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Empirical Monod-Beuneu relation of spin relaxation revisited for elemental metals
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Monod and Beuneu [P. Monod and F. Beuneu, Phys. Rev. B 19, 911 (1979)] established the validity of the Elliott-
Yafet theory for elemental metals through correlating the experimental electron spin resonance linewidth with
the so-called spin-orbit admixture coefficients and the momentum-relaxation theory. The spin-orbit admixture
coefficients data were based on atomic spin-orbit splitting. We highlight two shortcomings of the previous
description: (i) the momentum-relaxation involves the Debye temperature and the electron-phonon coupling
whose variation among the elemental metals was neglected, (ii) the Elliott-Yafet theory involves matrix elements
of the spin-orbit coupling (SOC), which are however not identical to the SOC induced energy splitting of
the atomic levels, even though the two have similar magnitudes. We obtain the empirical spin-orbit admixture
parameters for the alkali metals by considering the proper description of the momentum relaxation theory. In
addition we present a model calculation, which highlights the difference between the SOC matrix element and
energy splitting.
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I. INTRODUCTION

Information storage and processing using spins, referred
to as spintronics [1], is an actively studied subject [2]. The
interest has been renewed by the prospect of using graphene for
spintronics although the results are as yet controversial [3–9].

Spintronics exploits that spin-relaxation time, τs , exceeds
the momentum-relaxation time, τ , by several orders of
magnitude. τs gives the characteristic time scale on which
a nonequilibrium spin ensemble, either induced by electron
spin resonance [10] or by a spin-polarized current [11,12],
decays to the equilibrium. It is thus the central parameter that
characterizes the effectiveness of spin transport and eventually
the utility of spintronics.

In metals with inversion symmetry, the mechanism of spin
relaxation is described by the Elliott-Yafet (EY) theory [13,14].
In the absence of spin-orbit coupling (SOC), there is no
relaxation between the spin-up and spin-down states. However,
SOC induces spin mixing and the resulting admixed states
read:

| +̃〉k = [ak(r) |+〉 + bk(r) |−〉]eikr, (1)

| −̃〉k = [
a∗

−k(r) |−〉 − b∗
−k(r) |+〉]eikr, (2)

where |+〉 and |−〉 are the pure spin states and | +̃〉k, | −̃〉k are
the perturbed Bloch states. The admixture strength is given by
the so-called spin-orbit admixture coefficient (SOAC), which
in the first order of the SOC is: |bk|

|ak| ∝ L
�E

, where L is the
matrix element [15] of the SOC for the conduction and the near
lying band with an energy separation of �E. We note that for
metals with inversion symmetry, the admixed spin-up and spin-
downstates of the conduction band remain degenerate in the
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absence of magnetic field due to the time-reversal symmetry
(or Kramers’ theorem).

Elliott showed [13] that the usual momentum scattering
induces spin transitions for the admixed states, i.e., a spin
relaxation, whose magnitude is

1

τs

= α1

(
L

�E

)2 1

τ
, (3)

where α1 is a band-structure-dependent constant near unity.
Elliott further showed that the magnetic energy of the

admixed states is different from that of the pure spin states,
i.e., there is a shift in the electron gyromagnetic factor, or g

factor:

�g = g − g0 = α2
L

�E
, (4)

where g0 ≈ 2.0023 is the free electron g factor, α2 is another
band-structure-dependent constant near unity. Equations (3)
and (4) result in the so-called Elliott relation

1

τs

= α1

α2
2

�g2

τ
, (5)

which links three empirical measurables; τs , τ , and �g.
In practice, the spin-relaxation time is obtained for metals
from conduction electron spin resonance (CESR) measure-
ments [16]. This yields τs directly from the homogeneous
ESR linewidth, �B through τs = (γ�B)−1, where γ /2π =
28.0 GHz/T is the electron gyromagnetic ratio. The CESR
resonance line position yields the g-factor shift.

Although, the original theory of Elliott [13] involves
the momentum-scattering time τ , the transport momentum-
scattering time τtr is more readily obtained from the spe-
cific resistivity, ρ through: ρ−1 = ε0ω

2
plτtr, where ε0 is the

vacuum permittivity and ωpl is the plasma frequency. The
two momentum-scattering times differ in a constant at high
temperature but have a characteristically different temperature
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dependence at low T : τ ∝ T −3 and τtr ∝ T −5 (for scattering
due to phonons). Yafet showed that the low-temperature
spin-relaxation time also follows a T −5 law [14]. This allows
us to summarize the Elliott-Yafet relation as:

�B = α1

α2
2

�g2ε0ω
2
plρ. (6)

Monod and Beuneu contributed to the field with two
seminal papers [17,18]: in Ref. [17] they tested the Elliott
relation by collecting �B and �g data for elemental metals.
They found that the Elliott relation is valid with α1

α2
2

≈ 10 for
alkali metals (except for Li) and for monovalent transition
metals (Cu, Ag, and Au). It is interesting to note that the
validity of the Elliott relation has since been confirmed for
alkali fullerides [19] and intercalated graphite [20]. Deviations
from the Elliott relation for polyvalent metals (such as Mg and
Al) were explained by Fabian and Das Sarma by considering
the unique details of the band structure where the SOC is
enhanced, which is known as the spin hot-spot model [21,22].

In their second seminal paper (Ref. [18]), Monod and
Beuneu attempted to correlate the spin-relaxation data with
estimated spin-orbit admixture constants. The energy splitting
of a relevant atomic state due to SOC was used as an estimate
for the matrix element of the SOC between the conduction
and a near-lying state. For example, for Na, the definition of
the relevant quantities is given in Fig. 1 and the conduction
band is the 3s state; the SOAC is either the �3p/�E3s;3p

or �2p/�E3s;2p, whichever of the two ratios is the greater.
For Na, it is the �2p/�E3s;2p ratio and the situation is
depicted in Fig. 1. Monod and Beuneu found that the ESR
linewidth data, when normalized by the larger of the two
possible ratios squared, �B(�E

L
)2, falls on the same universal

Grüneisen function for the alkali atoms (Na, K, Rb, and Cs)
and for the monovalent transition metals (Cu, Ag, and Au)
as a function of the normalized temperature T/TD (TD is the
Debye temperature). Much as Ref. [18] became a standard for
our understanding of the spin relaxation in elemental metals,
it has some shortcomings and widespread misinterpretations
in the literature, which motivates the present revision.

First, the transport momentum-relaxation time scales with
the transport electron-phonon coupling λtr and the Debye

ΔE3s;2p=30.6eV

ΔE3s;3p=2.12eV

3s

3p

2p

Δ3p=2.12×10-3eV

Δ2p=0.16eV

FIG. 1. The level scheme (not to scale), which is relevant
for the spin-orbit admixture in Na. Note that (�3p/�E3s;3p) <

(�2p/�E3s;2p), the latter therefore dominates the SOAC.

temperature TD, which was neglected in Ref. [18]. Second, it
is not immediately clear why the SOC-induced atomic energy
splittings should be identical to the spin-orbit matrix elements,
even though one expects similar orders of magnitude. This
uncertainty led to a confusion concerning what is meant by
the SOC strength (e.g., Refs. [1,23–30]). When investigated in
detail, one finds that the agreement between the scaled ESR
linewidth and the universal Grüneisen function is a result of
the neglected TD and λtr dependence. We note that the first
hint that the atomic picture is not sufficient to explain the spin-
relaxation properties came from the above-mentioned works of
Fabian and Das Sarma [21,22] who showed that band-structure
effects play an important role in aluminium and in other
polyvalent metals. The same authors have also presented [26] a
revised Monod-Beuneu relation by considering the role of TD.

Herein, we show that in Ref. [18] the variation of the
transport electron-phonon coupling constant and TD among
the different metals was neglected, which, however, affects the
value of τtr. We show that the agreement between the scaled
ESR linewidth and the universal Grüneisen function, which
was found in Ref. [18] is a result of the neglected TD and λtr

dependencies. We present an analysis to provide the empirical
spin-orbit admixture coefficients, which could serve as an input
for future first-principles-based calculations. We also show that
while the atomic spin-orbit splitting energies have the same
order of magnitude as the matrix elements of the SOC between
adjacent bands, they are not identical. We provide a model
calculation involvings andp states with spin-orbit coupling to
explicitly show that the atomic SOC-induced energy splitting
is not identical to the SOC matrix element, the latter being
sensitive to the s-p hybridization, i.e., for the details of the
band-structure.

II. RESULTS AND DISCUSSION

A. Spin-orbit admixture parameters

In Ref. [18], Monod and Beuneu investigated the scaling of
the normalized ESR linewidth with the transport momentum-
relaxation time, τtr, and found that the normalized ESR
linewidth data falls on a universal Grüneisen function [31]:

�B

(
�E

L

)2

= const
T

TD
GMB

(
TD

T

)
,

(7)

where GMB(x) = 4x−4

[
5
∫ x

0

z4dz

ez − 1
− x5

ex − 1

]
,

where the constant was considered to be metal independent.
The L/�E SOAC data were based on atomic spectra and were
taken from Ref. [14]. The Grüneisen function, GMB, used by
Monod and Beuneu was taken from Ref. [31]. The original
paper, Ref. [18], did not explicitly mention the normalization
with TD. However since a single, universal Grüneisen function
was argued to represent well the data [18], this presentation im-
plies the T −1

D factor. This, as we show below, makes the value
of the SOAC uncertain. The role of the spin-orbit coupling
admixture is discussed further below and here we first focus on
the parameters of the transport momentum-scattering theory.

The contemporary description of the transport momentum-
relaxation for alkali metals within the Debye model assuming
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TABLE I. The electron-phonon coupling constants from Ref. [33]
and Debye temperatures from Ref. [34] of alkali elements. We also
give the (L/�E)2 values from Ref. [18] (in the original notation
(λ/�E)2). The fitted values of (L/�E)2 are determined herein.

Alkali element λtr TD [K] atomic (L/�E)2 fitted (L/�E)2

Na 0.14 158 2.73 × 10−5 3.81 × 10−6

K 0.11 91 2.06 × 10−4 8.99 × 10−5

Rb 0.15 56 3.16 × 10−3 2.96 × 10−3

Cs 0.16 38 1.91 × 10−2 3.08 × 10−2

zero residual scattering reads [32]:

1

τtr
= 2πkB

�
λtrT G

(
T

TD

)
,

(8)

where G(x) =
∫ 1

0
du

u5

x2 sinh2[u/(2x)]
,

where kB and � are the Boltzmann and Planck constants,
respectively and λtr is the transport electron-phonon coupling
constant. The two forms of the Grüneisen function, G(x) and
GMB(1/x), in Eqs. (7) and (8) are equivalent.

Equation (8) when substituted into Eq. (3) reads for the
normalized ESR linewidth:

�B

(
�E

L

)2

= α1
2πkB

γ �
λtrT G

(
T

TD

)
. (9)

Clearly, an uncertainty remains due to the parameter α1, which
is, however, supposed to be around unity and the same for
all alkali metals [13]. Equation (9) allows us to introduce a
universal function:

F (x) = 2πkB

γ �
xG(x), (10)

which yields the final result of

�B

(
�E

L

)2

= α1TDλtrF

(
T

TD

)
. (11)

The left-hand side of Eq. (11) is proportional to α1, TD, and
λtr. However Monod and Beuneu plotted the measured ESR
linewidths while neglecting the variation of TDλtr among the
alkali metals, even though it can amount to a factor 4.

In Table I, we give values of λtr and TD for the four alkali
metals. We also give the SOAC values as used by Monod and
Beuneu for the scaling. We proceed with the analysis of the
available data by using the values of λtr and TD given in Table I.
The �B(�E

L
)2 data is taken from Ref. [18].

In Fig. 2, we show �B(�E
L

)2/TDλtr versus T/TD. The
universal F (x) function from Eq. (10) is also shown. Clearly,
the normalized linewidth data do not fall on the same curve
when the variation of λtr and TD among the four alkali metals
is taken into account. This means that the atomic SOC-
induced energy splitting per the energy difference between the
adjacent states do not approximate well the real SOAC values.
Accidentally, the data for Rb lies well on the plot indicating
that then the proper SOAC value is well approximated by the
atomic one.

FIG. 2. (Color online) The experimental �B(�E/L)2/λtrTD

plotted against T/TD. It is important to note that the atomic values
of (�E/L)2 are used herein for the scaling (such as it was done by
Monod and Beuneu). Solid curve shows the universal F (x) function
after Eq. (10). Note that the linewidth data do not fall on the same
universal curve.

Once the relevance of TD and λtr is recognized, we use the
experimental data to determine the experimental SOAC. In
Fig. 3, we show the SOAC values that are determined herein
and those considered by Monod and Beuneu in Ref. [18]. We
observe a non-negligible difference between the values used
previously and those that are obtained considering the role of
λtr and TD. We remind that some uncertainty in the empirical
parameters remains though (which could amount to a factor
4), due to the band-structure-dependent constant α1, whose
value is expected to show little variation among the alkali
metals. Nevertheless, the present empirical values could be
used as input for improved first-principles calculations, which
consider the band structure of these elements including spin-
orbit coupling. Naturally, such calculations were unavailable
at the time of Ref. [18], therefore our refinement of the values

FIG. 3. Comparison of the herein determined spin-orbit admix-
ture coefficients and the values used by Monod and Beuneu in
Ref. [18]. The values for Na are multiplied by 10 for better visibility.
Note the agreement for Rb between the present values and those
determined previously.
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do not detract from the merit of the original work, which
highlighted the role of the atomic spin-orbit coupling.

B. Matrix element of the spin-orbit coupling

As mentioned above, Monod and Beuneu [18] estimated the
spin-orbit admixture coefficients, L/�E, using values based
on atomic ones: for L, the atomic SOC-induced energy split-
ting of a p orbital (adjacent to an s orbital based conduction
band) and for �E the corresponding energy separation was
used. While the energy separation between atomic orbitals
is a good approximation for band-band separations (given
that usual bandwidths are an order of magnitude smaller than
energy separations in alkali metals), L is a matrix element
between neighboring s and p orbitals in the Elliott theory
and not the energy splitting for a p orbital. It is therefore
not straightforward why the energy splitting should equal the
matrix element of the SOC between the s and p orbitals.

The Elliott-Yafet theory involves the matrix elements of the
SOC Hamiltonian, which reads for a radial symmetry of the
interaction as

HSO = �
2

2m2
0c

2

1

r

∂V

∂r
L · S = λ(r)L · S, (12)

where m0 is the free electron mass. We denote the matrix
elements of the SOC by Ln;n′ between the conduction band
indexed by n and an adjacent one with n′, and the correspond-
ing energy separation between the bands with �En;n′ . The spin
relaxation is dominated by that neighboring band for which the
Ln;n′/�En;n′ ratio is larger. For example, for alkali metals, the
conduction band is based on the n, s orbital, and the dominant
spin-orbit state turns out to be the n − 1 p state (see Fig. 1).

In the presence of the SO interaction, the sixfold degenerate
atomic p state splits in accord with j = 3/2 and j = 1/2,
where j is the total angular momentum, which becomes a good
quantum number instead of l and s. The SO matrix elements
are given for the hydrogen as

Lj=3/2 = 1
2 lλ, Lj=1/2 = − 1

2 (l + 1)λ (13)

with

λ =
∫ ∞

0
R2

n,l(r)λ(r)r2dr, (14)

where Rn,l(r) denotes the radial component of the hydrogen
wave functions. Thus, the energy splitting of the p state is
expressed as

�p = Lj=3/2 − Lj=1/2 = 1/2(2l + 1)λ. (15)

In Fig. 4, we show the comparison between the energy split-
tings �p with different n and the experimental data available
from Ref. [35]. The two sets of data match within 0.2 %,
which demonstrates that the calculation works accurately for
hydrogen.

Monod and Beuneu used the SOC-induced energy splitting
parameters for the SO matrix elements involved in the Elliott-
Yafet theory. We demonstrate herein that the two quantities
are not equal in general, i.e., Ln;n′ �= �n′(= �SO) even though
they both originate from the SOC.

As the simplest model to discuss spin relaxation in alkali
metals such as Na shown in Fig. 1, we consider electrons

FIG. 4. Comparison between the SOC splittings for hydrogen
calculated according to Eq. (15) and the experimental, spectroscopy
based values from Ref. [35].

moving on a simple cubic lattice with an s and a p state at
each site [36]. The Hamiltonian of this model is given as

H = H0 + HSO; (16)

H0 = Hkin + Hhyb + Hs + Hp

=
∑
i,δ

∑
σ

∑
m=s,x,y,z

tmc
†
i,mσ ci+δ,mσ

+
∑
i,δ

∑
σ

∑
m=x,y,z

vsm,δ(c†i,sσ ci+δ,mσ + H.c.)

+Es

∑
i σ

c
†
i,sσ ci,sσ + Ep

∑
i σ

∑
m=x,y,z

c
†
i,mσ ci,mσ , (17)

HSO = λ
∑

i

Li · Si , (18)

where we regard the spin-orbit interaction HSO as perturbation
in addition to the principal part, H0, which includes the
kinetic energy with the hopping parameters tm, the s-p mixing
described by the hybridization parameters vsm,δ , and the s and
p state on-site energies Es and Ep, respectively. The operator
c
†
i,mσ creates an electron with spin σ and orbital m at the lattice

site i, and vsm,δ = vsmemδ with δ being a vector that points to
a neighboring site and em is a unit vector parallel to the m axis.
After Fourier transformation, we obtain the band energies from
the hopping and the hybridization terms as

εm(k) = 2(cos kx + cos ky + cos kz)tm, (19)

Vsm(k) = 2i sin kmvsm, (20)

where we took the lattice constant as unity. We take tx = ty =
tz ≡ tp and vsx = vsy = vsz that gives Vsx = Vsy = Vsz ≡
iV /

√
3 in accord with the cubic symmetry of the lattice.

The atomic limit of the model given by H corresponds to
the case of vanishing s-p hybridization by taking Vsm = 0, i.e.,
when the sites are decoupled. In this limit, the p state splits
into a twofold (j = 1/2) and a fourfold (j = 3/2) degenerate
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multiplet with energy −λ and λ/2, respectively, which gives
the SO splitting �p = 3/2λ in agreement with Eq. (15).

The Elliott-Yafet theory involves the relevant SO matrix
elements between adjacent s and p states that are mixed due to
the presence of hybridization. We note that the matrix element
vanishes without hybridization, i.e., for the atomic limit. We
obtain the spin admixed states due to SOC and the SO matrix
elements L = Ls;p by diagonalizing the Hamiltonian, H0, and
by applying first-order perturbation theory with respect to the
SO interaction [37].

Figure 5 shows the effect of nonzero hybridization on the
originally pure s and p states in Na. Namely, the sixfold
degenerate p state splits into a quartet {p̃; ασ } and a doublet
due to the mixing with the above lying s state {̃s; σ }.
Considering the SOC as perturbation, it induces additional
spin mixing as expressed in Eqs. (1)–(2). For example, an
originally spin-down state of the quartet with dominantly p

character becomes mixed with a spin-up (and spin-down as
well) state of the doublet with dominantly s character as

|p̃; a↓̃〉 = |p̃; a↓〉 + L
�E

(
1√
2
|̃s; ↑〉 − i√

2
|̃s; ↓〉

)
, (21)

where L is the magnitude of the SO matrix element between
the quartet and the doublet and it reads

L = λV√
4V 2 + (Ẽ +

√
Ẽ2 + 4V 2)2

(22)

with Ẽ = Es − Ep + [εs(k) − εp(k)]. �E is the energy dif-
ference between the two states given as

�E = 1
2 (Ẽ +

√
Ẽ2 + 4V 2). (23)

By summing up the relevant Elliott-Yafet contribu-
tions [37], we obtain the spin-orbit admixture coefficient b

as

b = L

�E
= 2L

�E
. (24)

In the atomic limit (V = 0), the SO matrix element vanishes
between the s and p states as expected. However, L and the
corresponding SOAC are determined by the atomic energy

 0  1  2  3
V/ΔE3s;2p

ΔE3s;2p

Δ2p

ΔE

2p

3s

(a) (b) (c)

FIG. 5. Level splitting of 3s and 2p states (not to scale) in Na:
(a) without SOC and without hybridization; (b) in the atomic limit,
i.e., under vanishing hybridization V = 0; and (c) under nonzero s-p
hybridization, V , without SOC.

splitting Es − Ep = �Es;p, the band parameter εs(k) − εp(k),
the SO interaction λ, and the hybridization V .

Now, we turn to study the ratio b/bMB of the spin-orbit
admixture coefficients, where the Monod-Beuneu estimation,
bMB, of the spin-orbit admixture parameter is given as

bMB ≡ �p

�Es;p
(25)

since the SO matrix element is approximated by the atomic
SO energy splitting �p for the p orbital in their picture. The
limit of [εs(k) − εp(k)]/�Es;p → 0 corresponds to the case
where the bandwidths given as 4ts and 4tp for the s and p

bands, respectively, are assumed to be much smaller than the
s-p energy separation �Es;p. By taking εs(k) − εp(k) = 0 and
fixing the SOC interaction strength, λ, from the atomic energy
splitting �p as it is given in Eq. (15), the ratio b/bMB becomes
a universal function of V/�Es;p, which is shown in the top
panel of Fig. 6.

Next we take the atomic values of �Es;p for the alkali
metals Na, K, Rb, and Cs from Ref. [14] and estimate the
hybridization parameter as

V ≡ cV

d
, (26)

where d is the lattice constant being typically 4–6 Å, and cV is
a constant. The bottom panel of Fig. 6 shows the ratio b/bMB

calculated for the different alkali metals as a function of the
hybridization coefficient cV .

We observe that the calculated SOAC markedly differs
from the Monod-Beuneu estimation in the entire range of
the hybridization used in the calculation. Reasons for the
discrepancy can be that (i) we estimate the SO interaction

 0

 0.1

 0.2

 0  1  2  3  4  5

b/
b M

B

V/ΔE3s;2p

(a)

 0

 0.1

 0.2

 0  50  100  150  200

b/
b M

B

cV

(b)

Na
K

Rb
Cs

FIG. 6. (Color online) (a) The calculated ratio, b/bMB, as a
function of the s-p hybridization V/�Es;p with εs(k) − εp(k) = 0,
(b) the calculated ratio, b/bMB, for the various alkali metals as a
function of the hybridization coefficient, cV (the atomic parameter
values are taken from Ref. [14]).
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strength λ from the atomic energy splitting �p of the p orbital,
which might give smaller λ and therefore smaller SOAC than
the real ones; (ii) our model is too simple: although it yields
nonzero SO matrix element between the adjacent s and p

states, the only tunable parameter is the hybridization, V ,
if we assume small bandwidths. Nevertheless, based on the
evaluation of the s-p hybridization parameter as Vsp ∼ 4.2 eV
in graphene [3], we estimate the hybridization coefficient cV

being in the range of 1–40 eV Å , which gives the hybridization
V as 0.1–10 eV. In this range, i.e., for V/�Es;p < 1, the SOAC
ratio depends linearly on V/�Es;p as b/bMB ∼ V/�Es;p (see
the upper panel of Fig. 6, and also Eq. (B-4) in Ref. [37]).
Assuming that the hybridization coefficient, cV , does not
change substantially among the alkali metals, we obtain the
following relations for the SOAC in the different alkali metals

b

bMB

∣∣∣∣
Cs

>
b

bMB

∣∣∣∣
Rb

,
b

bMB

∣∣∣∣
Na,K

<
b

bMB

∣∣∣∣
Rb

(27)

from the bottom panel of Fig. 6. Since the lattice constant does
not vary much from Na to Cs either, the ratio b/bMB is roughly
proportional to 1/�Es;p, which explains the relations given
in Eq. (27) because �ECs

s;p < �ERb
s;p and �ENa, K

s;p > �ERb
s;p

obtained from Ref. [14].
We compare the calculated result in Fig. 6 and Eq. (27).,

with the empirical result in Fig. 3 and Table I. We find that
our model does not reproduce the empirical ratios of b/bMB

quantitatively, however the tendency of the ratios for the
different alkali metals are in fact accurately reproduced.

Although our model cannot provide a comprehensive
description for even the simple alkali metals, it conveys the
message that the real SO matrix elements, and therefore
spin-relaxation mechanisms, depend on the nature of band

structure and also on microscopic details such as the mixing
of the s and p orbitals and that by no means can the
atomic spin-orbit coupling be used directly to calculate the
spin-relaxation properties in metals. For real systems, first-
principles calculations are required, which could account for
the exact matrix elements and the corresponding spin-orbit
admixture coefficients. Such calculations are emerging and
are already available for group IV elements [38].

III. CONCLUSIONS

We revisited the seminal contribution of Monod and
Beuneu, who scaled the experimental ESR linewidth data
for elemental metals with the atomic spin-orbit coupling
induced energy splitting and thus obtained a scaling with
the electron momentum-scattering rate using a universal
Grüneisen function. This approach is shown to be qualitative
only and the proper description of the electron momentum
scattering calls for the inclusion of the Debye temperature
and electron-phonon coupling, too. When this is considered,
empirical spin-orbit admixture coefficients are obtained, which
can serve as input for first-principles calculations.

We provided a model calculation involving s and p states
with spin-orbit coupling and we pointed out that in general the
spin-orbit matrix elements present in the Elliott-Yafet theory
are different from the SOC-induced splitting of the atomic
levels.
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