (84)

then we can define the following quadratic form on the
discriminant group:

q([u]) = Qw(u).

Expanding w in the basis of the dual lattice w = wI fI and
expanding λI eI , we find that this condition is satisfied if we
take wI ≡ KII mod 2. Thus, for a Hall state expressed in the
symmetric basis, we may identify w with twice the spin vector
sI = KII /2 [35,36].

A central result of Ref. [21] is that such a w leads to a
generalized Gauss-Milgram sum

1√|A|e
2πi

8 w2
∑

u

e2πiQw(u) = e2πiσ/8, (85)

where, in order for the notation to coincide, we have replaced
the chiral central charge with the signature σ on the right-hand
side of the above equation. Note that the choice of w here is
not unique. We can check that the modified Gauss-Milgram
sum holds for w + 2λ∗ where λ∗ ∈ �∗. First note that

Qw+2λ∗ (u) = 1
2 u2 − 1

2 u · w − u · λ∗

= Qw(u − λ∗) − 1
2λ∗2 − 1

2λ∗ · w, (86)

while at the same time

(w + 2λ∗)2 = w2 + 4λ∗ · w + 4λ∗2
. (87)
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Therefore,

e
2πi

8 (w+2λ∗)2
∑

u

e2πiQw+2λ∗ (u) = e
2πi

8 w2
∑

u

e2πiQw(u−λ∗)

= e2πiσ/8. (88)

One can freely shift w by 2λ∗. Consequently, w is really an
equivalence class in �∗/2�∗.

In Appendix B, we further prove that such a representative
w can always be chosen to lie in the original lattice �. We
denote such a w by w0. The advantage of such a choice can be
seen from the expression

e2πiQw0 (u) = eπiu2
eπiu·w0 ,

the topological twists. Since w0 now lives in �, we have u ·
w0 ∈ Z and eπiu·w0 = ±1. This corroborates our intuition that
one can salvage the Gauss-Milgram sum in the case of odd
matrices by inserting appropriate signs in the sum.

In addition, we can prove that our quadratic function
now defines a finite quadratic form because Qw0 (nu) ≡
n2Qw0 (u)mod Z. To see why this is true, we use the definition
of q:

Qw0 (nu) = n2

2
u2 − n

2
u · w0

≡
(

n2

2
u2 − n2

2
u · w0

)
mod Z. (89)

The second equality follows from the elementary fact that n2 ≡
n (mod 2) together with u · w0 ∈ Z. Therefore, the definition
q([u]) = Qw0 (u) mod Z is well defined.

Having found the discriminant quadratic form q(u), the
generalized Gauss-Milgram sum now can be reinterpreted
as the ordinary Gauss-Milgram sum of a bosonic Abelian
topological phase. As aforementioned, there exists a lifting to
an even lattice with the signature σ ′ ≡ (σ − w2

0) mod 8 where
σ is the signature of the odd matrix K and thus the number
of Landau levels we need to add is n = −w2

0 mod 8. Hence,
we have the sufficient condition for the existence of an even
lattice that is stably equivalent to a given odd lattice: σ ′ = σ ,
or w2

0 ≡ 0 mod 8.
An obvious drawback of this discussion is that it is not

constructive (which stems from the nonconstructive nature of
the proof of Nikulin’s theorem [23]): we do not know how to
construct uniquely the even matrix corresponding to a given
discriminant group, quadratic form q, and central charge c. The
distinct ways of lifting usually result in lattices with different
signatures.

VII. NOVEL CHIRAL EDGE PHASES OF
THE CONVENTIONAL BULK FERMIONIC

ν = 8,12, 8
15 , 16

5 STATES

Now that the general framework has been established,
in this section we consider a few experimentally relevant
examples and their tunneling signatures.

A. ν = 8

The integer quantum Hall states are the easiest to produce
in experiment and are considered to be well understood

theoretically. But surprisingly, integer fillings, too, can exhibit
edge phase transitions. The smallest integer filling for which
this can occur is at ν = 8 because eight is the smallest
dimension for which there exist two equivalence classes of
unimodular matrices. One class contains the identity matrix I8

and the other contains KE8 , defined in Appendix C, which is
generated by the roots of the Lie algebra of E8. KE8 is an even
matrix and hence describes a system whose gapless excitations
are all bosonic [2,12] (although if we consider the bosons to be
paired fermions, it must contain gapped fermionic excitations.)
Yet, counterintuitively, it is stably equivalent to the fermionic
I8; for W8 defined in Appendix C,

WT
8 (KE8 ⊕ σz)W8 = I8 ⊕ σz. (90)

This is an example of the general theory explained in Sec. VI,
but it is an extreme case in which both phases have only a single
particle type: the trivial particle. The chiral central charges of
both phases are equal and so Nikulin’s theorem guarantees that
the two bulk phases are equivalent (when the bosonic E8 state
is understood to be ultimately built out of electrons) and that
there is a corresponding edge phase transition between the two
chiral theories.

The action describing the I8 state with an additional left-
and right-moving mode is

S =
∫

dx dt

(
1

4π
(I8 ⊕ σz)IJ ∂tφ

I ∂xφ
J

− 1

4π
VIJ ∂xφ

I ∂xφ
J + 1

2π

∑
I

εμν∂μφIAν

)
. (91)

The charge vector is implicitly tI = 1 for all I . As we have
shown in previous sections, the basis change φ′ = W8φ makes
it straightforward to see that if the perturbation

S ′ =
∫

dx dt u′ cos(φ′
9 ± φ′

10) (92)

is the only relevant term, then the two modes φ′
9 and φ′

10 would
be gapped and the system would effectively be described by
KE8 .

As in the previous examples, measurements that probe the
edge structure can distinguish the two phases of the edge.
Consider, first, transport through a QPC that allows tunneling
between the two edges of the Hall bar. In the ν = 8 state with
K = I8, the backscattered current will be proportional to the
voltage

I b
I8

∝ V (93)

because the most relevant backscattering operators cos(φT
I −

φB
I ) correspond to the tunneling of electrons. In contrast, when

K = KE8 , there is no single-electron backscattering term.
Instead, the most relevant operator is the backscattering of
charge-2e bosons, i.e., of pairs of electrons, from terms like
cos(φ′T

1 − φ′T
4 − φ′B

1 + φ′B
4 ), which yields different current-

voltage relation

I b
E8

∝ V 3. (94)

An alternative probe is given by tunneling into the edge
from a metallic lead. In the K = I8 case, the leading
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contribution is due to electrons tunneling between the lead
and the Hall bar from the terms ψ

†
leade

iφT
I , yielding

I tun
I8

∝ V. (95)

However, in the KE8 case there are no fermionic charge-e
operators to couple to the electrons tunneling from the lead.
Instead, the leading term must involve two electrons from
the lead tunneling together into the Hall bar. The amplitude
for this event may be so small that there is no detectable
current. If the amplitude is detectable, then we consider two
cases: if the quantum Hall state is not spin polarized or if
spin is not conserved (e.g., due to spin-orbit interaction),
then the leading contribution to the tunneling current is
from terms like ψ

†
lead,↓ψ

†
lead,↑eiφ′T

1 −iφ′T
4 , which represent two

electrons of opposite spin tunneling together into the Hall bar,
yielding

I tun
E8

∝ V 3. (96)

If the quantum Hall state is spin polarized, and tunneling from
the lead is spin conserving, then the pair of electrons that
tunnels from the lead must be a spin-polarized p-wave pair,
corresponding to a tunneling term like ψ

†
lead,↓∂ψ

†
lead,↓eiφ′T

1 −iφ′T
4

in the Lagrangian, and we instead expect

I tun
E8

∝ V 5. (97)

Another important distinction between the two edge phases
is the minimal value of electric charge in the low-energy sector,
which can be probed by a shot-noise measurement [37,38], as
was done in the ν = 1

3 fractional quantum Hall state [39,40].
The I8 phase has gapless electrons, so the minimal charge is
just the unit charge e. However, the E8 edge phase is bosonic
and consequently the minimal charge is at least 2e (i.e., a pair
of electrons). (Electrons are gapped and, therefore, do not con-
tribute to transport at low temperatures and voltages.) Quantum
shot noise, generated by weak backscattering at the QPC, is
proportional to the minimal current-carrying charge and the
average current. So we expect a shot-noise measurement can
also distinguish the two edge phases unambiguously.

B. ν = 12

In dimensions 9, 10, and 11, there exist two unique positive-
definite unimodular lattices, whose K matrices are (in the usual
canonical bases) I9,10,11 or KE8 ⊕ I1,2,3. In each dimension,
the two lattices, when enlarged by direct sum with σz, are
related by the similarity transformation of the previous section.
However, in dimension 12, a new lattice appears, D+

12, defined
in Appendix C. One salient feature of this matrix is that it has an
odd element along the diagonal, but it is not equal to 1, which
is a symptom of the fact that there are vectors in this lattice that
have odd (length)2 but none of them have (length)2=1. The
minimum (length)2 is 2. Upon taking the direct sum with σz, the
resulting matrix is equivalent to I12 ⊕ σz, and hence to KE8 ⊕
I4 ⊕ σz using the transformation of the previous section, by the
relation WT

12(KD+
12

⊕ σz)W12 = I12 ⊕ σz, where W12 is defined
in Appendix C.

Consider the action of the ν = 12 state with two additional
counterpropagating gapless modes and with the implicit charge

vector tI = 1:

S =
∫

dx dt

(
1

4π
(I12 ⊕ σz)IJ ∂tφ

I ∂xφ
J

− 1

4π
VIJ ∂xφ

I ∂xφ
J + 1

2π

∑
I

εμν∂μφIAν

)
. (98)

The matrix W12 suggests a natural basis change φ′ = W12φ in
which the perturbation

S ′ =
∫

dx dt u′ cos(φ′
9 ± φ′

10) (99)

can open a gap, leaving behind an effective theory described
by KD+

12
.

It is difficult to distinguish the I12 edge phase from the E8 ⊕
I4 phase because both phases have charge-e fermions with
scaling dimension 1

2 . However, both of these edge phases can
be distinguished from the D+

12 phase in the manner described
for the ν = 8 phases in the previous subsection. At a QPC, the
most relevant backscattering terms will have scaling dimension
1; one example is the term cos(φ′T

11 − φ′B
11 ), which yields the

current-voltage relation

I b

D+
12

∝ V 3. (100)

This is the same as in the E8 edge phase at ν = 8 because the
most-relevant backscattering operator is a charge-2e bosonic
operator with scaling dimension 2. There is a charge-e
fermionic operator exp[i(φ′T

2 + 2φ′T
12)], but it has scaling

dimension 3
2 . Its contribution to the backscattered current is

∝ V 5, which is subleading compared to the contribution above,
although its bare coefficient may be larger. However, if we
couple the edge to a metallic lead via ψ

†
lead exp[i(φ′T

2 + 2φ′T
12)],

single-electron tunneling is the dominant contribution for a
spin-polarized edge, yielding

I tun
D+

12
∝ V 3, (101)

while pair tunneling via the coupling ψ
†
lead∂ψ

†
leade

iφ′T
11 gives a

subleading contribution ∝V 5. If the edge is spin unpolarized,
pair tunneling via the coupling ψ

†
lead,↑ψ

†
lead,↓eiφ′T

11 gives a
contribution with the same V dependence as single-electron
tunneling.

C. Fractional quantum Hall states with multiple edge phases

In Sec. III, we discussed the ν = 8
7 state, which has

two possible edge phases. Our second fermionic fractional
quantum Hall example is

K1 =
(

3 0

0 5

)
(102)

with t = (1,1)T . We again assume that a pair of gapped modes
interacts with these two modes, and we assume that they are
modes of oppositely charged particles (e.g., holes), so that
t = (1,1, − 1, − 1)T . Upon enlarging by σz, we find that K1 ⊕
σz = WT (K2 ⊕ σz)W , where

K2 =
(

2 1

1 8

)
(103)
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and

W =

⎛
⎜⎜⎜⎝

1 3 0 1

0 3 0 1

0 0 1 0

1 8 0 3

⎞
⎟⎟⎟⎠. (104)

If the following perturbation is relevant, it gaps out a pair of
modes:

S ′ =
∫

dx dt u′ cos(−3φ1 − 5φ2 + φ3 + 3φ4). (105)

Under the basis change (104), −3φ1 − 5φ2 + φ3 + 3φ4 =
φ′

3 + φ′
4, so the remaining theory has K-matrix (103).

In the K1 edge phase (102), the backscattered current at a
QPC is dominated by the tunneling term cos(φT

2 − φB
2 ), which

yields

I b
1 ∝ V −3/5, (106)

while the tunneling current from a metallic lead is dominated
by the single-electron tunneling term ψ

†
leade

3iφT
1 , which yields

I tun
1 ∝ V 3. (107)

In the K2 edge phase (103), the backscattered current at a QPC
is dominated by the tunneling term cos(φ′T

2 − φ′B
2 ), yielding

I b
1 ∝ V −11/15, (108)

while the tunneling current from a metallic lead is domi-
nated by the pair-tunneling term ψ

†
lead∂ψ

†
leade

iφ′T
1 −7iφ′T

2 , which
assumes a spin-polarized edge, and yields

I tun
2 ∝ V 11. (109)

As we discussed in Sec. VI, the ν = 16
5 state can have two

possible edge phases, one with

K1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 5

⎞
⎟⎟⎟⎠, (110)

which is essentially the edge of the ν = 1
5 state, together with

3 integer quantum Hall edges. The other possible phase has

K2 =

⎛
⎜⎜⎜⎝

2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2

⎞
⎟⎟⎟⎠. (111)

Upon enlarging by a pair of gapped modes, the two matrices
are related by K1 ⊕ σz = WT (K2 ⊕ σz)W , where

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 2 0 −1

−1 1 0 −4 0 2

1 −1 1 6 0 −3

−1 1 −1 −8 1 4

0 0 0 5 0 −2

−1 1 −1 −10 1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (112)

If the gapped modes are oppositely charged holes, then the
following perturbation carries no charge:

S ′ =
∫

dx dt u′ cos(−φ1 + φ2 − φ3 − 5φ4 + φ5 + 3φ6).

(113)

If this perturbation is relevant, it will gap out a pair of
modes and leave behind an effective theory described by the
K-matrix (111).

The two edge phases of the ν = 16
5 state can be distin-

guished by the voltage dependence of the current backscattered
at a quantum point contact and the tunneling current from a
metallic lead. In the K1 edge phase, the backscattered current
at a QPC is dominated by the quasiparticle backscattering term
cos(φT

4 − φB
4 ), yielding the current-voltage relation

I b
1 ∝ V −3/5. (114)

In the K2 edge phase, there are several terms that are equally
most relevant, including, for example cos(φ′T

1 − φ′B
1 ), which

yield the current-voltage relation

I b
2 ∝ V 3/5. (115)

Meanwhile, in the K1 edge phase, single-electron tunneling
from a metallic lead given by, for example, ψ

†
leade

iφT
1 , yields

the dependence

I tun
1 ∝ V, (116)

while in the K2 edge phase there are only pair-tunneling terms;
one such term for a spin-polarized edge is ψ

†
lead∂ψ

†
leade

iφ′T
1 +iφ′T

4 ,
which yields

I tun
2 ∝ V 5. (117)

We now consider an example of a bosonic fractional
quantum Hall state with ν = 12

23 ,

Kb
1 =

(
2 3

3 16

)
, (118)

and t = (1,1)T . [This is a natural choice of charge vector for
bosonic atoms in a rotating trap. For paired electrons in a
magnetic field, it would be more natural to have t = (2,2)T .]
By a construction similar to the one discussed in the fermionic
cases of ν = 8,12, 8

7 , 8
15 and the bosonic integer quantum Hall

cases of ν = 8,16, this state has another edge phase described
by

Kb
2 =

(
4 1

1 6

)
(119)

and t = (1, − 1)T . As in the previous cases, the two edge
phases can be distinguished by transport through a QPC or
tunneling from a metallic lead.

VIII. SOME REMARKS ON GENERA OF LATTICES AND
BULK TOPOLOGICAL PHASES

The focus in this paper is on the multiple possible gapless
edge phases associated with a given bulk topological phase.
However, having established that the former correspond to
lattices while the latter correspond to genera of lattices (or,
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possibly, pairs of genera of lattices), we note here that some
results on genera of lattices published by Nikulin in Ref. [23]
have direct implications for bulk topological phases. We hope
to explore these relations more thoroughly in the future.

We begin by noting that the data that determine a genus
of lattices are precisely the data that determine a (2 + 1)D
Abelian topological phase. Recall that the elements of the
discriminant group A of a lattice form the particle content
of an Abelian topological phase. We can turn this around by
noting that the particle content and fusion rules of any Abelian
topological phase can be summarized by an Abelian group
A whose elements are the particle types in the theory and
whose multiplication rules give the fusion rules of the theory.
The fusion rules take the form of the multiplication rules of
an Abelian group because only one term can appear on the
right-hand side of the fusion rules in an Abelian topological
phase. Meanwhile, specifying the S matrix for the topological
phase is equivalent to giving a bilinear form on the Abelian
group A according to S[v],[v′] = 1√|A|e

−2πib([v],[v′]). A quadratic
form q on the Abelian group A determines the topological twist
factors or, equivalently, the T matrix of an Abelian topological
phase according to θ[v] = e2πiq([v]). Finally, the signature of
the form, the number of positive and negative eigenvalues r+
and r− of the quadratic form q, determines the right and left
central charges, according to cR = r+ and cL = r−. The chiral
central charge c− = cR − cL is given by c− = r+ − r− which,
in turn, determines the modular transformation properties of
states and, consequently, the partition functions of the bulk
theory on closed 3-manifolds (e.g., obtained by cutting a torus
out of S3, performing a Dehn twist, and gluing it back in).
The signature is determined (mod 8) by the quadratic form q,
according to the Gauss-Milgram sum

1√|A|
∑
a∈A

e2πiq(a) = e2πic−/8.

We now consider Nikulin’s Theorem 1.11.3, given in Sec. V
and also his result:

Proposition 1.11.4. There are at most four possible values
for the signature (mod 8) for the quadratic forms associated
with a given bilinear form on the discriminant group.

Theorem 1.11.3 (given in Sec. V) states that the S matrix
and r+ − r− (mod 8) completely and uniquely determine the T

matrix, up to relabelings of the particles that leave the theory
invariant. In Sec. VI we show constructively that such a T

matrix exists in the fermionic case. Proposition 1.11.4 tells
us that, for a given S matrix, there are at most four possible
values for the signature r+ − r− (mod 8) and, therefore, at most
four possible T matrices. One way to interpret this is that the
elements of the T matrix are the square roots of the diagonal
elements of the S matrix; therefore, they can be determined, up
to signs from the S matrix. There are, at most, four consistent
ways of doing this, corresponding to, at most, four possible
values of the Gauss-Milgram sum.

Then, Corollary 1.10.2, stated in Sec. VI, tells us that the
quadratic form defines an even lattice. Thus, to any fermionic
Abelian topological phase, we can associate a bosonic Abelian
topological phase with the same particle types, fusion rules,
and S matrix. The bosonic phase has a well-defined T matrix,
unlike the fermionic phase. In addition, we have the following:

Theorem 1.3.1. Two lattices S1 and S2 have isomorphic
bilinear forms on their discriminant groups if and only if there
exist unimodular lattices L1, L2 such that S1 ⊕ L1

∼= S2 ⊕ L2.
In other words, two lattices have isomorphic bilinear forms

if they are stably equivalent under direct sum with arbitrary
unimodular lattices, i.e., if we are allowed to take direct sums
with arbitrary direct sums of σx , σz, 1, and KE8 . One example
of this is two lattices in the same genus. They have the same
parity, signature, and bilinear form and are stably equivalent
under direct sum with σx , as required by the theorem. However,
we can also consider lattices that are not in the same genus.
The example that is relevant to the present discussion is a pair
of theories, one of which is fermionic and the other bosonic.
They have the same S matrix but may not have the same
chiral central charges. The theorem tells us that the difference
can be made up with unimodular theories. But since σx and
σz do not change the chiral central charge, the unimodular
lattices given by the theorem must be hypercubic lattices. (In
the fermionic context, the E8 lattice is σz-stably equivalent
to the eight-dimensional hypercubic lattice.) In other words,
every fermionic Abelian topological phase is equivalent to a
bosonic Abelian topological phase, together with some number
of filled Landau levels.

Finally, we consider Nikulin’s Corollary 1.16.3, given in
Sec. V, which states that the genus of a lattice is determined
by its parity, signature, and bilinear form on the discriminant
group. Recall that the parity of a lattice is even or odd
according to whether its K matrix is even or odd. The
even case can occur in a purely bosonic system while the
odd case necessarily requires “fundamental” fermions, i.e.,
fermions that braid trivially with respect to all other particles.
Therefore, specifying the parity, signature, and bilinear form
on an Abelian group A is equivalent to specifying (1)
whether or not the phase can occur in a system in which
the microscopic constituents are all bosons, (2) the S matrix,
and (3) the chiral central charge. (According to the previous
theorem, the T matrix is determined by the latter two.)
This is sufficient to specify any Abelian topological phase.
According to Corollary 1.16.3, these quantities specify a genus
of lattices. Thus, given any Abelian topological phase, there
is an associated genus of lattices. We can take any lattice in
this genus, compute the associated K matrix (in some basis),
and define a U(1)r++r− Chern-Simons theory. A change of
basis of the lattice corresponds to a change of variables in
the Chern-Simons theory. Different lattices in the same genus
correspond to different equivalent U(1)r++r− Chern-Simons
theories for the same topological phase. Therefore, it follows
from Corollary 1.16.3 that every Abelian topological phase
can be represented as a U(1)N Chern-Simons theory.

IX. DISCUSSION

A theoretical construction of a bulk quantum Hall state
typically suggests a particular edge phase, which we will
call K1. The simplest example of this is given by integer
quantum Hall states, as we discussed in Secs. II and VII.
However, there is no reason to believe that the state observed
in experiments is in this particular edge phase K1. This is
particularly important because the exponents associated with
gapless edge excitations, as measured through quantum point
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contacts, for instance, are among the few ways to identify the
topological order of the state [41,42]. In fact, such experiments
are virtually the only way to probe the state in the absence
of interferometry experiments [43–49] that could measure
quasiparticle braiding properties. Thus, given an edge theory
K2 that is deduced from experiments, we need to know if a
purely edge phase transition can take the system from K1 to
K2; in other words, whether the edge theory K2 is consistent
with the proposed theoretical construction of the bulk state. We
would also like to predict, given an edge theory K2 deduced
from experiments, what other edge phases K3,K4, . . . might be
reached by tuning parameters at the edge, such as the steepness
of the confining potential. In this paper, we have given answers
to these two questions.

The exotic edge phases at ν = 8,12 discussed in this paper
may be realized in experiments in a number of materials
which display the integer quantum Hall effect. These include
Si-MOSFETs [50], GaAs heterojunctions and quantum wells
(see, e.g., Refs. [51,52] and references therein), InAs quanutm
wells [53], graphene [54], and polar ZnO/MgxZn1−xO inter-
faces [55]. In all of these systems, edge excitations can interact
strongly and could be in an E8 phase at ν = 8 or the D+

12 phase
or the E8 ⊕ I4 phase at ν = 12. To the best of our knowledge,
there are no published studies of the detailed properties of edge
excitations at these integer quantum Hall states.

The edge phase that we have predicted at ν = 16
5 could

occur at the ν = 3 + 1
5 state that has been observed [56] in a 31

million cm2/Vs mobility GaAs quantum well. This edge phase
is dramatically different than the edge of the ν = 1

5 Laughlin
state weakly coupled to three filled Landau levels. Meanwhile,
a ν = 8

15 state could occur in an unbalanced double-layer
system (or, possibly, in a single wide quantum well) with ν = 1

3

and 1
5 fractional quantum Hall states in the two layers. Even

if the bulks of the two layers are very weakly correlated, the
edges may interact strongly, thereby leading to the alternative
edge phase that we predict. Finally, if a ν = 8

7 state is observed,
then, as in the two cases mentioned above, it could have an
edge phase without gapless fermionic excitations.

We have focused on the relationship between the K matrices
of different edge phases of the same bulk. However, in a
quantum Hall state, there is also a t vector, which specifies how
the topological phase is coupled to the electromagnetic field.
An Abelian topological phase specified by a K matrix splits
into several phases with inequivalent t vectors. Therefore, two
different K matrices that are stably equivalent may still belong
to different phases if the corresponding t vectors are not related
by the appropriate similarity transformation. However, in all
of the examples that we have studied, given a (K,t) pair, and
a K ′ stably equivalent to K , we were always able to find a
t ′ related to t by the appropriate similarity transformation.
Said differently, we were always able to find an edge phase
transition driven by a charge-conserving perturbation. It would
be interesting to see if there are cases in which there is no
charge-conserving phase transition between stably equivalent
K , K ′ so that charge-conservation symmetry presents an
obstruction to an edge phase transition between K , K ′.

When a bulk topological phase has two different edge
phases, one that supports gapless fermionic excitations and
one that does not, as is the case in the ν = 8 integer quantum

Hall state and the fractional states mentioned in the previous
paragraph, then a domain wall at the edge must support a
fermionic zero mode. For the sake of concreteness, let us
consider the ν = 8 IQH edge. Suppose that the edge of the
system lies along the x axis and the edge is in the conventional
phase with K = I8 for x < 0 and the KE8 phase for x > 0.
The gapless excitations of the edge are fully chiral; let us take
their chirality to be such that they are all right moving. A
low-energy fermionic excitation propagating along the edge
can not pass the origin since there are no gapless fermionic
excitations in the E8 phase. But since the edge is chiral, it can
not be reflected either. Therefore, there must be a fermionic
zero mode at the origin that absorbs it.

We discussed how the quadratic refinement allows us to
relate a given fermionic theory to a bosonic one. One example
that we considered in detail related K1 = (1 0

0 7) to K2 = (2 1
1 4).

Both of these states are purely chiral. However, we noted
that we are not restricted to relating purely chiral theories;
we could have instead considered a transition between the
ν = 1

7 Laughlin edge and the nonchiral theory described by

K = (
2 1 0
1 4 0
0 0 −1

). This transition does not preserve chirality, but

the chiral central charges of the two edge theories are the
same. It can be shown that there exist regions in parameter
space where the nonchiral theory is stable: for example, if the
interaction matrix, that we often write as V , is diagonal, then
the lowest dimension backscattering operator has dimension
equal to 4. Even more tantalizingly, it is also possible to
consider the ν = 1

3 Laughlin edge which admits an edge

transition to the theory described by K ′ = (−2 −1
−1 −2) ⊕ I3×3.

The upper left block is simply the conjugate or (−1) times
the Cartan matrix for SU(3)1. About the diagonal V matrix
point, the lowest dimension backscattering term is marginal;
it would be interesting to know if stable regions exist.

The theory of quadratic refinements implies that any
fermionic TQFT can be realized as a bosonic one, together
with some filled Landau levels, as we discussed at the end
of Sec. VIII. In particular, it suggests the following picture:
a system of fermions forms a weakly paired state in which
the phase of the complex pairing function winds 2N times
around the Fermi surface. The pairs then condense in a bosonic
topological phase. The winding of the pairing function gives
the additional central charge (and, if the fermions are charged,
the same Hall conductance) as N -filled Landau levels. The
remarkable result that follows from the theory of quadratic
refinements is that all Abelian fermionic topological phases
can be realized in this way.

In this paper, we have focused exclusively on fully chiral
states. However, there are many quantum Hall states that are
not fully chiral, such as the ν = 2

3 states. The stable edge
phases of such states correspond to lattices of indefinite signa-
ture. Once again, bulk phases of bosonic systems correspond
to genera of lattices while bulk phases of fermionic systems
correspond either to genera of lattices or to pairs of genera,
one even and one odd. Single-lattice genera are much more
common in the indefinite case than in the definite case [31].
If an n-dimensional genus has more than one lattice in it then
4[ n

2 ]d is divisible by k(n

2) for some nonsquare natural number k
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satisfying k ≡ 0 or 1 (mod 4), where d is the determinant of
the associated Gram matrix (i.e., the K matrix). In particular,
genera containing multiple equivalence classes of K matrices
must have determinant greater than or equal to 17 if their rank
is 2; greater than or equal to 128 if their rank is 3; and 5(n

2) or
2 × 5(n

2) for, respectively, even or odd rank n � 4.
Quantum Hall states are just one realization of topological

phases. Our results apply to other realizations of Abelian
topological states as well. In those physical realizations which
do not have a conserved U(1) charge (which is electric
charge in the quantum Hall case), there will be additional
U(1)-violating operators which could tune the edge of a system
between different phases.

Although we have, in this paper, focused on Abelian
quantum Hall states, we believe that non-Abelian states can
also have multiple chiral edge phases. This will occur when
two different edge conformal field theories with the same chiral
central charge are associated with the same modular tensor
category of the bulk. The physical mechanism underlying
the transitions between different edge phases associated with
the same bulk is likely to be the same as the one discussed
here. In this general case, we will not be able to use results
on lattices and quadratic forms to find such one-to-many
bulk-edge correspondences. Finding analogous criteria would
be useful for interpreting experiments on the ν = 5

2 fractional
quantum Hall state.
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APPENDIX A: A NONTRIVIAL EXAMPLE OF USING THE
GAUSS-SMITH NORMAL FORM TO FIND THE

DISCRIMINANT GROUP

We now apply the method described in Sec. V to the SO(8)1

theory, which is given by the following K matrix:

K =

⎛
⎜⎜⎜⎝

2 0 1 0

0 2 −1 0

1 −1 2 −1

0 0 −1 2

⎞
⎟⎟⎟⎠. (A1)

It is not clear, simply by inspection, what vectors correspond
to generators of the fusion group.

The Gauss-Smith normal form is

D =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

⎞
⎟⎟⎟⎠. (A2)

Hence, the fusion group of the theory is Z/2 × Z/2 and the Q
matrix

Q =

⎛
⎜⎜⎜⎝

2 0 1 0

3 1 0 1

2 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎠. (A3)

So the fusion group is generated by the two quasiparticles
corresponding to (2,0,0,1) and (1,0,0,0). We can then compute
the S, T matrices and the result agrees with what is known (all
nontrivial quasiparticles are fermions and they have semionic
mutual braiding statistics with each other).

Another useful piece of information from the Smith normal
form is that the discriminant group for a 2 × 2K matrix

K =
(

a b

b c

)
(A4)

with gcd(a,b,c) = 1 and d = |ac − b2| is Z/d. More gener-
ally, it is Z/f × Z/(d/f ) when gcd(a,b,c) = f .

APPENDIX B: PROOF THAT w ∈ � EXISTS SUCH THAT
λ · λ ≡ λ · w mod 2 for all λ ∈ �

We begin by showing that for any K matrix there exists a
set of integers wJ such that

KII ≡
N∑

J=1

KIJ wJ mod 2, for all I, (B1)

where N is the dimension of the K matrix.
Assume the K matrix has M � N rows that are linearly

independent mod 2; denote these rows R1, . . . ,RM and define
the set R = {Ri}. The linear independence of the Ri implies
that Eq. (B1) is satisfied for these rows, i.e., there exists a set
of integers (w0)J satisfying

KII ≡
N∑

J=1

KIJ (w0)J mod 2, for all I ∈ R. (B2)

For a row I �∈ R, the elements of the I th row in K can be
written as a linear combination of the rows in R:

KIJ ≡
∑
Ri∈R

cIRi
KRiJ mod 2, for I �∈ B, (B3)

where the cIRi
∈ {0,1} are coefficients. It follows that, for

I �∈ R,

KII ≡
∑
Ri∈R

cIRi
KRiI ≡

∑
Ri∈R

cIRi
KIRi

≡
∑

Ri,Rj ∈R

cIRi
cIRj

KRiRj
≡

∑
Ri∈R

c2
IRi

KRiRi

≡
∑
Ri∈R

cIRi
KRiRi

mod 2. (B4)
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Furthermore, for I �∈ R

N∑
J=1

KIJ (w0)J ≡
N∑

J=1

∑
Ri∈R

cIRi
KRiJ (w0)J ≡

∑
Ri∈R

cIRi
KRiRi

mod 2. (B5)

Hence, for I �∈ R, KII ≡ ∑N
J=1 KIJ (w0)J mod 2. Since this equation already holds for I ∈ R, we have shown that w0 is a

solution to Eq. (B1).
It follows that for any choice of λ = λJ eJ ∈ �,

λ · λ =
N∑

I,J=1

λIλJ KIJ ≡
N∑

I=1

λIKII ≡
N∑

I=1

λI

N∑
J=1

KIJ (w0)J ≡ λ · w0 mod 2, (B6)

where w0 = (w0)J eJ is a vector in �.

APPENDIX C: RELEVANT LARGE MATRICES

Here we define matrices referred to in Sec. VII:

KE8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 0 0

0 −1 0 0 0 0 2 −1

0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

W8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5 −5 −5 5 5 5 5 5 8 16

−10 −10 −10 9 9 9 9 9 15 30

−8 −8 −8 8 7 7 7 7 12 24

−6 −6 −6 6 6 5 5 5 9 18

−4 −4 −4 4 4 4 3 3 6 12

−2 −2 −2 2 2 2 2 1 3 6

−7 −7 −6 6 6 6 6 6 10 20

−4 −3 −3 3 3 3 3 3 5 10

1 1 1 −1 −1 −1 −1 −1 −3 −4

−2 −2 −2 2 2 2 2 2 4 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C2)

KD+
12

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 0 0 0 0 0 0 0 0 −1

0 2 −1 0 0 0 0 0 0 0 0 0

1 −1 2 −1 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 0 0 −1 2 0

−1 0 0 0 0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)
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W12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 6 6 −6 −6 −6 −6 −6 −6 −6 −6 −6 0 22

−9 −4 −5 5 5 5 5 5 5 5 5 5 0 18

−18 −9 −9 10 10 10 10 10 10 10 10 10 0 36

−16 −8 −8 8 9 9 9 9 9 9 9 9 0 32

−14 −7 −7 7 7 8 8 8 8 8 8 8 0 28

−12 −6 −6 6 6 6 7 7 7 7 7 7 0 24

−10 −5 −5 5 5 5 5 6 6 6 6 6 0 20

−8 −4 −4 4 4 4 4 4 5 5 5 5 0 16

−6 −3 −3 3 3 3 3 3 3 4 4 4 0 12

−4 −2 −2 2 2 2 2 2 2 2 3 3 0 8

−2 −1 −1 1 1 1 1 1 1 1 1 2 0 4

3 2 2 −2 −2 −2 −2 −2 −2 −2 −2 −2 0 −7

0 0 0 0 0 0 0 0 0 0 0 0 1 0

2 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −4

⎞
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