
PHYSICAL REVIEW B 89, 115102 (2014)

Wannier center sheets in topological insulators
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We argue that various kinds of topological insulators (TIs) can be insightfully characterized by an inspection
of the charge centers of the hybrid Wannier functions, defined as the orbitals obtained by carrying out a Wannier
transform on the Bloch functions in one dimension while leaving them Bloch-like in the other two. From this
procedure, one can obtain the Wannier charge centers (WCCs) and plot them in the two-dimensional projected
Brillouin zone. We show that these WCC sheets contain the same kind of topological information as is carried in
the surface energy bands, with the crucial advantage that the topological properties of the bulk can be deduced
from bulk calculations alone. The distinct topological behaviors of these WCC sheets in trivial, Chern, weak,
strong, and crystalline TIs are first illustrated by calculating them for simple tight-binding models. We then
present the results of first-principles calculations of the WCC sheets in the trivial insulator Sb2Se3, the weak
TI KHgSb, and the strong TI Bi2Se3, confirming the ability of this approach to distinguish between different
topological behaviors in an advantageous way.
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I. INTRODUCTION

Since the work of Thouless et al. [1] relating the Chern
number to the integer quantum Hall effect, there has been
great interest in insulators with topologically nontrivial band
structures. In time-reversal-invariant insulators, the first Chern
number vanishes, but topologically nontrivial band structures
can still emerge in systems with strong spin-orbit coupling
[2–5] or crystal point-group symmetries [6]. These topological
phases are classified by a series of Z2 invariants. In two
dimensions, a single Z2 invariant distinguishes a quantum
spin Hall system from a trivial two-dimensional (2D) insulator,
while in three dimensions (3D), a total of four Z2 invariants
[ν0,ν1,ν2,ν3] are needed to classify the trivial, weak, and
strong topological phases which can emerge. The topologically
nontrivial phases are gapped in the bulk, like trivial insulators,
but by the bulk-edge correspondence they are required to have
robust metallic states on the edge (2D) [7–10] or surface (3D)
[11]. These surface states provide the strongest experimentally
accessible signature of insulators with nontrivial topology
[12–19]. However, for reasons of both computational effi-
ciency and theoretical clarity, it is preferable to be able to
calculate and understand the topological phases of insulators
purely from bulk calculations.

There have been several previously proposed methods for
calculating Z2 invariants. In principle, it is possible to calculate
them by integrating the Berry connection on half of the
Brillouin zone (BZ) [20], but this method requires fixing the
gauge of the wave functions, which is challenging in numerical
calculations. In the special case of a centrosymmetric crystal,
the Z2 invariants can be calculated simply by considering the
parity eigenvalues of the occupied electronic states at the time-
reversal-invariant (TRI) momenta. The topological invariants
of different phases can also be derived from the scattering
matrix at the Fermi level [21]. Our current work is closely
related to a recently developed method which is both gen-
eral (not limited to crystals with special symmetries) and
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computationally efficient [22–25]. This method relies on the
use of hybrid Wannier functions (WFs), which provide an
alternative to the Bloch representation of the occupied band
subspace. By following the evolution of hybrid WFs around a
closed loop in the BZ, we can describe the adiabatic, unitary
evolution of the occupied Bloch bands. The partner switching
of these Wannier charge centers (WCC) around a closed loop,
which describes a pumping of “time-reversal polarization,”
has been employed to calculate the Z2 invariants in TRI
insulators [22,23,26,27].

In this work, we focus on the topological properties of
WCCs in 3D materials, which are functions of momentum k

in two dimensions and can be plotted as sheets over the 2D
BZ. Unlike the surface states, the behavior of these sheets
is independent of surface termination and depends purely
on the bulk wave functions. We explain why a bulk-edge
correspondence between the surface energy bands and bulk
WCCs is expected, and illustrate this correspondence in trivial,
Chern, weak topological, strong topological, and crystalline
topological insulators (TIs) using tight-binding models and
first-principles calculations. Although a knowledge of the
behavior of the WCCs on certain 2D planes in the 3D k space is
sufficient to determine the topological phase in some cases, as
for 3D TRI insulators, the more general behavior of the WCC
sheets in different topological phases, including the crystalline
topological phase, can provide new insights into the origin and
properties of these phases. In addition, the pure bulk origin of
their characterization allows for a simpler picture of many
properties.

The paper is organized as follows. In Sec. II, we define
the WCC sheets, explain how to construct them, consider
their symmetry properties, and discuss the bulk-boundary
correspondence that relates the bulk WCCs to the surface
energy bands. In Sec. III, we introduce the tight-binding
models that will be used for illustrative calculations. We
also present the materials systems that will be the subject
of first-principles calculations, and discuss the details of
the computational methods. The calculated WCC sheets are
presented and discussed in Sec. IV, and we end with a summary
in Sec. V.
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II. WCC SHEETS

The electronic ground state in periodic crystalline solids
is naturally described by extended Bloch functions |ψnk〉, or
the cell-periodic versions |unk〉 = e−ik·r|ψnk〉, labeled by the
band n and crystal momentum k. An alternative representation
is the set of localized orbitals or Wannier functions (WF) which
are defined in relation to the Bloch functions by a unitary
transformation:

|Wn(R)〉 = 1

(2π )3

∫
BZ

dk eik·(r−R)|unk〉. (1)

These WFs are not unique, as the U(N ) gauge freedom in
choosing the N representatives of the occupied space at each k

point |ũnk〉 = ∑
m Umn(k)|umk〉 leaves them gauge dependent.

In one dimension (1D), there is a unique gauge that
minimizes the spread functional of the WFs [28]. These
maximally localized WFs are eigenfunctions of the band-
projected position operator PzP , where P = ∑

nk |ψnk〉〈ψnk|
is the projection operator onto the occupied bands. In 2D and
3D, on the other hand, the WFs can not be maximally localized
in all directions simultaneously because the operators PxP ,
PyP , and PzP do not commute and it is not possible to choose
the WFs to be simultaneous eigenfunctions of all three. Instead,
a compromise can be achieved through an iterative procedure
that localizes the WFs in all directions as much as possible [28].

Insulators for which the occupied bands are characterized
by a nonzero Chern number are known as “Chern” or
“quantum anomalous Hall” (QAH) insulators. In this case,
it is well known that there is a topological obstruction to
the construction of exponentially localized WFs [29,30]. The
vanishing of the Chern number in TRI insulators guarantees the
existence of localized WFs, but special care needs to be taken
in choosing the gauge for Z2-odd insulators, as the localized
WFs can only be constructed in a gauge which does not let
them come in time-reversal pairs [31].

The fact that there is never a topological obstruction to
the construction of WFs in 1D suggests that a convenient
strategy for higher dimensions may be to construct “hybrid
WFs” that are Wannier-like in 1D and Bloch-like in the
remaining dimensions [28,32]. Choosing the ẑ direction for
Wannierization in 3D, these take the form

∣∣Wnlz (kx,ky)
〉 = 1

2π

∫
dkze

ik·(r−lzcẑ)|un,k〉, (2)

where lz is a layer index and c is the lattice constant along ẑ.
Since there is a unique construction of maximally localized
WFs in 1D, these are easily constructed at each (kx,ky),
regardless of whether the system is a normal insulator or a
Chern, Z2, crystalline, or any other kind of TI. The charge
center of these hybrid WFs along the localized direction z̄n is
defined as the expectation value z̄n(kx,ky) = 〈Wn0|ẑ|Wn0〉 of
the position operator ẑ along this direction for the WF in the
home unit cell R = 0. These WCCs, which are eigenvalues of
the PzP operator, have been useful in defining polarization
in 2D Chern insulators [33], understanding polarization in
3D layered insulators [34], and calculating the Z2 topological
invariants in TRI insulators [22]. Their sum over occupied
bands also gives the “polarization structure” describing the
Berry-phase contribution to the electric polarization as a
function of k in the 2D BZ [35].

It is well known that the nontrivial topology of Chern, Z2,
and crystalline TIs is reflected in a corresponding nontrivial
connectivity of the surface energy bands. While kz is clearly no
longer a good quantum number for a surface normal to ẑ, kx and
ky are still conserved, so that if surface states appear in the bulk
energy gap, their energy dispersions εn(kx,ky) are good func-
tions of momenta in the surface BZ. In a similar way, the WCCs
z̄n(kx,ky) can be plotted over the same 2D BZ, where the Wan-
nierized real-space direction plays a role analogous to the
surface normal. Unlike the surface states εn(kx,ky), the WCCs
z̄n(kx,ky) depend only on bulk properties. However, they still
carry the same kind of topological information as is contained
in the surface states, as will be explained in Sec. II B. The
WCCs can be obtained from a parallel-transport-based con-
struction [28,34] in a straightforward way, as explained next.

A. Construction

A cell-periodic Bloch state |uk〉 belonging to an isolated
band can be parallel transported to |uk+b〉 by choosing the
phase of the latter such that the overlap 〈uk|uk+b〉 is real and
positive, so that the change in the state is orthogonal to the
state itself. If this is carried out repeatedly for a k-point string
extending along the kz direction by a reciprocal lattice vector
G ‖ ẑ, then once the phase of the initial |uk0〉 is chosen, the
phase of each subsequent state, including the final |uk0+G〉,
is determined by this parallel-transport procedure. The phase
of the last state on the string is then compared with the one
|ũk0+G〉 obtained by applying the periodic gauge condition
|ψk0+G〉 = |ψk0〉, i.e., ũk0+G(r) = exp(−iG · r) uk0 (r), and the
phase mismatch U = 〈uk0+G|ũk0+G〉 is computed. For a k-
point string at k⊥ in the 2D BZ, this yields the Berry phase
φ(k⊥) = −Im ln U (k⊥) and the WCC z̄(k⊥) = (c/2π ) φ(k⊥),
where c is the lattice constant along ẑ. If the parallel-
transported states themselves are not needed, the same result
can be obtained more straightforwardly by computing φ =
−Im ln

∏〈uk|uk+b〉, where the product is carried out along
the string and the phases are chosen arbitrarily except for the
periodic gauge condition that fixes the phase of the first and
last k points in relation to each other.

In the multiband case, where n occupied bands are
treated as a group regardless of possible internal crossings or
degeneracies, the corresponding “non-Abelian” Berry phases
φn can be determined by generalizing this procedure in terms
of n × n matrix operations. For each pair of neighboring
points along the string, the matrix M (k,k+b)

mn = 〈umk|un,k+b〉 is
computed and subjected to the singular value decomposition
M = V �W †, where V and W are unitary and � is real and
diagonal (typically, nearly unity). Again, the states at the
end point k0 + G are predetermined by those at the start
k0 by the periodic gauge condition. We can then identify
U (k,k+b) = V W † as the unitary rotation from k to k + b,
and the global unitary rotation matrix �(k⊥) = ∏

U (k,k+b)

is constructed as the product of these along the string. Being
unitary, its eigenvalues λn are unimodular, and we can identify
the non-Abelian Berry phases (also known as Wilson loop
eigenvalues) as φn(k⊥) = −Im ln λn(k⊥). The WCCs are then
just

z̄n(k⊥) = c

2π
φn(k⊥). (3)
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As discussed in Ref. [28], this procedure gives the centers of
the maximally localized Wannier functions in 1D algebraically,
without the need for any iterative localization procedure; we
just repeat this procedure for each k⊥ to construct the WCC
sheets.

B. Symmetries and topology

A major theme of this work is to show how the WCC
sheet structure z̄n(k⊥) shares many qualitative features with
the surface energy band structure εn(k⊥), a manifestation of
the bulk-boundary correspondence which relates the boundary
modes to the topological character of the bulk. The WCCs
z̄n(k⊥) have the crucial advantage that they can be used
to deduce the topological properties of the bulk from bulk
properties alone.

In this section, we show that the WCC sheet structure obeys
all of the symmetries that are found in the surface energy
band structure, and sometimes more. In particular, when TR
is present, the Kramers degeneracies found at the 2D time-
reversal-invariant momenta (TRIM) in the surface energy band
structure also necessarily appear in the WCC sheet structure.
We also demonstrate the bulk-boundary correspondence by
sketching a physical argument as to why the topological
connectedness of the WCC sheets mirrors that of the surface
band structure, providing access to the topological indices in
a similar way.

1. Symmetry

To review, we consider a crystalline insulator with ẑ taken
along a primitive reciprocal lattice vector, and let k‖ and
k⊥ denote the wave vectors parallel and perpendicular to
ẑ, respectively. We then consider the surface band structure
εn(k⊥) for a 1×1 (unreconstructed) surface that has been cut
normal to ẑ, where n labels energy eigenstates lying in the bulk
projected band gap. We also consider the WCC sheets z̄n(k⊥)
constructed as detailed in Sec. II A, where n labels the sheets
with −c/2 � z � c/2 in one unit cell along z. In both cases,
k⊥ resides in the same 2D surface BZ (both functions have the
same periodicity in k⊥).

An element S = {G|τ } of the full space group S is
composed of a generalized rotation G (possibly improper,
and possibly containing TR) followed by a possible fractional
translation τ (in nonsymmorphic crystals), in addition to lattice
translations; the full point group G is composed of all of the G

appearing in the space-group elements.
The symmetry of the WCC sheets is controlled by the

reduced space group SW ⊆ S and the corresponding point
group GW ⊆ G defined by restricting the list of G’s to those
that map ẑ onto ±ẑ. For such operations, let G = KTzG⊥
where G⊥ is the in-plane rotation (possibly improper), Tz is
either the identity or the simple mirror Mz, and K is either
the identity or TR. Then, a space-group element {G|τ } ∈ SW

must transform a hybrid Wannier function Wn(k⊥) into another
hybrid Wannier function Wn′(±Gk⊥), with the Wannier center
transformed as

z̄n′ (±G⊥k⊥) = Tzz̄n(k⊥) + τz, (4)

where the minus sign applies if G contains TR.

The symmetry of the surface band structure εn(k⊥), on the
other hand, is associated with the space group SS ⊆ SW with
the additional constraints that its elements do not reverse ẑ to
−ẑ and and do not contain partial translations τz along ẑ. Then,
for any element G = KG⊥ in the corresponding point group
GS we have that

εn(±G⊥k⊥) = εn(k⊥), (5)

where again the minus sign applies if TR is involved.
Since GS ⊆ GW, it follows from Eq. (4) that the WCC sheets

also obey

z̄n(±G⊥k⊥) = z̄n(k⊥) (6)

for any G ∈ GS. Thus, the WCC sheets show at least as
much symmetry as the surface band structure. If the space
group contains symmetry elements that reverse the z axis,
then there is an additional symmetry z̄n(±G⊥k⊥) = −z̄n(k⊥)
associated with these elements, or if it contains glide or screw
operations along ẑ, then also z̄n(±G⊥k⊥) = z̄n(k⊥) + τz.
These additional WCC symmetries have no counterpart in the
surface band structure.

Finally, we note that TR symmetry plays a similar role
for the WCC sheets as for the surface energy band structure.
Specifically, for any G ∈ GS, a Kramers degeneracy is enforced
whenever G⊥k⊥ = −k⊥ (modulo a reciprocal lattice vector),
due to the antiunitary nature of the TR operation. In particular,
if TR by itself is a symmetry, then the WCC sheets and
the surface energy bands are guaranteed to touch and form
Kramers pairs at all of the TRIM. Additionally, if CZ

2 ⊗ TR
is a symmetry, then both the WCCs and surface energy bands
are Kramers degenerate everywhere in the 2D BZ.

2. Topology

Just as the symmetries of the surface band structure are
replicated in the WCC sheet structure, a similar principle
applies to the topological properties. This will be amply
illustrated by the examples to follow, but we give here a sketch
of a general argument that this should be so.

For simplicity, consider first a 2D Chern insulator lying
in the y-z plane with one occupied band carrying a Chern
number C = +1. Then, the WCC z̄(ky) undergoes a shift by c

as ky is adiabatically carried from ky = 0 to 2π/b (assuming a
rectangular b × c unit cell), as shown in Fig. 1(a). This means
that one electron is adiabatically pumped by cẑ during one
cycle of ky around the 1D BZ. If the edge band structure
remained gapped throughout the cycle, this would lead to
a contradiction since by conservation of charge, one extra
electron per surface unit cell would reside on the top edge at
the end of the cycle. However, the starting and ending points
are physically identical, so the edge charge must be the same.
This paradox can only be avoided if there is a surface state
that emerges from the valence band, rises throughout the gap,
and disappears into the conduction band during one cycle, as
shown in Fig. 1(b). In this case, the sudden loss of one electron
that occurs when the surface band crosses the Fermi energy
compensates for the gradual gain of one electron from the
pumping, restoring charge conservation. In other words, we
conclude that the edge band structure has a state crossing the
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FIG. 1. (a) Flow of Wannier charge centers along ẑ vs ky for a
2D Chern insulator. (b) Flow of surface energy bands vs ky for a
2D Chern insulator. (c), (d) Same, but for a 2D Z2-odd (quantum
spin Hall) insulator. Dashed lines are arbitrary reference positions in
(a) and (c), or Fermi energies in (b) and (d).

gap if and only if the WCC structure has a WCC that winds
by one unit during the cycle.

More generally, for an insulator with N occupied bands,
if

∑N
n z̄n/c winds by Chern integer C during the cycle, the

number of up-crossing minus the number of down-crossing
surface bands in the edge band structure must equal C in order
to satisfy charge conservation. The argument also generalizes
to 3D Chern insulators. If the WCC sheet structure is computed
in the ẑ direction, the Chern indices along x and y (that is,
corresponding to Berry curvatures �yz and −�xz) are evident
in the z windings of the WCC sheets as k⊥ is cycled in the ky

and kx directions, respectively. In each case, a similar surface-
state crossing necessarily must also occur in the surface band
structure, following the arguments given above.

Turning now to TR-invariant insulators, the Chern number
always vanishes, being odd under TR symmetry, but the
WCC structure and surface band structure still share their
topological properties. Recall that TR symmetry leads to
double degeneracy in both the WCCs and the surface energy
bands at TRI points in BZ. Here, we show that the WCCs
connect the TRI points in the same manner as the energy
bands do, and can be used in a similar way to deduce the Z2

index of the system.
Consider the simple case of a 2D Z2 insulator in the y-z

plane with two occupied bands. The TR symmetry relates the
WCCs and the surface energy bands in the second half of
the BZ to those in the first half by z(ky) = z(2π/b − ky) and
ε(ky) = ε(2π/b − ky), as illustrated in Figs. 1(c) and 1(d), so
we only need to study their behavior in the first half [0,π/b]. In
the absence of spin-mixing terms, the system decouples into
two independent insulators with equal and opposite Chern
numbers for spin-up and spin-down electrons. If these are ±1,
the system is Z2 odd. This implies both that the WCCs must
switch partners as ky evolves from 0 to π/c, as shown in
Fig. 1(c), and that the surface energy bands zigzag, as shown

in Fig. 1(d). More precisely, an arbitrary horizontal line in
Fig. 1(c) intersects the WCC curves just once (or, in general,
an odd number of times) in the half-BZ, as does an arbitrary
Fermi level for the surface energy bands in the half-BZ in
Fig. 1(d). One unit of up spin, relative to down spin, is pumped
to the edge during this half-BZ evolution, corresponding to the
“TR polarization pumping” discussed by Fu and Kane [26].
For a Z2-even insulator, the number of crossings is, instead,
an even integer (typically zero) for both the WCCs and the
surface energy bands.

In more realistic Z2 insulators, the spin-orbit interaction
mixes up and down spins such that the energy bands are no
longer perfectly spin polarized and a spin-Chern classification
of the system is no longer guaranteed. However, as long as
the bulk energy gap remains open as these spin-mixing terms
are adiabatically turned on, neither the evenness/oddness of
the number of WCC crossings, nor the evenness/oddness of
the number of surface energy band crossings, can change.
Therefore, it remains true that the Z2 index deduced from the
WCC evolution is the same as that deduced from the surface
energy bands, i.e., they both contain the same topological
information.

The weak and strong topological indices of a 3D TR-
invariant insulator can be determined from the 2D indices on
the six TRI faces k̃j = {0,π} of the 3D BZ (where k̃x = kxa,
k̃y = kyb, k̃z = kzc), which are negative if the WCCs have a
nontrivial connectedness on that face and positive otherwise.
Assigning an index ν(k̃i) to each of these faces, the four Z2

invariants [ν0,ν1,ν2,ν3] that uniquely specify the topological
phase of a TR-invariant insulator can be determined from
these ν(k̃i) as follows. The three νi ≡ ν(k̃i = π ), which are
known as weak topological indexes, are determined from
the WCC behavior on the k̃i = π faces, while the strong
topological index ν0 ≡ ν(k̃i = 0)ν(k̃i = π ) is only negative
if the topological indices of opposing TRI faces are opposite,
i.e., if the WCCs on the k̃i = 0 and k̃i = π faces have different
behavior. The indices could similarly be deduced from the
behavior of the surface energy bands. For both the WCC and
surface problems, we have to choose a particular axis ẑ to
define z̄ or as the surface normal, and in this case we are only
sensitive to four of the six TRI face indices, defining whether
WCCs (or surface states) zigzag or not along the four edges
of the quarter 2D BZ. This determines the strong index ν0 and
two of the three weak indices (ν1 and ν2); the procedure has to
be repeated with a different choice of axis to obtain the third
weak index ν3.

In summary, we expect that the flow and connectedness of
the WCC sheets and the surface energy bands should always
show the same qualitative features. Not surprisingly, similar
considerations apply to the case of crystalline TIs as well.
Numerous examples will be presented in the following which
amply illustrate this bulk-boundary correspondence between
the WCC sheets and surface energy bands.

III. MODELS AND CALCULATIONS

We study the properties of WCCs in different topological
phases using simple tight-binding (TB) models as well
as realistic density-functional theory (DFT) descriptions of
known materials. In particular, we use a Haldane-type [36]
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TB model of spinless electrons on a hexagonal lattice to study
the properties of the WCC sheets in a 3D Chern insulator; the
model of Fu, Kane, and Mele (FKM) [4] to study the WCCs of
trivial, weak, and strong topological phases; and the tetragonal
TB model of Fu [6] to study a crystalline TI. These TB models
are described in Sec. III A. We then compute the behavior of
the WCC sheets in the Z2-even Sb2Se3, weak Z2-odd KHgSb,
and strong Z2-odd Bi2Se3 insulators using first-principles DFT
calculations. These materials and their crystal structure are
described in Sec. III B, and the details of our computational
approach are presented in Sec. III C.

A. Tight-binding models

A TB model of a 2D Chern insulator was first introduced
by Haldane on a honeycomb lattice [36]. This spinless model
is constructed by starting with real first- and second-neighbor
hoppings, but the time-reversal symmetry is then broken by
introducing local magnetic fluxes in a pattern that respects the
symmetry of the lattice and sums to zero in each unit cell.
This magnetic flux has the effect of multiplying the second-
neighbor hoppings by a unimodular phase factor λ = eiϕ . We
then stack these 2D layers in the normal direction to make a
3D TB model of a Chern insulator:

H = t1
∑
l,〈ij〉

c
†
ilcj l + t2

∑
l,〈〈ij〉〉

λc
†
ilcj l

+ t ′1
∑
li

c
†
ilci,l+1 + t ′2

∑
l,〈ij〉

c
†
ilcj,l+1 + H.c. (7)

Here, l is the layer index, single and double brackets label
first- and second-neighbor in-plane pairs with hoppings t1
and t2, respectively, and t ′1 and t ′2 are (real) vertical and
nearest-diagonal interlayer hoppings, respectively. The hop-
pings included explicitly in the second term of Eq. (7) are those
for clockwise hoppings around the hexagon; counterclockwise
ones are accounted for by the Hermitian conjugation and have
phases λ∗. With t1 = −1.0, t ′1 = −0.45, t2 = 0.15, t ′2 = 0.015,
and ϕ = 0.5π , the occupied band has a Chern number of one.

The FKM model [4] is a four-band TB model of s states on
a diamond lattice in 3D with a spin-orbit interaction, and takes
the form

H = t
∑
〈ij〉

c
†
i cj + i(8λso/a

2)
∑
〈〈ij〉〉

c
†
i s · (

d1
ij × d2

ij

)
cj . (8)

Here, the first and second terms describe spin-independent
first-neighbor and spin-dependent second-neighbor hoppings,
respectively; λso is the spin-orbit strength, and a is the cubic
lattice constant, which is set to one. The second-neighbor
hopping between sites i and j depends on spin and on the
unit vectors d1,2

ij describing the two first-neighbor bonds that
make up the second-neighbor hop. For t = 1 and λso = 0.125,
the model has a gap closure at the high-symmetry X point in
the Brillouin zone.

By varying the relative strength of the nearest-neighbor
bond in the [111] direction, t111 = t(1 + α), the cubic symme-
try is broken and the system can be switched between trivial,
weak, and strong topological phases, as shown in Table I.
These insulating phases are separated from each other by gap
closures at α = −4, −2, 0, and 2. For α < −4 and α > 2,

TABLE I. Topological phase of the FKM model [4] as a function
of parameter α specifying the relative strength of the [111] bond
according to t111 = t(1 + α).

α [ν0; ν1ν2ν3] Topological phase

(−∞,−4) [+; + + +] Trivial insulator
(−4,−2) [−; − − −] Strong topological insulator
(−2,0) [+; + + −] Weak topological insulator
(0,2) [−; + + −] Strong topological insulator
(2,∞) [+; + + +] Trivial insulator

the t111 bond is stronger than the other bonds and the system
can be adiabatically transformed to a system of dimers, which
is topologically equivalent to a trivial atomic insulator. For
−2 < α < 0, on the other hand, the t111 bond is weaker than
the others, and the system can be considered as a collection of
2D spin-Hall layers stacked along the [111] direction. Thus, the
system is a weak TI in this range of α. For −4 < α < −2 and
0 < α < 2, t111 is stronger than the other first-neighbor bonds,
but not strong enough to push the system into the topologically
trivial phase. As a result, the 3D KM model is a strong Z2 TI
for these values of α.

For studying the WCC sheet behavior in a topological
crystalline insulator, we adopted the TB model of Fu [6],
consisting of a tetragonal lattice with two inequivalent A and
B atoms stacked above one another, each carrying px and py

orbitals, forming bilayers that we index by n. The total system
Hamiltonian can be written as

H =
∑

n

(
HA

n + HB
n + HAB

n

)
, (9)

where HA and HB are the contributions describing intralayer
hoppings while HAB describes interlayer ones. The former are
given by

HX
n =

∑
ij

tX(ri − rj )
∑
α,β

c
†
Xα(ri ,n)eij

α e
ij

β cXβ(ri ,n) (10)

and the latter by

HAB
n =

∑
ij

t ′(ri − rj )
∑
α,β

[c†Aα(ri ,n)cBα(ri ,n) + H.c.]

+ t ′z
∑

i

∑
α

[c†Aα(ri ,n)cBα(ri ,n1) + H.c.]. (11)

Here, r = (x,y) labels the coordinate in the plane, X = {A,B}
labels the sublattice, α and β label the {px,py} orbitals, and e

ij
α

is cosine of the angle between the bond (ri − rj ) and orbital
pα . We choose the nearest- and next-nearest-neighbor hopping
amplitudes to be tA1 = −tB1 = 1 and tA2 = −tB2 = 0.5 in HA

and HB , and t ′z = 2, t ′1 = 2.5, and t ′2 = 0.5 in HAB .
Note that this TB model is spinless, as the spin-orbit

coupling plays no role in the nontrivial topology of crystalline
TIs. Instead, the topological classification is based on certain
crystal point-group symmetries and TRI, leading to robust
surface states on those surfaces that respect the symmetries
in question. In the tetragonal Fu model, these topological
surface states exist on the (001) surface, where the fourfold
Cz

4 rotational symmetry of the crystal is preserved.
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B. Material systems

We carry out first-principles calculations of the WCC sheet
structure for Sb2Se3, KHgSb, and Bi2Se3 as prototypical
realizations of trivial, weak, and strong topological phases,
respectively. Bi2Se3 has a rhombohedral layered structure
with space group D5

3d (R3̄m). It consists of quintuple layers
(QLs) formed by stacking Se and Bi triangular-lattice planes
in the order Se-Bi-Se-Bi-Se, with two identical Bi atoms, two
identical Se atoms, and a third Se atom at the center. These
QLs have strong internal covalent bonding, but the interaction
between QLs is much weaker, being largely of van der Waals
type. The states near the Fermi energy come from the Bi 6p

and Se 4p orbitals. The strong spin-orbit coupling (SOC) leads
to a band inversion at the � point and makes this material a
strong Z2 insulator with a band gap of 0.3 eV [14,37]. Sb2Se3

shares the same rhombohedral layered structure as Bi2Se3, but
the weaker SOC in this material leaves it in a topological trivial
phase.

KHgSb consists of layers of HgSb in a honeycomb lattice,
with hexagonal layers of K atoms stuffed between them. In a
single layer of KHgSb, the valence bands near the Fermi energy
are composed of the Hg 6s and Sb 5s and 5p states, while the
K 4s band is considerably higher in energy. The strong SOC
in the honeycomb HgSb layer leads to a band inversion at the
� point in the 2D BZ and makes an isolated KHgSb layer a
2D TI. These 2D TI layers can be stacked along the z direction
to form a 3D lattice, but the interlayer coupling is very weak
and there is little dispersion along the �-Z direction. These
honeycomb layers can either be stacked in an AA sequence to
make a “single-layer” form, or in an ABAB sequence to make
a “double-layer” form, where B is rotated by 60◦ with respect
to A. In the latter structure, which is experimentally observed,
the primitive cell contains two honeycomb layers. Thus, two
band inversions occur and cancel each other out at �, and the
same happens at Z, making the compound a trivial insulator
[38,39]. In the hypothetical single-layered structure, which
is proposed as an example of a weak TI [39], there is only
one honeycomb layer in the primitive cell, and a single band
inversion happens at � and another at Z. Thus, single-layered
KHgSb can be viewed as a stack of weakly coupled 2D TIs
and belongs to the weak Z2-odd topological class. Here, we
focus on single-layered KHgSb, and we compare its WCC
sheets to the weak topological phase of the FKM TB model in
Sec. IV C.

C. Computational methods

Our first-principles calculations of WCC sheets are based
on DFT calculations using the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [40] performed with the
QUANTUM ESPRESSO package [41]. We use fully relativistic
optimized norm-conserving pseudopotentials from the OPIUM

package, with the semicore Bi 5d, Sb 4d, Hg 5d, and
K 3s3p states included in the valence. The self-consistent
calculations are carried out for the experimental structures
using a 10 × 10 × 10 Monkhorst-Pack [42] k mesh. The
plane-wave energy cutoff is set to 70 Ry.

In principle, one could include all occupied bands in the
WCC construction. However, taking Bi2Se3 as an example,
the occupied Bi 5d semicore states and the shallow Bi 6s and

Se 4s bands have an obvious atomic character and remain
well separated from the active valence p bands, so they are
clearly trivial and do not need to be included in the topological
analysis. Therefore, we concentrate on constructing WCC
sheets only for the remaining upper valence bands. As these are
the lowest 18 of the 30 bands of Bi 6p and Se 4p character,
we do this by constructing a Wannier representation in this
30-band space using the WANNIER90 package [43] to generate
an ab initio TB Hamiltonian from the DFT calculation. The
frozen window in which the first-principles band structure is
exactly reproduced extends from 2 eV below to 2 eV above the
Fermi level EF . From the outer energy window, which extends
to 20 eV above EF , 80 Bloch bands are used to produce 30 WFs
for the Bi, Sb, and Se p bands in Bi2Se3 and Sb2Se3. The
orbital positions and hopping parameters between them are
then used to construct the effective tight-binding Hamiltonians.
Similarly, for KHgSb we carry out the Wannier construction
for the 10 Bloch bands of K 4s, Hg 6s, and Sb 5p character, of
which the bottom six are the highest valence states. The outer
window is chosen at 14 eV above EF for KHgSb, with 10 WFs
constructed from 20 Bloch bands.

We have implemented the calculation of the WCC sheets
into Version 1.6.2 of the open-source PYTHTB tight-binding
code package [44]. The Wannierized Hamiltonians are im-
ported into the PYTHTB code to calculate the WCC sheets
using the parallel-transport approach explained in Sec. II A.

IV. RESULTS

In this section, we present the WCC sheets for the different
topological phases we have studied. For the 3D Chern insulator
in Sec. IV A, the WCC sheets are plotted over the entire 2D
BZ, while for the TR-invariant systems of Secs. IV B–IV D,
the sheets are plotted over one quarter of the BZ, i.e., between
the TRI momenta [0,0], [0,π ], [π,π ], and [π,0].

The axis of highest rotational symmetry in each TB model
or material system is chosen as the z axis. This axis in the
FKM model is along the bond with altered strength (t111); the
model has a threefold symmetry around this axis, which when
combined with TR symmetry results in a sixfold-rotational
symmetry in the 2D BZ. In Sb2Se3 and Bi2Se3, the z axis is
normal to the quintuple layers, which is the axis of threefold
symmetry. In KHgSb, the z axis is chosen normal to the
honeycomb HgSb layers, and in the Fu tetragonal TB model
it is along the tetragonal axis.

The WCC sheets are computed along both z and y and
plotted versus (kx,ky) and (kx,kz), respectively. (Henceforth,
we shall not be careful about the distinction between kx and
k̃x = kxa, etc.; the meaning should be clear from the context.)
Plotting the WCC sheets along these two perpendicular
directions is especially important to reveal the topological
behavior in the 3D Chern, weak Z2, and topological crystalline
phases, where, as we shall see, the topology of the WCC sheets
may look trivial in one direction but topological in another.

The WCC sheets for the TR-broken Chern insulator phase
are discussed next. WCC sheets for the TR-invariant trivial,
weak, and strong Z2 phases are discussed in Secs. IV B–IV D,
using the FKM model and its material system analogs in each
phase. The WCC sheets for the crystalline topological phase
are discussed in Sec. IV E.
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FIG. 2. (Color online) Surface energy bands and WCC sheets for the TR-broken Chern insulator model. (a)–(c) Surface normal and WCCs
along ẑ vs (kx,ky). (d)–(f) Surface normal and WCCs along ŷ vs (kx,kz). Surface states for a 24-layer slab in (a) and (d); WCCs around 2D BZ
boundary in (b) and (e); WCCs in 2D BZ in (c) and (f). Dashed and solid surface states in (d) reside on the top and bottom of the (010) slab,
respectively. The WCC sheets and surface bands wind by one unit in the ky-kz plane, but not in the kx-ky plane.

A. TR-broken Chern insulator

We first consider the TB model for a TR-broken Chern
insulator phase that was introduced in Sec. III A. It is composed
of 2D Chern layers stacked along the z direction with weak
interlayer coupling, so we do not expect an (001) slab of the 3D
model to show any topological surface states. This is confirmed
in the surface projected band structure plotted in Fig. 2(a),
where the shaded region indicates the region of bulk energy
bands. No surface states are visible in this case, consistent
with the trivial topology for this orientation. By the same
token, the WCC sheets computed along the z direction from
the single occupied band remain localized in the vicinity of the
z positions of the layers, with no topological evolution along
kx or ky . This is shown in Figs. 2(b) and 2(c), where the WCC
sheets are plotted around the boundary, and throughout the
interior, of the 2D projected BZ, respectively.

In contrast, any slab of the 3D system that cuts through
the 2D Chern layers will reveal the topological nature of the

3D crystal by displaying a surface energy band traversing the
bulk gap on each surface, as shown in Fig. 2(d) for a (010)
slab. The corresponding ȳ(kx,kz) WCC sheets are shown in
Figs. 2(e)–2(f). While these WCCs do not vary strongly along
kz, they wind by one unit as they evolve along kx , pumping
one electron per unit cell from the (01̄0) to the (010) surface.
The pumped charge is restored on each surface as the surface
bands cross the Fermi level in the bulk energy gap.

B. TR-invariant trivial insulator

In general, the broken translational symmetry at the surface
of a band insulator allows for the existence of surface states
in the bulk band gap. In a topologically trivial insulator, these
surface states, if present, are prone to localization by disorder
and can be removed from the gap by an adiabatic transfor-
mation of the Hamiltonian. An example of such unprotected
surface states can be seen in Fig. 3(a), which shows the surface
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FIG. 3. (Color online) Surface energy bands (15-layer slab) and WCC sheets for the TR-invariant FKM model in the trivial phase (α = 2.5).
(a)–(c) Surface normal and WCCs along ẑ vs (kx,ky). (d)–(f) Surface normal and WCCs along ŷ vs (kx,kz). The WCC sheets and surface bands
show a trivial behavior in all directions.

states on the (001) surface of the FKM model in its trivial
insulating phase. The surface bands are doubly degenerate
at the TRI momenta as required by Kramer’s theorem, but
nothing protects them from being adiabatically pushed to the
valence or conduction band. (The model also happens to have
a particle-hole symmetry which is responsible for the mirror
symmetry along the energy axis, but we do not consider this
as an imposed symmetry here.) The surface energy bands on
the (010) surface [Fig. 3(d)] show the same trivial behavior,
indicating that this is a topologically trivial insulator.

The trivial topology of this material is equally evident from
the WCC sheets, plotted along ẑ and ŷ in Figs. 3(b) and 3(c)
and 3(e) and 3(f), respectively. The WCC sheets are plotted
around the boundary of a quadrant of the 2D projected BZ
in Figs. 3(b) and 3(e), and throughout its interior in Figs. 3(c)
and 3(f). Here, there are two WCC sheets per unit cell (vertical
axis) because there are two occupied energy bands in the four-
band model, but the band pairs remain well separated from
their periodic images above and below. The WCC sheets touch
at the TRI points at the corners of the quarter BZ, as required
by Kramers’ theorem, but these Kramers pairs are connected

in all directions in a topologically trivial way. As a result, the
topological index is νμ = +1 on all six TRI faces, signaling a
fully trivial topological phase.

A similar trivial behavior is seen in the first-principles
WCCs computed for Sb2Se3 as shown in Fig. 4. The 18
WCC sheets in the quintuple layer come mainly from the
Sb 5p and Se 4p orbitals. While having substantial Sb 5p

character, they are nevertheless centered on the anion Se sites
located at z � −0.3c, 0, and 0.3c in the figure. While the gap
between WCC sheets associated with neighboring quintuple
layers, centered at 0.5c in Fig. 4(a), is not obviously larger than
the other gaps, it nevertheless remains open across the entire
2D BZ. The WCC sheets plotted along the x and y directions
(not shown) display a similar trivial behavior. Thus, we can
conclude that this is a fully trivial insulator, without having to
carry out any surface-state calculation.

C. TR-invariant weak topological insulator

The FKM model with −2 � α � 0 is a weak Z2-odd
insulator, as illustrated by our results for α = −1 in Fig. 5.
In this case, the crystal can be thought of as a series of 2D
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FIG. 4. (Color online) First-principles WCC sheets along ẑ for topologically trivial Sb2Se3, plotted on (a) the boundary and (b) the interior
of the 2D quarter BZ. The WCCs show trivial behavior as expected.

spin-Hall insulators stacked along the z direction, i.e., the
direction of the weakest bond. Thus, a slab of the model cut
normal to this direction shows no robust surface states in the
bulk energy gap, as shown in Fig. 5(a), and the WCC sheets
along this direction pair up as they do in a trivial insulator, as
can be seen in Figs. 5(b) and 5(c).

On the other hand, a slab of a weak Z2-odd insulator
cut through the 2D spin-Hall sheets should host an even

number of Dirac cones on each surface. These surface states
are shown for an (010) slab of the same FKM model in
Fig. 5(d), where the Dirac cones are visible at (kx,kz) = (0,0)
and (0,π ). These surface bands have a gap-crossing Z2-odd
behavior versus kx but not versus kz, suggesting that the
(kx,ky) TRI faces of the 3D BZ are Z2 odd at kz = 0 and
π , while those on the (ky,kz) faces are Z2 even at kx = 0
and π . This is confirmed in Figs. 5(e) and 5(f), where the

FIG. 5. (Color online) Surface energy bands (15-layer slab) and WCC sheets for the TR-invariant FKM model in the weak topological
phase (α = −1). (a)–(c) Surface normal and WCCs along ẑ vs (kx,ky). (d)–(f) Surface normal and WCCs along ŷ vs (kx,kz). Only the (kx,ky)
TRI faces at kz = 0 and π are Z2 odd.
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FIG. 6. (Color online) First-principles WCC sheets for the weak TI KHgSb. (a), (b) Along ẑ. (c), (d) Along ŷ. Only the (kx,ky) TRI faces
at kz = 0 and π are Z2 odd.

WCC sheets are seen to swap partners versus kx but not
versus kz.

The Z2 topological invariants νμ follow straightforwardly
from the above considerations. The invariants are +1 for the
TRI faces at kx = 0 and π , +1 for the TRI faces at ky = 0 and
π , and −1 for the TRI faces at kz = 0 and π . The conventional
index set is then [ν0; ν1ν2ν3] = [+; + + −], confirming that
this is a weak TI (ν0 = +1) corresponding to spin-Hall layers
stacked along z (ν3 = −1).

We see the same kind of weak topological behavior in our
first-principles calculations of the WCC sheets for KHgSb
shown in Fig. 6. As explained in Sec. III B, this material
is composed of honeycomb HgSb layers that behave as
2D spin-Hall insulators, stacked along the z direction, and
separated by hexagonal layers of K stuffing atoms. The pictures
look more complicated because there are now six occupied
bands per cell, and thus six WCCs per lattice constant, and
some of the artificial symmetries of the FKM model are now
absent. However, the topological behavior is similar to that
of Fig. 5. The weak coupling between the HgSb layers is
reflected in the trivial behavior of the WCC sheets along the
(001) direction [Figs. 6(a) and 6(b)], but plotting the WCCs in
a direction cutting across the honeycomb HgSb layers reveals
the topological behavior, as seen in Figs. 6(c) and 6(d). These
WCC sheets change partners on the (kx,ky) TRI faces at both
kz = 0 and π , indicating ν3 = −1 and ν0 = +1, giving the
same [+, + +−] set of indices as for the FKM model in its
weak topological phase. These results are entirely consistent
with the existence of Dirac cones at the � and Z points in
the surface bands of an (010) slab as shown in Ref. [39].
However, we again emphasize the convenience of our ap-
proach, in which only primitive-cell bulk calculations are
needed.

D. TR-invariant strong topological insulator

In contrast to weak TIs, the nontrivial behavior of the WCC
sheets in strong Z2 insulators should be evident no matter what
direction is chosen to construct them; there would be switching
of partners for one of the TRI faces in any chosen direction.
This behavior is illustrated in Fig. 7, where the surface bands
and WCC sheets are presented for the FKM model in the strong
Z2-odd phase at α = 1. Both the surface bands and the WCC
sheets swap partners in the (kx,ky) plane at kz = π , the (kx,kz)
plane at ky = 0, and the (ky,kz) plane at kx = 0, but not on the
other three TRI faces. The set of topological indices is therefore
[ν0; ν1ν2ν3] = [−; + + −], and the system is a strong TI. This
is also consistent with the existence of an odd number of Dirac
cones on any surface of a strong Z2 insulator, as is evident in
Figs. 7(a) and 7(d), where three Dirac cones are visible in each
case.

We again confirm that our approach works in the first-
principles context by presenting the WCC sheets along the
z direction (rhombohedral axis) in the strong TI Bi2Se3, as
shown in Fig. 8. There are now 18 WCC sheets per cell; in
most of the 2D projected BZ these are clustered in groups of
six, with each of the three clusters located close to the z position
of a layer of Se atoms within the QL. This is reasonable, as
the Bi and Se atoms can be regarded as cations and anions,
respectively, and it is natural to find the Wannier centers on
the anions. However, this behavior changes drastically near
�, where two of the six WCC sheets in each cluster split off
and form a Dirac point at �, signaling the strong TI nature
of this material. Clearly, this results from the band inversion
near � in the 3D bulk BZ, and is consistent with the existence
of a single Dirac cone at � on the surface of Bi2Se3, as has
been amply demonstrated by angle-resolved photoemission
and other experimental probes [19]. We can again read off
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FIG. 7. (Color online) Surface energy bands (15-layer slab) and WCC sheets for the TR-invariant FKM model in the strong topological
phase (α = 1). (a)–(c) Surface normal and WCCs along ẑ vs (kx,ky). (d)–(f) Surface normal and WCCs along ŷ vs (kx,kz). The (kx,ky) TRI
face at kz = π , the (kx,kz) TRI face at ky = 0, and the (ky,kz) TRI face at kx = 0 are Z2 odd.

the topological indices by noting that the WCC sheets swap
partners in the (kx,ky) plane at kz = 0, the (kx,kz) plane at
ky = 0, and the (ky,kz) plane at kx = 0, but not on the other
three TRI faces, so that [ν0; ν1ν2ν3] = [−; + + +].

E. Crystalline topological insulator

In contrast to the systems studied above, Fu’s tetragonal
model for a crystalline TI [6] is spinless because the nontrivial
topology of a topological crystalline insulator has its roots

FIG. 8. (Color online) First-principles WCC sheets for the strong TI Bi2Se3, plotted on (a) the boundary and (b) the interior of the 2D
quarter BZ. The WCC sheets on parallel TRI faces (e.g., at kx = 0 and π ) show opposite topological behavior.
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FIG. 9. (Color online) Surface energy bands (24-layer slab) and WCC sheets for tight-binding model of a crystalline TI. (a)–(c) Surface
normal and WCCs along ẑ vs (kx,ky). (d)–(f) Surface normal and WCCs along ŷ vs (kx,kz). Dashed and solid surface states in (a) reside on
the top and bottom of the (001) slab, respectively. Quadratic band touching and cross linking in panels (a)–(c) signal the crystalline topological
phase.

in the crystal symmetries rather than in TR symmetry and
spin-orbit interaction. The TR symmetry in this scalar model
does not guarantee double degeneracy at the TRI momenta, but
its combination with the crystal C4 symmetry leads to a twofold
degeneracy of the surface energy bands at � = (0,0) and at
M = (π/a,π/a) for the (001) surface, where z is chosen along
the tetragonal axis. These surface bands can be seen in Fig. 9(a)
for an (001) slab of the model. The dashed and solid lines show
the surface states on the two surfaces of the slab. These bands
traverse the energy gap in a zigzag manner, and their protected
degeneracy at the M point guarantees a robust metallic (001)
surface. This nontrivial behavior is clearer when considering
the behavior of the WCC sheets along the z direction, plotted
in Figs. 9(b) and 9(c). Over most of the 2D BZ, the z location of
these sheets is midway between the A and B atoms. The sheets
touch two-by-two at �, but they open up and switch partners
on approaching the M point. Thus, the WCC undergo the same
kind of switching, and so reflect the same topological proper-
ties, as in the surface energy bands. Even the quadratic disper-
sion of the surface bands around M is reflected in the WCCs.

The C4 symmetry is broken on any surface other than
the (001) surface, which means no robust surface states are
expected on these other surfaces. Figure 9(d) confirms this
for the case of an (010) slab of the model. The energy
bands approach each other near a point midway between
(kx,kz) = (π,π ) and (0,π ), but they do not touch. The WCC
sheets show a similar behavior in Figs. 9(e) and 9(f), remaining
trivial except along the segment at kz = π ; while there is
a nonavoided crossing along this line, this appears to be an
artifact of some special symmetries of the model, and is not
relevant to the discussion at hand.1 Thus, both the surface
bands and WCC sheets are consistent with the trivial topology
of an (010) slab of the model.

1The topological index for the path from (π,π ) to (0,0) (third and
fourth panels) in Fig. 9(e) is even because a horizontal segment drawn
at any chosen y crosses the sheets an even number of times along this
path; this is true regardless of whether the crossing is avoided or not.
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V. SUMMARY

In this paper, we have explained how the hybrid Wannier
charge centers, or WCC sheets, can be calculated using a
parallel-transport approach along a chosen direction in a 3D
insulator and plotted versus the other k-space dimensions. We
have shown that these sheets contain the same topological
information as the surface energy bands, and thus provide an
accessible means of deducing the topological invariants of the
insulator from the bulk properties alone. We also show that the
linear dispersion of the surface energy bands at Dirac points
in Z2 TIs, and their quadratic behavior at the gap closure in
topological crystalline insulators, are replicated by the WCCs.
Moreover, the symmetry group of the WCCs in the 2D BZ
includes all the symmetry operators of the surface bands.

We have demonstrated the distinct behavior of the WCC
sheets in trivial, Chern, weak, strong, and crystalline TIs using
various tight-binding models. In addition, we have used first-
principles calculations to illustrate the calculation of the WCC
sheets in Z2-even Sb2Se3, weak Z2-odd KHgSb, and strong
Z2-odd Bi2Se3, confirming the conclusions from the tight-
binding models.

Admittedly, the topological invariants of Chern, TR-
invariant, and crystalline TIs can be deduced in other ways. For
example, for the TR-invariant case, parity eigenvalues can be
used if inversion symmetry is present; if not, a calculation of
1D Wannier centers on each 2D TRI face is sufficient [22,23].

However, the WCC sheets provide a unifying description that
works in all these cases, allows for a more intuitive comparison
of different kinds of TIs, and provides deeper insight into the
origins of the nontrivial topology.

The evolution of the WCC sheets as the Hamiltonian is
varied through a trivial-to-topological phase transition, or
carried adiabatically around a loop that pumps the Chern-
Simons axion coupling by a quantum [45,46], would be
interesting targets for future studies. Other phases, such as
axion insulators [47] and antiferromagnetic TIs [48], might
also be good subjects for investigation with this tool. Even
in zero-gap Weyl semimetals, the WCC sheets will be well
defined everywhere except at isolated projected Weyl points
in the 2D BZ, and studying their distinct topological properties
would be interesting. Finally, it would be intriguing to explore
whether the WCC concept can be generalized to topological
superconductors. Thus, we are hopeful that the construction
and inspection of the Wannier charge center sheets will prove
to be a useful tool for the characterization of topological matter
in general.
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