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Vortex pinning by surface geometry in superfluid helium
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We present measurements of how a single vortex line in superfluid helium interacts with a macroscopic bump
on the chamber wall. Rather than observing a unique pin location, we find that a given applied velocity field can
support pinning at multiple sites along the bump, both near its apex and near its edge. We also find that a vortex
can pass near or even traverse the bump itself with or without pinning, depending on its path of approach to the
bump. We discuss our results in light of past computational work on vortex pinning by a hemispherical bump, as
well as our own simulations that incorporate additional aspects of the experimental setup.
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Superfluid helium is in many ways a great simplification
over classical fluids. It has zero viscosity, essentially zero
compressibility, and zero vorticity except at isolated vortex
cores each with identical fixed circulation. One advantage is
that idealized hydrodynamics calculations can be compared
to actual experimental results. Agreement has been found for
several nontrivial experimental behaviors including precession
and pinning [1,2], the speed of a vortex front [3], the distri-
bution of vortex ring sizes emitted from superfluid turbulence
[4], and details of vortex reconnections [5,6]. The calculations
use the Biot-Savart law to find the velocity field from the
positions of the vortices, then update the vortex positions
according to this velocity field [7]. A key approximation, that
the vortex core is infinitesimal, simplifies the computations
substantially. In most fluids this assumption is unrealistic,
but in superfluid 4He the core radius of 1.3 Å is indeed
small enough to be ignored on typical computational length
scales. Understanding this “slender vortex” situation sets the
stage for modeling classical fluid motion, which can involve
additional complications through changes in the size, shape,
and circulation of the vortex cores.

Here we experimentally track a single vortex in superfluid
helium interacting with a macroscopic bump. We compare to
Schwarz’s computational work for a hemispherical bump on
an otherwise flat wall [7]. Schwarz uses a flow field that far
from the bump is uniform and parallel to the wall. If a vortex
is swept into the vicinity of the bump, then for sufficiently
low applied velocity the bump captures and pins the vortex
[7]. The calculation uses no explicit pinning forces; rather,
a stationary configuration arises entirely because the vortex
settles into an arrangement with zero net velocity along its
core. For a given flow velocity, the pinned vortex terminates at
a unique position on the bump, in the plane perpendicular to
the flow. With increasing velocity, the pin site moves out along
the bump towards the wall. Our experiments confirm that a
vortex can pin at a bump, although the vortex pins less easily
than expected and can exhibit multiple pin sites for the same
applied velocity field.

Our data come primarily from a cylindrical cell of diameter
5.79 mm, with a large bump midway along its length. At
its widest the bump has a roughly circular cross section of
diameter 3.05 mm, and it protrudes 1.27 mm from the circular
wall. The cell is mounted on a pumped 3He cryostat and filled
with 4He through a small inlet hole [2]. A fine wire runs near

the cylinder axis, in a perpendicular magnetic field of order
25 mT, as shown in the inset of Fig. 1(a). Passing a brief current
pulse through the wire in the static magnetic field displaces the
wire from its equilibrium position. After the pulse ends, the
wire’s tension causes vibrations and ultimately a return to
the equilibrium position. As the wire moves through the
magnetic field, we monitor the emf induced across it.

We create vortices by rotating the cryostat at low tem-
peratures, but we make all measurements with the cryostat
stationary. Vorticity trapped around all or part of the wire
alters the observed vibration frequencies. We focus on the
frequency splitting between the two lowest modes. The earliest
measurements with a straight vibrating wire [8] confirmed
that circulation is quantized in superfluid helium, since the
frequency splitting expected from a single quantum of circula-
tion was strikingly stable. However, intermediate values of the
frequency splitting also occurred. These levels appear when a
quantized vortex covers only a fraction of the wire and hence
has a reduced effect on the vibration frequencies. The observed
frequency splitting pinpoints the spot where the vortex leaves
the wire. The vortex then continues through the fluid as a
free vortex, with the free portion moving at the local fluid
velocity. Since this motion often leads to small adjustments
to the position where the vortex leaves the wire, our vibrating
wire measurements can track the free vortex portion.

In our physical experiment, the driving field is the flow field
of the trapped vertical vortex, which sweeps the free vortex
segment around the cell. The free vortex terminates on the
cell wall, and if it encounters the bump during its precession,
it can pin to the bump. The observed circulation along the
wire then stabilizes; the steady energy loss that we see during
precession ceases, as does the oscillatory signal corresponding
to the circuit of the vortex around the wire.

As a first indication that there is more than one metastable
configuration for the vortex on the bump, we observe not one
but three closely spaced stable levels. Two appear in Fig. 1.
On approaching the bump, the vortex first pins with 20.7 mm
of the wire’s length covered by circulation, which changes to
22.0 mm after several minutes. Figure 2 includes the remaining
level, at 19.6 mm. The differences between these heights are
comparable to the widest radius of the bump. Thus the middle
level may correspond to pinning at the apex of the bump,
while the other two levels indicate pinning close to the top and
bottom of the circle where the bump meets the wall.
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FIG. 1. (Color online) Top, inset: cell geometry, with wire
stretched near cell axis, a perpendicular magnetic field used to excite
and detect the wire’s vibration, and a bump on the side wall. A vortex
extends along the wire from the bottom of the cell to the center,
then leaves the wire and terminates on the bump. Top, main: motion
of the end of the vortex along the wire. Initial oscillations indicate
precession of the free vortex. Pinning begins near 90 minutes. Bottom:
expanded views of Kelvin waves on pinned vortices.

Kelvin waves during the pins confirm that the three levels
correspond to pinning at different parts of the bump. The
Kelvin waves appear as rapid oscillations superimposed on
the steady circulation. Our vibrating wire itself can excite
these waves, particularly when the other end of the vortex is
fixed [9]. The observed oscillation frequency corresponds to
the longest-wavelength mode with the vortex fixed at the cell
wall and free to move vertically along the wire. (Empirically,
since we observe oscillations at the Kelvin wave frequency,
the vortex must not be fixed at the wire.) The wire used for the
present measurements exhibits Kelvin waves often, and their
frequencies provide key geometric information.

Frames (b) and (c) of Fig. 1 expand the oscillations visible
at the stable circulation levels. The horizontal axis has the same
scale in both cases, illustrating clearly that the oscillations at
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FIG. 2. (Color online) Several approaches of a vortex to the
bump, showing the reproducibility of the pin levels. Each curve has
an arbitrary horizontal shift.

the first pin have a higher frequency. The periods are about
52 seconds for the first pinned level and 101 seconds for the
second level. The period repeats to within the uncertainty of
about two seconds for all pinning events at the same level.

The Kelvin wave period for long wavelength λ is

T = 2λ2

κ ln λ
2ao

,

where ao = 1.3 × 10−7 mm is the vortex core radius and
κ = 9.97 × 10−2 mm2/s is the circulation of a single-quantum
vortex [10]. For a pinned vortex, the lowest-frequency mode
has a wavelength four times the length of the free vortex
segment. For a pin site at the bump apex, the free vortex length
is 1.6 mm and the corresponding period is T = 48 seconds,
very close to the observed value at the middle pin level. A pin
site at the edge of the bump, with vortex length equal to the cell
radius of 2.9 mm, corresponds to a period of 164 seconds. The
weaker agreement here could mean simply that the vortex does
not pin precisely at the bump edge, which is hardly surprising
since the straight-line path from the center of the cell to the
bump edge passes through the bump. The observed period of
101 s suggests a vortex length of 2.3 mm. For our bump, this
would occur at a distance 1.2 mm from the bump axis, which
is quite close to the edge in the lateral direction.

The Kelvin waves at the third pin level have an intermediate
period near 62 seconds. This corresponds to a vortex length of
1.76 mm, which would place the pin site 0.97 mm off the axis.
Since the glue ran down in this direction when the bump was
affixed to the cell wall, this edge does have a more gradual
height change, and the observed values for the pin location
and Kelvin wave period are plausible.

Figure 2 collects several vortex pinning events. In three
cases a vortex pins to the bump apex, then works free
spontaneously after about eight minutes and shifts to a site
closer to the bump edge. By contrast, the pins at both the
top and bottom edges of the bump never come free without
deliberate heating on our part to dislodge the vortex. Thus it
appears that for this geometry pinning to the bump apex is less
stable than pinning closer to the bump edge. Such temporary
pinning does not occur in the computational work [7]. One
possible reason for the difference is the much lower dissipation
in our actual experiment. The computational vortices are
far more able to dispose of excess length through Kelvin
oscillations and the resulting energy loss; in our experiment,
the barely damped oscillations may continue at high amplitude
and eventually dislodge the vortex. The lack of a good
dissipation mechanism is a more serious issue for the pin site
at the bump apex, because of the relatively short distance from
the apex to the wire. When a precessing vortex that terminates
on the cylindrical wall then pins at the bump apex, it must
either dispel a significant amount of energy or maintain its
length through bends in its core.

As noted above, both the pin levels and the Kelvin wave
periods for each level are highly reproducible, which strongly
suggests that vortices repeatedly pin at the same few spots.
However, the initial approaches of the vortices are far from
identical. Each trace begins with a few cycles of an oscillation
with a period of about 10 minutes, corresponding to precession
of the free vortex segment. The minima and maxima indicate
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particular directions of the free vortex within the cell [11].
The heights of the minima and maxima vary among the
traces, showing that the vortices approach the bump along
different trajectories. Nonetheless, they still reach the same
pin locations. This cannot occur purely from microscopic
roughness at the pin site; macroscopic energy considerations
must play a role in guiding the vortex towards the site.
Similarly, the three vortices that move from the pin site at
the bump apex to one at the bump edge trace out different
paths. For example, close examination of Fig. 2 shows that
in the first trace the vortex returns to the level of the apex on
the first oscillation after depinning, in the second it has two
oscillations to intermediate levels, and in the third it settles
after only a single oscillation.

One unusual energy consideration, from the Gaussian
curvature of the surface [12,13], could explain both the
existence of multiple pin sites and the macroscopic energetics
that guides a vortex between them. Regions of negative
Gaussian curvature are predicted to be more favorable for
defects than regions of positive curvature. The arguments rely
on energetics of two-dimensional systems, and a proposed test
in superfluid helium involves a thin layer of superfluid [12].
In three dimensions, surface energy terms are typically much
smaller than bulk terms but may still provide an incremental
contribution that leads to a metastable pin location.

A Gaussian curvature effect could account for the partic-
ularly unexpected location of one of our pin sites. Since the
vortex must be perpendicular to the bump at its pin location,
any pin site other than the bump apex requires the vortex to
curve. For a stable pinned vortex, the velocity field produced
by this curvature exactly cancels the applied velocity field.
Following this logic, in our experiment we expect the stable
pin site to lie towards the bottom edge of the bump. Yet our
measurements repeatedly find a vortex pinning near the top
edge, where the self-induced velocity near the bump augments
the applied velocity rather than opposing it. A pinning force,
perhaps deriving from the energetics of Gaussian curvature, is
needed to retain the vortex at this spot.

Another result from Schwarz’s calculations is that if the
fluid velocity is low enough for a vortex to pin, then the vortex
will do so as long as it moves along a path that passes within
about one bump radius of the edge of the bump [7]. The
distortion of the velocity field by the bump pulls the vortex
inward until it encounters the bump. By contrast, we find that
the vortex does not pin unless its path is directed near the center
of the bump. The spikes in Fig. 2 in the two or three precession
cycles immediately before a vortex pins indicate that a vortex
too far off center moves over the surface of the bump without
pinning. As the end of the vortex traverses the bump, the length
of the free vortex portion shrinks abruptly. To compensate, the
length of circulation trapped on the wire increases sharply,
causing the spike in our data. On each circuit of the cell the
vortex encounters the bump closer to the bump center, with a
corresponding increase in the spike’s magnitude. Eventually
the path lies close enough to the center that the vortex pins.

We suggest a few reasons contributing to the observed
nonpinning events. First, even in Schwarz’s original work
there is an asymmetry depending on the direction that the
vortex approaches the pin site [7]. The asymmetry was not
remarked on but is visible in Fig. 25 of that paper. It arises

from the mutual friction force, which drives the vortex to
one side relative to the direction of the superfluid velocity. A
vortex beginning on one side of the bump is driven towards
it, while a vortex on the other side is driven away. Thus this
contribution either assists or opposes the inward pull towards
the bump from the bump’s distortion of the local velocity field.
In our experimental setup, the vortex always approaches from
the direction where the friction contribution makes pinning
more difficult. Since the friction is extremely small at our low
measurement temperatures, the directional asymmetry should
be similarly low. The trapping distance should be reduced from
what it would be with more friction driving the vortex towards
the bump, but this does not explain what happens after a vortex
does encounter the bump. A second factor, as we noted when
discussing the relative stability at the bump apex and edge, is
that the low friction cannot provide the energy dissipation that
would enable the vortex to settle at the bump.

A third possibility for why the vortex in our experimental
setup sometimes fails to pin is the nonuniform velocity field.
We have carried out simulations that support this explanation.
Following Schwarz [7], we calculate the behavior of a vortex
near a hemisphere on a flat plane, for different applied
velocity fields. Our computational geometry involves the
region between two planes, at z = 0 and z = 0.002 cm. Each
plane has a hemispherical bump of radius 0.0001 cm, centered
on the z axis. We use an immovable straight vortex line as the
source of the applied velocity field. Meeting the boundary
condition of zero velocity perpendicular to the surface is
then straightforward since the code is already set up to solve
the boundary value problem for the fluid flows associated
with isolated vortices. The flow from a vortex line is also a
plausible analog of the 1/r velocity field from the central
vortex in our physical experiment. We first use a source
vortex parallel to the y axis, at x = 0 and z = 0.0005 cm.
A second vortex at height 0.0015 cm maintains symmetry
about the midplane. We require constant but not necessarily
quantized circulation for the source vortex, so we can vary the
applied field in small increments. The nonuniform velocity
field dramatically destabilizes the vortex and enables it to
traverse the hemisphere without pinning. The test vortex has a
metastable configuration terminating on the hemisphere only
when the applied velocity field at the bump apex is less than
0.00059 cm/s. The applied field is larger closer to the source
vortex, but is still orders of magnitude smaller than the values
reached when the distant velocity field is constant. For the
fastest applied field that supports a pinned test vortex, its largest
contribution along the length of the test vortex is 0.012 cm/s.
By contrast, if the applied velocity field is constant far from
the bump, the vortex can pin until the applied field is about
0.66 cm/s, corresponding to a flow of about 1 cm/s past the
apex. Repeating the calculations for a source vortex the same
distance from the bump but in the z = −x plane confirms
the destabilizing nature of nonuniform fields. In this case the
largest velocity at the bump apex that allows pinning is 0.0052
cm/s, and the highest applied velocity along the test vortex is
again 0.012 cm/s.

We now return to the observation that a vortex can pin at
either the edge or the apex of a bump. A different geometry
provides additional evidence that this is so. We use a cell
where the bump is attached not to the side wall but to one of
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FIG. 3. (Color online) Thermal cycling to depin a vortex from the
wire; see text for details. The trace begins with a single quantum of
circulation surrounding the entire wire; coincidentally, the frequency
splitting for this circulation happens to be very close to 1 Hz.

the endcaps, with the wire glued to the bump apex. Thus a
vortex trapped along the entire length of the wire terminates
at the apex. Alternatively, a vortex that leaves the wire shortly
before it reaches the bump and traverses the superfluid as a
free vortex can pin near the edge of the bump. We cannot
distinguish these two situations directly. The slight change in
beat frequency is unobservably small, particularly because the
measurement sensitivity is vastly reduced near the ends of the
wire compared to the middle [14].

However, we do observe an indirect signature related to the
stability of pinned vortices. Figure 3 illustrates how we test
stability. We provide thermal energy by raising the temperature
of the cryostat. At the higher temperatures the damping of the
vibrating wire is too high to extract the circulation, so after
a few minutes we cool the cryostat and check whether the
circulation level has changed. If it has not, we heat to a slightly
higher temperature, repeating until the vortex depins. After the
vortex dislodges, the ensuing precession signal indicates that
the vortex now lies along only part of the wire’s length, with
one end terminating on the cylindrical wall.

Figure 4 shows vortex depinning temperatures for several
cells with different endcap configurations. Each point repre-
sents a single pinned vortex, with the temperature derived
from a heating sequence such as that in Fig. 3. Many of the
cells show a large spread of depinning temperatures, possibly
because of details of the heating cycles or the interplay between
the circulation and the end of the wire. Nonetheless, some
patterns emerge, such as the high stability of vortices in the cell
with the hemispherical indentation. Three of the eight endcaps
have bumps. In those three, but not in any others, the depin
temperatures cluster into two groups, which may correspond
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FIG. 4. (Color online) Depin temperatures for eight cells with
endcaps as sketched. Each point indicates the maximum temperature
reached when a pinned vortex left the wire, e.g., 1.34 K for the vortex
of Fig. 3.

to pinning at the bump apex and at the bump edge. A vortex
pinned at the bump edge is already close to the outer wall of
the cylinder, and we expect it to have a smaller energy barrier
to overcome in depinning compared to a vortex that follows
the entire wire. Hence the lower-temperature depins for each
bump could occur for vortices pinning near the bump edge,
while those at higher temperature signify vortices pinning at
the apex. We note that the thin cell with a bump has some
particularly low depin temperatures and also has the closest
approach of the bump edge to the outer wall.

Our measurements agree with the qualitative picture of
vortex pinning that arises from numerical simulations. How-
ever, given the past successes of superfluid hydrodynamics
calculations, the discrepancies may indicate additional physics
not accounted for in the computations. We observe multiple
metastable pin sites on a single convex bump. In addition,
vortices passing near the bump do not spiral inward and pin.
On the contrary, even vortices that encounter the bump directly
sometimes pass over it without pinning. We suggest that low
dissipation and a nonlinear velocity field are responsible for the
difficulty in pinning, and that the existence of several allowed
pin sites results from an energy term related to the Gaussian
curvature of the surface.

We acknowledge funding from UC Davis.
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