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We study spin-half fermions in a one-dimensional extended Hubbard chain at low filling. We identify three
triplet and one singlet pairing channels in the system, which are independently tunable as a function of nearest-
neighbor charge and spin interactions. In a large-size system with translational invariance, we derive gap equations
for the corresponding pairing gaps and obtain a Bogoliubov–de Gennes Hamiltonian with its nontrivial topology
determined by the interplay of these gaps. In an open-end system with a fixed number of particles, we compute the
exact many-body ground state and identify the dominant pairing revealed by the pair density matrix. Both cases
show competition between the four pairing states, resulting in broad regions for each of them and relatively narrow
regions for mixed-pairing states in the parameter space. Our results enable the possibility of tuning a nanowire
between singlet and triplet pairing states without breaking time-reversal or SU(2) symmetry, accompanied by a
change in the system’s topology.
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I. INTRODUCTION

Cooper pairing [1] is a key ingredient for exploring con-
densation, superconductivity, and superfluidity in interacting
many-fermion systems [2]. In an electronic system, phonon-
mediated pairing between two electrons through a singlet
channel accounts for the onset of conventional supercon-
ductivity, which is well described by the Bardeen-Cooper-
Schrieffer (BCS) theory invented over a half century ago [3].
Since then, pairing mechanisms via different spin and orbital
channels have been extensively investigated, resulting early in
successful understanding of triplet pair superfluid phases in
liquid 3He [2,4–9] or later in active studies on a variety of
unconventional superconductors such as cuprates [10–14] and
iron pnictides [15–21] with singlet pairing order parameters
as well as several heavy-fermion compounds [22,23] and
strontium ruthenate Sr2RuO4 [24,25] with triplet ones.

Multiple pairing effects enable the possibility of a transition
(or crossover) from one energetically favorable pairing state
to another as the system parameters change. In a triplet
pairing case, superfluid 3He can undergo a first-order phase
transition between an equal-spin-pairing state and a specific
3P0 spin-orbit pairing state (3He-A and -B phases, respectively)
[2,7], as a function of temperature and pressure. In a singlet
pairing case, the BCS-type superconductor or superfluid with
a uniform pairing order parameter can undergo a transition to
a state with spatially oscillatory ones in the presence of spin
imbalance or magnetic field, such as the Fulde-Ferrell-Larkin-
Ovchinnikov state [26,27] with its experimental evidence in
CeCoIn5 [23,28] and cold 6Li gases [29], or the theoretically

proposed p-orbital pair condensate [30]. In addition, several
exotic transitions between d-(d + is)-s [31,32], (p + ip)-p
[33], and (p + ip)-f [34] orbital pairing orders have also
been theoretically discussed. However, all these cases show
the changes of the order parameters only in the orbital or
z-component spin space, while the total spin of the pairing
order remains the same (singlet or triplet) upon the transitions.
A transition or crossover between singlet and triplet pairing
states was less studied.

Moreover, in three dimensions there is an interesting state
showing the coexistence of s- and p-wave pairing orders (remi-
niscent of a fragmented condensate), provided the interparticle
potentials in triplet and singlet channels are both energetically
favorable [5]. Such a mixed state survives merely in a
restrictive parameter regime and has not been much focused
[7]. In two dimensions, the mixed state has been proposed
with the assistance of spin-orbit couplings [35], interfacial
barriers [36], or deformation in the Fermi surface [37]. Recent
findings have suggested a feasible proposal for this mixture,
which is proximity-induced p-wave superconductivity in a
ferromagnets/s-wave superconductor heterostructure [38–48].
In these devices, even if the competition between singlet
and triplet pairing orders always exists since the attractive
interaction between opposite spins accompanies with the
desired attractive interaction between same spins, they can
coexist within a range across the interface, with thickness
comparable to the superconducting coherence length. Never-
theless, the ferromagnet/superconductor interface is strongly
inhomogeneous such that the mixed region can hardly be

1098-0121/2014/89(10)/104519(16) 104519-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.104519


SUN, CHIU, HUNG, AND WU PHYSICAL REVIEW B 89, 104519 (2014)

described as a uniform phase. For effectively characterizing the
quantum phases with singlet, triplet, and mixed pairing order
parameters, a well-defined uniform system and its modeling
ought to be further investigated.

Recently, a lot of interest has been stimulated in one-
dimensional (1D) superconductors for their topological
nontrivial properties and potential application on quantum
information processing [49–53]. In a system of spinless
fermions on an open chain, the superconducting state, which
has a p-wave (triplet) pairing order parameter, has been shown
in a given parameter range as a topological state that carries
one Majorana fermion on each end of the chain [49]. In a case
of spin-half fermions, the Majorana fermion states can emerge
within a heterostructure in the presence of s-wave (singlet)
pairing order, spin-orbit coupling, and magnetic Zeeman field
[54–56], which has been experimentally realized in semicon-
ductor nanowires having a proximity-induced superconducting
gap [57–62]. On the other hand, a singlet superconductor
without spin-orbit and magnetic couplings is always topolog-
ically trivial. Therefore, regarding the equivalence between
a spin-half system and two copies of spinless ones in the
limit of spin decoupling, one could expect that the tuning
between one-dimensional singlet and triplet pairing states may
induce a change in the system’s topology and hence provide
a new route for topological manipulation. In addition, the
topological property of a mixed pairing state would also be
an interesting subject. From this point of view, systems with
inside tunable pairing channels would be more appropriate for
investigation.

In this paper, we study an extended one-dimensional Hub-
bard model with nearest-neighbor charge and spin interactions,
particularly focusing on the pairing phenomena in uniform and
low-filling regimes. We show that the system contains all four
possible pairing channels in the pair spin space, with coupling
strengths that can be independently varied by the tuning of
charge and spin interactions. We apply a mean-field treatment
on a large-size case with translational invariance and will
derive gap equations characterizing two intraspin triplet, one
interspin triplet as well as one singlet pairing orders, and mixed
regions of them. We shall obtain the effective Bogoliubov–de
Gennes (BdG) Hamiltonian of the model and discuss its
topological properties. Beyond the mean-field treatment, we
perform exact diagonalization on an open-end chain with
a fixed number of particles, with modifications to reduce
finite-size effects (see detailed discussions in Sec. IV A).
We compute pair fractions of the exact many-body ground
state that indicates dominant and stable pair species toward
large-size and low-filling regimes (reminiscent of a pair
condensate). The results will show a change of dominant pair
species from one to another as the corresponding couplings
vary, accompanied with a characteristic behavior of pair
susceptibility or entanglement entropy. The mixed pairing
state will also be identified in regions where more than one
pair species dominate. Finally we compare the mean-field and
exact-diagonalization results.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and phenomenologically discuss the
pairing physics in the system. In Sec. III we perform the mean-
field treatment on a translation-invariant system to derive the
gap equations, followed by discussions of the pairing behavior

as well as the topological properties of the system. In Sec. IV
we compute the exact ground state of a fixed-number open-end
chain. We present data that show evolution of dominant pair
species as the function of couplings and plot state diagrams
that characterize various stable pairing states including mixed
ones. Finally we summarize this study in Sec. V.

II. MODEL

In this section we introduce the model Hamiltonian and
phenomenologically discuss the pairing tendency in the sys-
tem. We begin with an extended 1D Hubbard Hamiltonian
with charge as well as spin interactions and represent it in
a suggestive form that directly pinpoints four independently
tunable pairing channels. We then write down a fixed-number
BCS-type ansatz to explain how various pair species energet-
ically compete with each other. Finally we discuss how the
system’s symmetry enables a mixed pairing state.

The extended Hubbard model has a general form of

H̃ =
∑

i

⎡
⎣ ∑

σ=↑,↓
−tσ (ĉ†σ i ĉσ i+1 + H.c.) − μσ n̂σ i

+Un̂↑i n̂↓i +
∑

σ,σ ′=↑,↓
Vσσ ′ n̂σ i n̂σ ′i+1 + 4J Ŝi · Ŝi+1

⎤
⎦ ,

(1)

where ĉ
†
σ i creates a fermion of spin σ on site i, n̂σ i = ĉ

†
σ i ĉσ i

is the number operator, Ŝi = ĉ
†
αi �σαβ ĉβi/2 is the spin operator

with �σ = {σx,σ y,σ z} being Pauli matrices, t is the nearest-
neighbor tunneling strength, and μ is the chemical potential.
The couplings U , V , and J represent the on-site charge,
nearest-neighbor charge, and spin interactions, respectively.
The parameters t , μ, and V [63] are taken as spindependent
for the most general case (notice that V↑↓ = V↓↑ is required
for most physical interactions).

In the following, we consider a case in which two
spin species are balanced and have the same single-particle
spectrum, or tσ → t and μσ → μ. We also focus on low-filling
regimes in which the double occupancies are dilute such that
the on-site repulsion can be treated as effective contributions to
the chemical potential in a Hartree approximation, n̂↑i n̂↓i →〈
n̂↓i

〉
n̂↑i + 〈

n̂↑i

〉
n̂↓i . However, the nearest-neighbor charge and

spin interactions account for intersite correlations that are
essential for the pairing behavior (as we will discuss later) and
hence cannot be decoupled as single-site quantities. (We will
show later in this section that the physics of interest does not
qualitatively alter even incorporating the on-site interaction as
its original form in Eq. (1), no matter whether it is repulsive or
attractive.) Therefore, with the approximation for the on-site
repulsion, one can pinpoint the pairing channels by rewriting
the Hamiltonian of Eq. (1) in a suggestive form using two
intrapin triplet pair operators b̂

†
σ,i = ĉ

†
σ,i+1ĉ

†
σ,i for σ = ↑,↓

as well as two interspin triplet and singlet pair operators
b̂
†
±,i = (ĉ†↓,i+1ĉ

†
↑,i ± ĉ

†
↑,i+1ĉ

†
↓,i)/

√
2, respectively, as

Ĥ =
∑

i

(
Ĥ 0

i + Ĥ I
i

)
, (2)
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with the noninteracting part,

Ĥ 0
i =

∑
σ=↑,↓

−t(ĉ†σ i ĉσ i+1 + H.c.) − μn̂σi, (3)

and the interacting part,

Ĥ I
i =

∑
α=↑,↓,±

gαb̂
†
α,i b̂α,i . (4)

Here the four pair couplings g↑,↓,± are independently tunable
via the tuning of the charge and spin interactions V↑↑, V↓↓,
V↑↓, and J in Eq. (1) as

g↑(↓) = V↑↑(↓↓) + J, (5)

g+ = V↑↓ + J, (6)

g− = V↑↓ − 3J. (7)

The Hamiltonian of Eq. (2) conserves the total number
of each spin species N↑(↓). We phenomenologically discuss
the pairing tendency by applying a generalized number-
conserving BCS ansatz [64] on the many-body ground state in
the momentum space k,

ψBCS = A
∏

α=↑,↓,±

(∑
k

fα,kb̂
†
α,k

)Mα

|vac〉. (8)

Here the pair operators are defined in terms of
Fourier-transformed single-particle operators {ĉ†α,k}, as

b̂
†
↑(↓),k = ĉ

†
↑(↓),k ĉ

†
↑(↓),−k and b̂

†
±,k = ĉ

†
↓,k ĉ

†
↑,−k ± ĉ

†
↑,k ĉ

†
↓,−k , fα,k

is the amplitude for b
†
α,k , |vac〉 is the vacuum state, and A

is the normalization constant. The total numbers of each
pair species Mα are subject to number conservation rela-
tions 2M↑(↓) + M+ + M− = N↑(↓). Such constraints enable
an energetic competition between each pair species. From
this point of view, we expect the ground state with the
favor (disfavor) of intraspin triplet, interspin triplet, or singlet
pairing [or Mα dominates (diminishes)] if the corresponding
coupling gα is negative (positive) or attractive (repulsive).
From Eqs. (5)–(7) we note that the attractive charge interaction
(negative V ) always benefits pairing. The antiferromagnetic
spin coupling (positive J ) leads to the favor of singlet pairing,
as reminiscent of the singlet (d-wave) superconducting order in
the two-dimensional t-J model [14], while the ferromagnetic
coupling (negative J ) favors the triplet pairing, as reminiscent
of the proximity-induced p-wave superconducting order in
ferromagnet-superconductor junctions [38–48]. If one consid-
ers the on-site interaction U as its original form in Eq. (1), it
will energetically contribute only to the singlet pair species. In
this case, one could follow the same discussion above for the
energetic competition between different pair species, except
now the effect considered from the nearest-neighbor singlet
coupling g− should be replaced by a combined effect of g−
itself and U . Therefore, we do not expect a qualitative change
in the trend of pairing tendency by incorporating the U term,
no matter whether it is attractive or repulsive, and can thus
stay with Eq. (2) both for simplicity and without the loss of
generality. The ansatz of Eq. (8) also tells that once a pair
species is more energetically favorable than the others, its
total number tends to maximize. Therefore, only one dominant

pairing order is usually expected in a number-conserving
system, unless such trend is protected by symmetries as
discussed below.

The system possesses time-reversal symmetry if g↑ = g↓
and SU(2) symmetry if g↑ = g↓ = g+. These symmetries
insert a sufficient condition of the coexistence of multiple
triplet pairing orders. For example, both intraspin pairing
orders should simultaneously emerge in the presence of
time-reversal symmetry, and together accompany the interspin
triplet one in the presence of SU(2) symmetry. We note that the
mixture of the two intraspin pairing orders [e.g., M↑ = M↓ 	=
0 and M± = 0 in Eq. (8)] is different from the interspin triplet
pairing state (e.g., M+ 	= 0 and M↑,↓,− = 0). The former is
a fragmented state (which has more than one dominant pair
species), while the latter is spin coherent and known as an
equal spin pairing state [b̂†+,k → ĉ

†
↑,k ĉ

†
↑,−k + ĉ

†
↓,k ĉ

†
↓,−k after an

SU(2) roration], analogous to the liquid 3He-A phase [2]. In
the limit of g± → 0, the Hamiltonian of Eq. (2) decouples
to two independent chains, each of which is described by
Kitaev’s spinless fermionic model [49] in the presence of U(1)
symmetry breaking, capable of carrying Majorana fermions in
a topologically nontrivial state. Starting from this limit, our
model provides a route studying various couplings between
such two chains and their evolution toward the singlet pairing
(topological trivial) regime, hinting of a topological phase
transition. Finally, we remark that triplet and singlet orders
can coexist without breaking any of the symmetries discussed
above. However, even if they coexist, we expect the mixture
in a relatively narrow parameter range where the two pair
species are energetically compatible, outside which one order
can always overcome the other and become dominant. In
Secs. III and IV we use two different methods investigating
the competition between the four pairing orders as a function
of the four couplings and identifying the dominant regions for
each pair species or their mixture.

III. MEAN-FIELD TREATMENT
ON A LARGE-SIZE SYSTEM

In this section, we establish a mean-field treatment for the
extended Hubbard Hamiltonian Ĥ in Eq. (2) with translational
invariance (large-size limit) at zero temperature to understand
the possibility of triplet and singlet pairings. First, we start
from the exact quantum partition function and perform a
Hubbard-Stratonovich transformation with one singlet and
three triplet auxiliary bosonic fields. After the transformation,
we obtain an effective BdG Hamiltonian and turn to discuss
its topology with the four pairings. Back to the main track, we
derive the gap equations of pairings and then find the parameter
range corresponding to the presence of pairing.

Before proceed, we comment that although the mean-field
treatment does not incorporate quantum fluctuations, which
could be essential for studying the 1D physics, it has been
widely applied to describe various 1D superconducting states
both qualitatively and quantitatively. For example, the mean-
field solutions [65] for 1D spin-imbalanced superconductors
well match those obtained from unbiased methods [66] and
agree with experimental findings [29]. In Appendix A, we
consider another supportive example of 1D superconducting
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systems, the Richardson model [67,68], and show the mean-
field solution consistent with the exact one for characterizing
the superconducting phase. Moreover, our BdG Hamiltonian,
which exhibits interesting topological properties as discussed
below, can be effectively applied on nanowires with proximity-
induced superconducting gaps [57–62], producing potential
realization of tunable 1D topological superconductors. There-
fore, our mean-field study in this section is not only valid to
a certain extent but is also useful from both theoretical and
practical standpoints.

The quantum partition function of the system can be written
as

Z =
∫ ∏

i

DciDc†i e
− ∫ β

0 dτ [c†i ∂τ ci+Ĥ 0
i +Ĥ I

i (ci ,c
†
i )], (9)

where ci = (c↑i ,c↓i)T . We introduce four bosonic (scalar)
auxiliary fields ρi = (	↑i ,	↓i ,	+i ,	−i) corresponding to
pairing b↑i , b↓i , b+i , and b−i respectively to perform
a Hubbard-Stratonovich transformation for the partition
function

Z =
∫ (∏

p

DcpDc†p

)∏
i

dρidρ
∗
i e− ∫ β

0 dτ (c†i ∂τ ci+Si ), (10)

where cp = (c↑p,c↓p)T and

Si =
∑

α=↑,↓,±

[
−	∗

αi	αi

gα

+ 	αib
†
αi + H.c.

]
+ Ĥ 0

i . (11)

Although the action gains extra degrees of freedom from
the auxiliary fields (bαi), the effective Hamiltonian with bαi

becomes integrable for c†αi and cαi . Later, c†αi and cαi will be
integrated out, and the pairing gaps 	α will be determined
by finding the local extremum of the action. Furthermore,
understanding the expression of the action in momentum space
is necessary to compute the gap equation in the following steps.
Before performing Fourier transformation, we assume the
auxiliary fields to be translation invariant so the site index i can
be neglected. In the momentum space, the partition function
with the translation-invariant auxiliary fields is rewritten as

Z =
∫ (∏

p

DcpDc†p

)
dρdρ∗

× e
− ∫ β

0 dτ [L
∑

α=↑,↓,±
	∗

α	α
gα

+∑
p(c†p∂τ cp+C†

pHBdG
p Cp)]

, (12)

up to a constant multiplier. Here L is the total number of the
system sites,

H BdG
p =

⎛
⎜⎜⎜⎜⎝

−2t cos p−μ

2 0 i sin p	↑
−i sin p	+−cos p	−√

2

0 −2t cos p−μ

2
−i sin p	++cos p	−√

2
i sin p	↓

−i sin p	∗
↑

i sin p	∗
++cos p	∗

−√
2

2t cos p+μ

2 0
i sin p	∗

+−cos p	∗
−√

2
−i sin p	∗

↓ 0 2t cos p+μ

2

⎞
⎟⎟⎟⎟⎠, (13)

and Cp = (c↑p c↓p c
†
↑−p c

†
↓−p

)
T

is a vector describing
particle and hole variables. The effective Hamiltonian H BdG

p is
identified as the well-known BdG Hamiltonian [69] describing
superconducting systems in the momentum space. If all the
triplet gaps vanish 	↑ = 	↓ = 	+ = 0, H BdG

p return to the
BCS pairing case. If 	+ and 	− vanish, the system of H BdG

p

can be treated as two decoupled Kitaev’s 1D chains [49], which
are time-reversal partners.

Let us return to the parent Hamiltonian in Eq. (2). Before the
Hubbard-Stratonovich transformation, the parent Hamiltonian
shows that the system preserves time-reversal symmetry given
g↑ = g↓. Although U(1) symmetry is broken after the trans-
formation, the time-reversal symmetry should be preserved in
H BdG

p . For spin-half particles, the time-reversal symmetry is
defined as 
 = isyK in the spin space, where K is the complex
conjugation operator, such that c

†
↑ → −c

†
↓ and c

†
↓ → c

†
↑.

Therefore, in the hole basis, the time-reversal symmetry is
still of the same form. To preserve time-reversal symmetry in
H BdG

p , the constraints of the pairing gaps must be imposed:

	↑ = 	∗
↓, 	+ = −	∗

+, 	− = 	∗
−. (14)

In general, because of the U(1) symmetry breaking, the
phase of each pairing gap can be arbitrarily chosen by a
U(1) gauge transformation. However, under arbitrary U(1)

transformation, the constraints above no longer hold, and
the definition of the time-reversal operator 
 also changes.
Hence, to avoid the ambiguities of the unfixed pairings and
the expression of 
, we require the U(1) gauge fixed once the
time-reversal-invariant constraints are imposed.

In the following, we turn to investigate the topological
phases of the H BdG

p . The BdG Hamiltonian, which possesses
particle and hole bases, automatically preserves particle-hole
symmetry with the corresponding symmetry operator � =
σxK , which exchanges particle and hole. On the other hand, for
a spin-1/2 system, the time-reversal operators obey 
2 = −1
so this system belongs to the class DIII, which exhibits Z2

topological property in one dimension. To determine the
topology of the 1D chain, we first consider a simple case
where 	+ = 	− = 0. The BdG Hamiltonian becomes block
diagonalized and each block can be treated as a Kitaev 1D
chain. Hence, the system corresponds to two decoupled Kitaev
1D chains. We expect that two Majorana modes arise at each
end of the entire 1D nontrivial system. Kitaev [49] shows that
the nontrivial region is given by |μ| < 2t . Now we recover
nonzero 	+ and 	− to discuss the topology. In the absence of
all triplet pairings, the topological phase of the singlet pairing
superconductor is expected to be trivial. This 1D chain is either
nontrivial or trivial so the boundary between the two phases is
to be determined. The boundary is topological phase transition
points where the energy gap is closed. To find the transition
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points, we write down the energy spectrum of H BdG
p ,

4E2
± = (2t cos p + μ)2 + (sin p|	t | ± cos p|	−|)2 , (15)

where

|	t |2 = |	↑|2 + |	↓|2 + |	+|2. (16)

When E± = 0, the transition occurs. That is,
2t |	t |/

√
|	−|2 + |	t |2 = |μ| is the boundary of the

nontrivial region. Because t > |μ| is the nontrivial region in
the Kitaev model, the region can be extended to

2t |	t |√
|	−|2 + |	t |2

> |μ|, (17)

for our model. Here we see that the system is always topologi-
cally trivial in a purely singlet pairing state (	− 	= 0,	t = 0)
and has the maximum topologically nontrivial region (the same
region as in Kitaev’s model) in a purely triplet pairing state
(	− = 0,	t 	= 0). In a mixed pairing state (	− 	= 0,	t 	= 0),
the enhancement of the singlet pairing strength shrinks the
topologically nontrivial region, which indicates a topological
order as a result from the competition between singlet and
triplet pairings. Our finding also enables a different route
for realizing a topological transition via the tuning of the
singlet pairing |	−|, given t , μ and the triplet pairing |	t | (the
three components in Kitaev’s model) all fixed. The rigorous
derivation of the topologically nontrivial region by computing
Z2 invariant is provided in Appendix B for interested readers.

Now our focus is back on the partition function Z to
determine the values of the pairings. We integrate out all of
the fermion operators c

†
βp and cβp in the partition function

Z =
∫

dρdρ∗eβ
∑

α=↑,↓,± 	∗
α	α/gα+1/2

∑
p,n ln det(G−1

	 ), (18)

where

G−1
	 = H BdG

p − iωnI4×4, (19)

and ωn = π (2n + 1)β is the Matsubara frequency. To obtain
the equilibrium state (extremum of the free energy) of the
system, we take a variation of the action with respect to the
pairing gaps, which generates four gap equations,

	∗
↑

g↑
= − 	∗

↑
2βL

∑
p,n

sin2 p
(
ω2

n + T 2 + 2D−
)

(ω2
n+T 2

2

)2 + (
ω2

n + T 2
)
D+ + |D−|2

,

(20)

	∗
↓

g↓
= − 	∗

↓
2βL

∑
p,n

sin2 p
(
ω2

n + T 2 + 2D−
)

(ω2
n+T 2

2

)2 + (
ω2

n + T 2
)
D+ + |D−|2

,

(21)

	∗
+

g+
= − 	∗

+
2βL

∑
p,n

sin2 p
(
ω2

n + T 2 + 2D−
)

(ω2
n+T 2

2

)2 + (
ω2

n + T 2
)
D+ + |D−|2

,

(22)

	∗
−

g−
= − 	∗

−
2βL

∑
p,n

cos2 p
(
ω2

n + T 2 + 2D−
)

(ω2
n+T 2

2

)2 + (
ω2

n + T 2
)
D+ + |D−|2

,

(23)

where

T = t cos p + μ, (24)

D± = ± cos2 p|	−|2 + sin2 p|	t |2. (25)

Since the strategy to solve these gap equations depends on the
symmetry properties of the triplet couplings, we first focus
on the SU(2)-symmetry-preserving case (g+ = g↑ = g↓) and
then extend the results to the SU(2)-symmetry-breaking case
(g+ 	= g↑ = g↓).

When SU(2) symmetry is preserved, Eqs. (20)–(22) divided
by their own pairings are identical. Only two gap equations
are involved in determining the values of the pairings, which is
similar to the SU(2)-symmetry-breaking case. In the following,
we solve these two gap equations in Eq. (23) and in the same
form of Eqs. (20)–(22) at zero temperature. Therefore, as β →
∞,

∑
ωn

β
→ ∫ ∞

−∞
dω
2π

due to Matsubara frequency ωn = π (2n +
1)/β. After the integration of ω, the gap equations are given
by

1

gγ

= 1

L

∑
p�0

sin2 p

[
1

A+
+ 1

A−

+
∣∣∣∣cos p	−

sin p	t

∣∣∣∣
(

1

A+
− 1

A−

)]
, (26)

1

g−
= 1

2L

∑
p

cos2 p

[
1

A+
+ 1

A−

+
∣∣∣∣ sin p	t

cos p	−

∣∣∣∣
(

1

A+
− 1

A−

)]
, (27)

where g↑ = g↓ = g+ ≡ gγ and

A± =
√

2D+ + T 2 ± 2| sin 2p	t	−|. (28)

We note that given a set of the coupling constants, the
gap equations simultaneously determine only the two SU(2)
invariants |	t | and |	−|. In other words, the value of each
triplet pairing can not be determined separately. The reason is
that the mean-field pairings 	↑,	↓, and 	+ are actually not
individually invariant under SU(2) transformation as shown in
Appendix B.

Numerically solving the gap equations in Eqs. (26) and (27)
gives us the equilibrium state of the system. We obtain a mixed
pairing state (where |	−| 	= 0,|	t | 	= 0) only in a restrictive
region in the parameter space of negative (attractive) gγ and
g−. Outside this region there is no mixed-pairing solution,
which means one or both of the gaps have to be zero. We thus
solve Eq. (26) [Eq. (27)] for |	t | (|	−|) by setting |	−| = 0
(|	t | = 0) in the triplet (singlet) coupling dominant region
|gγ | > |g−| (|g−| > |gγ |). In Fig. 1 we plot a phase diagram
in the |g−|-|gγ | plane for a low-filling case of μ = −1.7t and
draw a boundary (red dashed curve) between topologically
trivial and nontrivial regions. We use vector arrows (|	−|,|	t |)
to represent singlet and triplet pairing strengths, such that an
arrow’s length is proportional to

√
|	−|2 + |	t |2 and its slope

is equal to |	−/	t |. We see that the vector length increases
with the coupling strength. Horizontal and vertical arrows
indicate purely singlet and triplet pairing phases, respectively,
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FIG. 1. (Color online) Mean-field phase diagram characterizing
singlet, triplet, and mixed pairing states under time-reversal and
SU(2) symmetries (when the three triplet couplings are equal, g↑ =
g↓ = g+ ≡ gγ ). The diagram is obtained by numerically solving the
gap equations, which determine the equilibrium state of the system.
Singlet (|	−|) and triplet (|	t |) pairing strengths are illustrated by
vector arrows (|	−|,|	t |) as a function of attractive singlet and triplet
pair couplings, g− and gγ , respectively (notice that both couplings
are negative). Each arrow has length proportional to

√|	−|2 + |	t |2
and slope equal to |	−/	t |. Purely triplet and purely singlet regions
(filled with horizontal and vertical arrows, respectively) sandwich
a relatively narrow mixed-pairing region (shadowed, filled with
finite-slope arrows), with boundaries marked by gray solid lines. The
red dashed line in the mixed region indicates the boundary between
topologically trivial (below) and nontrivial (above) regions as the
chemical potential μ = −1.7t . There is no pairing beyond the left
and bottom axes of this diagram.

which sandwich a relatively narrow mixed-pairing region of
finite-slope arrows. There is no pairing in regions of |g−| <

0.1t , |gγ | < 0.2t , or repulsive couplings. The diagram agrees
with the picture of energetic competition between different
pair species discussed in Sec. II; one can imagine g− and gγ as
two “forces” that competitively stretch and orient the vectors.
Our data show that the arrow smoothly rotates along a path
from a singlet state to a triplet one across the mixed region,
implying a continuous evolution of the system’s free energy.

When SU(2) symmetry is broken (g+ 	= g↑ = g↓), the pair-
ings 	+ and 	↑,↓ are competing. Some pairings must vanish
to obey Eqs. (20)–(22). Determining the vanishing pairings
involves the comparison of the free energy corresponding to
each pairing order. The one with higher free energy should
vanish. However, computing the free energy is quite difficult.
Instead, we give a qualitative argument as we did in Sec. II. The
negative values of the coupling constants represent attractive
interaction between the electrons. From the energetic point
of view, stronger attractive force implies a higher possibility
of pairing. Therefore, the pairing with stronger attractive
coupling wins the competition. We can conclude that when
0 � g+ > g↑,↓ (0 � g↑,↓ > g+), 	+ = 0 (	↑,↓ = 0) and the
pairings 	↑,↓ (	+) dominate. In this case, Eqs. (20)–(22)
becomes Eqs. (26) and (27) with gγ = g↑,↓ (g+). As a result,
the survival pairings are also determined by Eqs. (26) and (27)
and hence described by Fig. 1.

From the mean-field approach, the coupling constants
control singlet and triplet pairings. In the next section, we
will study the exact ground state of a fixed-number open-end
chain and compare the pairing behaviors with those in this
section.

IV. EXACT SOLUTIONS OF A FIXED-NUMBER
OPEN-END SYSTEM

In this section we perform exact diagonalization using the
Lanczos algorithm [11,70] to solve the Hamiltonian of an
open-end chain with L sites as well as fixed N particles
and discuss the pairing physics showed by the results. The
exact solutions preserve all symmetries of the system and
incorporate effects of quantum fluctuations that are ignored
in the mean-field treatment. The U(1) symmetry makes the
Hamiltonian of Eq. (2) block-diagonalized with respect to the
total number of each spin species (N↑ and N↓, as discussed in
Sec. II) and hence allows us to deal with only the block where
the ground state locates. However, this symmetry makes the
original BCS-type pairing amplitude 〈b̂α〉 no longer a good
order parameter for the exact ground state.

Here we consider the pairing phenomenon as the condensa-
tion of paired fermions [2,71]. To study this, one can make an
analogy to the condensation of bosons. In the Bose system, a
condensed state can be identified by macroscopic occupation
of a single-particle state, or mathematically, a macroscopic
eigenvalue of the single-particle density matrix [2,72]. In
our Fermi system, it is the pair density matrix that is used
to identify the pairing as a trend toward the macroscopic
occupation of paired fermions. Specifically, we study the
pairing tendency (favor or disfavor of pairing) by comparing
the largest eigenvalue of the pair density matrix of the system
with that of a free system. The pair density matrix ρpair is
defined as

ρ
pair
r1σ1,r2σ2;r ′

1σ
′
1,r

′
2σ

′
2
= 〈

ĉ†σ1r1
ĉ†σ2r2

ĉσ ′
2r

′
2
ĉσ ′

1r
′
1

〉
, (29)

where the matrix indices are denoted by a set of two-particle
states {r1σ1,r2σ2} with r and σ being spatial and spin quantum
numbers, respectively. We compute the eigenfunctions of ρpair

and find that each of them is also an eigenstate of a pair’s
total spin Ŝpair and its z component Ŝ

pair
z . Therefore, each

eigenfunction falls into one of the four pair classes including
two intraspin triplet states for ↑/↓ ({Spair,S

pair
z } = {1,±1}),

one interspin triplet state ({1,0}), and one singlet state ({0,0}).
From each class we find the largest eigenvalue λ(0) and define
a relative pair fraction as

Pα = λ(0)
α − 2

N
, (30)

where α = ↑,↓,± denote the type of pairs in the same
convention as in Sec. II and N = N↑ + N↓ is the total number
of particles. The relative pair fraction Pα is evaluated as a
comparison with a free system, whose maximum eigenvalue
is always 2 [73]. Since a free system has no pairing preference,
compared with this, positive (negative) Pα indicates the favor
(disfavor) of α pair species. In the thermodynamic limit, the
onset of pair condensation is signaled by P ≈ λ(0) ∼ O(1),
although in most realistic systems P = 0.01%–1% [2]. In our
case of an open chain, we take P (i) positive, (ii) increasing
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as the system expands (by enlarging L at fixed N/L), and (iii)
increasing as the system dilutes (by enlarging L at fixed N )
as three signatures to identify a stable pairing state. Signature
(ii) helps confirm the pairing tendency in the thermodynamic
limit (see the applications on the Richardson model [67,68]
and the original Hubbard model discussed in Appendixes A
and C, respectively), while (iii) does in the dilute regime of
our interest (see discussions in Sec. IV B and Appendix C).
Strictly speaking, such stable pairing state of a finite-size chain
is not physically equivalent to a pair condensate that should
be defined in the thermodynamic limit but could imply one
if the trend persists. According to a theorem in Ref. [71],
the eigenvalues of a finite system with N fermions and L

sites are bounded as λ(0) � N (2L − N + 2)/2L. Substituting
a typical set in our calculations, L = 20 and N = 8, we obtain
P � 60%.

In the following we focus on the time-reversal symmetric
case, so the number of independent couplings and hence that
of independent pair species is reduced by 1, allowing us to
denote g↑ = g↓ ≡ g� and P↑ = P↓ ≡ P�. In Sec. IV A we
discuss the finite-size effects and the stability of pairing in the
dilute limit. We suggest a modification to maintain sufficient
pairing tendency against the finite-size effects without the
lost of generality. In Sec. IV B, we present results showing
the evolution of the system between different pairing states
and the competition between these pairings. We plot state
diagrams characterizing various stable pairing states as a
function of couplings and compare them with the mean-field
results obtained in Sec. III.

A. Finite-size effects and stability of pairing

In a continuum system, only states within an energy scale
of the pairing gap around the Fermi level mainly participate
in Cooper pairing. In a finite-size chain of L sites, the single-
particle spectrum is always discrete and gapped by O(t/L).
At a weak coupling of |gα| < t/L, it is the two degenerate
states of spin up and down at the Fermi level that mainly
participate in the interspin pairing, while the intraspin pairing
is expected to be more suppressed due to the lack of two such
available states. In fact, we explore the Hamiltonian of Eq. (2)
with N↑,↓ = 4,L = 8 ∼ 24 and find that P± > 0 in a wide
parameter range but P� is always negative, even in the range
of g� < 0,|g�| � t � t/L. In order to enhance the intraspin
pairing, we increase the single-particle density of states around
the Fermi level by incorporating a second-nearest-neighbor
tunneling into Eq. (2),

∑
i

∑
σ=↑,↓

−t ′(ĉ†σ i ĉσ i+2 + H.c.). (31)

In Fig. 2(a) we plot P� (blue solid curve) and the single-
particle density of state at the Fermi level (DoS, red dashed
curve) as a function of the second-nearest-neighbor tunneling
strength t ′ for the case of an attractive g� = −0.1t , g± = 0,
N↑ = N↓ = 4, and L = 20. We see that both P� and DoS
increase as t ′ increases from zero, simultaneously reaching
the maxima around t ′ = −0.3t . Such a trend agrees with our
expectation that the more states are around the Fermi level, the
higher pairing tendency the system shows. Below we consider
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FIG. 2. (Color online) (a) Intraspin pair fraction P� (solid curve, axis on the left of graph) and the single-particle density of states (DoS) at
the Fermi level (dashed curve, axis on the right of graph) vs the second-nearest-neighbor tunneling t ′. (b) Intraspin pair fraction P� vs filling
n at attractive (g� = −0.1t , solid curve) and repulsive (0.1t , dashed) pairing interactions while the other two couplings are set zero, g± = 0.
(c),(d) Interspin triplet and singlet pair fractions P± vs n in attractive (g± = −0.2t , respectively, solid curves) and repulsive (0.2t , dashed)
cases, with the other two couplings set to zero as denoted in the plots. The relative pair fraction is measured from that of a free system, so
negative values mean the disfavor of pairing.
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a combined Hamiltonian of Eqs. (2) and (31) with t ′ = −t/3
so P� is large and positive (�0.01%) in a sufficiently large
parameter regime. Notice that we implement t ′ to compensate
the discreteness of states due to the finite-size effects. In a
large enough system, we expect DoS around the Fermi level
high enough for significant pairing even with only the nearest-
neighbor tunneling as in Eq. (2).

Now we turn to discuss the stability of pairing in the
low-filling regime of our interests. In the mean-field treatment
in Sec. III, the pairing order vanishes if the corresponding
coupling is positive (repulsive). In an open chain, we find
that the relative pair fraction can be (slightly) positive in
the repulsive regime. We attribute this to a finite-size effect
and expect that attraction instead of repulsion is the relevant
coupling for stable pairing as the system approaches the
low-filling limit via expansion in size. Figures 2(b)–2(d) show
the three relative pair fractions P�,+,− as a function of filling
number n = (N↑ + N↓)/L at the corresponding coupling
been attractive (solid curves) or repulsive (dashed ones),
respectively. In each panel, we set the corresponding repulsive
(attractive) interaction as g�,+,− > 0 (<0) and keep the other
two pairing effects irrelevant by setting the couplings to zero.
The filling is varied by the tuning of L at fixed N↑ = N↓ = 4.
We see that the pairing tendencies are inapparent at half filling
(n = 1) in all cases. Away from it, all the attractive cases show a
monotonically increasing P toward lower fillings, while in the
repulsive cases P either alternates in small positive values or
becomes negative in the low-filling regime. We confirm two of
the stable-pairing-state signatures discussed at the beginning
of Sec. IV as (i) P positive and (ii) monotonically increasing
toward lower filling. Therefore, only the attractive interactions
sustain a stable pairing state, in agreement with the mean-field
results in Sec. III. In Sec. IV B we use these two plus (iii) the
increase of the pair fraction upon the system’s expansion at
fixed filling to identify the stable pairing states and study the
tuning between them in a general case in which more than one
coupling is nonzero.

B. Results and discussions

In this section, by computing the exact ground state of
a time-reversal symmetric open-end chain with N = 8 and
L = 20 (thus N↑ = N↓ = 4 and the filling N/L = 0.4) in a
sufficiently wide parameter range of g�,+,−, we present results
that show the evolution between different pairing states and
thus identify paths of tuning between singlet and triplet or
between multiple triplet pairing states in the parameter space.
We also obtain state diagrams characterizing the stable regions
for different pairing states. Following the three signatures
discussed at the beginning of Sec. IV, a stable pairing state
of pair species α here is identified by the relative pair fraction
Pα (i) being positive, (ii) increasing as compared with cases
of L = 18 and L = 16 at fixed N = 8, and (iii) increasing as
compared with that of L = 10 at fixed N/L = 0.4. In addition,
we calculate two other physical quantities, pair susceptibility
and von Neumann entanglement entropy, and study their
behaviors upon the cross between two different stable-pairing
regions. The pair susceptibility χαβ is defined as a second
derivative of the ground-state energy EG with respect to the

pairing couplings gα and gβ ,

χαβ = ∂2EG

∂gα∂gβ

× t, (32)

with a multiplication of tunneling t that makes χ dimension-
less. According to the Hellmann-Feynman theorem, the first
derivative of EG with respect to gα , ∂EG/∂gα = 〈∂H/∂gα〉,
is hence proportional to the total number of α pairs on
nearest-neighbor sites. Thus χαβ describes the response of
the total number of such α pairs to gβ (or β pairs to gα

since χαβ = χβα). The von Neumann entanglement entropy
presented here is a relative value measured from the free case
(where all pairing couplings vanish),

δS = −Tr
(
ρred ln ρred − ρred

0 ln ρred
0

)
, (33)

where ρred is a reduced density matrix constructed by tracing
out the degrees of freedom of the right-half chain, and ρred

0
is that of a free system. The relative entanglement entropy
quantifies how much more or less entangled (positive or
negative δS, respectively) the system is driven by the pairing
couplings.

In Fig. 3, we plot P�,+,− (red triangles, blue squares, and
green circles, respectively) vs g in four cases that show the
tuning between different stable pairing states (filled symbols
in the P curve contract to the empty ones denoting states that
do not satisfy the three stability criterions). The bottom panel
of Fig. 3(a) shows the tuning between interspin triplet and
singlet pairing states (P+ and P− dominates, respectively) as
we vary g− and keep g� repulsive as well as g+ attractive.
We see that the intraspin triplet pairing is always unfavorable
(P� < 0 everywhere). The interspin triplet pairing is stable
in a region of weakly positive and negative g−, while the
interspin singlet pair fraction rises, overcomes the interspin
triplet one across a switch point where P+ = P−, and becomes
stable as g− goes more negative. Toward the region of largely
positive (negative) g−, the interspin triplet (singlet) pairing
decreases and becomes unstable. In the bottom panel of (b),
we plot the tuning between the same two pairing states but
in a different path in which g+ is varied and g− is kept
attractive. We see a similar competition that the singlet pairing
dominates until is conquered by the interspin triplet one as
g+ goes sufficiently negative. The bottom panel of (c) [(d)]
shows how the stable intraspin triplet pairing state emerges
with the suppression of interspin triplet (singlet) pairing as
g� varies from positive toward sufficiently negative regions.
In general, we find the tunability from stable β-pairing to
α-pairing states, across a switch point where Pα = Pβ , by
varying gα from positive to sufficiently negative values and
keeping gβ a negative constant, also in a condition that the
other coupling gγ is set positive for the disfavor of γ pairing
all the time. Both facts of (1) the switch between stable β-
and α-pairing states around a negative gα and (2) increasing
Pα accompanied with decreasing Pβ around the switch point
indicate a competition between the two pair species: gα has to
overwhelm gβ to make the α-pair species dominant. This result
agrees with the phenomenological discussions in Sec. II using
the number-conserving BCS ansatz of Eq. (8). The competition
also implies that a mixed state of two stable pairings either
hardly occurs or does so in a relatively small parameter range.
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FIG. 3. (Color online) Four cases shows relative pair fractions Pα (bottom panels), entanglement entropy δS (middle) and pair susceptibility
χ (top) tuned with the pairing couplings g. The intraspin, interspin triplet, and singlet pair fractions (Pα=�,+,−) are represented by red triangles,
blue squares, and green circles, respectively. The filled (empty) symbols denote states that show (do not show) the three signatures for a
stable pairing state discussed in text. (a) Tuning between singlet and interspin triplet pairings as the singlet coupling g− varies, while the top
panel shows pair susceptibilities χ−− (green solid curve) and χ+− (blue dashed). (b) Tuning between interspin triplet and singlet pairings as
the interspin triplet coupling g+ varies, presented together with χ++ (blue solid) and χ−+ (green dashed). (c) Tuning between intraspin and
interspin triplet pairings as the intraspin coupling g� varies, presented together with χ�� (red solid) and χ+� (blue dashed). (d) Tuning between
intraspin and singlet pairings as the intraspin coupling g� varies, presented together with χ�� (red solid) and χ−� (green dashed).

In fact, only in (b) do we see a mixture of weakly stable
interspin triplet and singlet pairings (P � 0) around a small
region of g+ = −0.2t , while the other three cases lack such
mixture. We will discuss the mixed pairing state in more details
later.

Here we turn to study the pair susceptibility χ , which could
show more information about the competition. The top panels
of (a)–(d), cases with tuning gα at negatively constant gβ , show
χαα and χβα (or the rate of change in numbers of nearest-
neighbor α and β pairs with gα) vs gα (solid and dashed
curves, respectively). We see in (a)–(c) that both χαα and χβα

develop peaks with opposite signs around the switch point
where Pα = Pβ , reflecting a drastic increase of β pairs and a

drop of α pairs as gα increases toward the positive or repulsive
region. The slight mismatch between the switch point and
the susceptibility peaks can be due to the difference between
P and χ ; the former represents pairs only for the dominant
eigenwave function of the pair density matrix, while the latter
counts the nearest-neighbor pairs only. In (d), neither χ�� nor
χ−� exhibits a peak around the switch point g� = −0.23t .
This shows that the competition between intraspin triplet and
interspin singlet pairings is much weaker than that between
any other sets of two pairings. In addition, we plot the relative
entanglement entropy δS vs g on each of the middle panel
of (a)–(d). We see in most stable pairing regions in (a) and
(b) that the interspin triplet and singlet pairing states are less
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FIG. 4. (Color online) (a)–(f) State diagrams showing stable pair-
ing regions in g+-g� plane at g−/t = 0, −0.04, −0.08, −0.1, −0.2,
and −0.4, respectively. Red triangles, blue squares, and green circles
represent intraspin, interspin triplet, and singlet pairing, respectively,
while the magenta diamonds and cyan stars represent a mix of
intraspin and interspin pairings as well as that of interspin triplet
and singlet pairings, respectively. The dashed lines g+ = g� indicates
SU(2) symmetry of the system.

entangled than the free system, or δS < 0, while it reaches
a local maximum (slightly positive) around the switch point
and the peak of χ . In the stable pairing regions in (c) and
(d), δS monotonically decreases from positive to negative as
g� increases, with its zero value exactly on the switch point.
These results show that the intraspin pairing state tends to
sustain higher long-range entanglement than the free system,
while the two interspin pairing ones do the opposite.

In Fig. 4, we plot state diagrams characterizing regions of
various stable paring states, including intraspin triplet (denoted
by triangles), interspin triplet (squares), and singlet pairings
(circles), as well as a mixture of the two triplet pairings
(diamonds) and that of the interspin triplet and singlet pairings
(stars), in the g�–g+ plane at a descending series of g−/t = 0,
−0.04, −0.08, −0.1, −0.2, and −0.4 [(a)–(f), respectively].
The dashed line on each diagram denotes the SU(2)-symmetric
region where g+ = g�. At g− = 0 [(a)], the diagram has

stable intraspin and interspin triplet pairing regions, which
qualitatively match {g� < 0,g+ > g�} and {g+ < 0,g+ < g�},
respectively, indicating the survival pairing state due to both
the attractive interaction and the success in competition against
the other one. There is no stable pairing state in a region
where the two couplings are both repulsive or both strongly
attractive such that no one wins the competition. The diagram
also shows no stable singlet pairing everywhere. Remarkably,
we find a mixed pairing state with both triplet pairings being
stable on the overlap between the two triplet pairing regions
along the dashed line denoting SU(2) symmetry. We check that
the mixed state has the same pair fractions of the two triplet
pairings P� = P+, in agreement with the discussion in Sec. II
that this mixture is guaranteed by SU(2) symmetry. [In fact,
all data points along the dashed lines in Fig. 4 show the same
set of eigenvalues corresponding to the intraspin and interspin
triplet pairings, {λ(i)

� } = {λ(i)
+ }, reflecting the SU(2) symmetry

of the pair density matrix (see details in Appendix D).] At
g− = −0.04t [(b)], the two triplet pairing regions separately
move away from the dashed line, no longer overlap, and hence
leave no mixed pairing state. At g− = −0.08t [(c)], the two
triplet pairing regions further separate and there appear singlet
pairing states in the region of positive or slightly negative
g�,+. The singlet pairing region overlaps the intraspin triplet
one, producing a mixed pairing region on a horizontal line of
{g+ = −0.16t = 2g−,g� � 0}. This mixture comprises triplet
and singlet pair species, which have different total spin angular
momentum but the same ẑ-component one. Since there is no
symmetry protection here, the pair fractions of both species
are not necessarily equal, or in general, P+ 	= P−. At g− =
−0.1t [(d)], the state diagram is similar to (c), with further
withdrawals of intraspin and interspin triplet pairing regions
toward the top-left and bottom-right corners, respectively, an
expansion of singlet pairing region, and a shift of the mixed re-
gion of interspin triplet and singlet pairings to a horizontal line
of {g+ = −0.2t = 2g−,g� � 0.05t}. At g− = −0.2t [(e)], the
intraspin triplet pairing disappears in the parameter range of
interests, while the interspin triplet and singlet pairing regions
further separate from each other such that the mixed region
disappears as well. Finally, at a relatively strong g− = −0.4t

[(f)], only a small singlet pairing region survives in the scope,
occupying the top-right corner of the diagram.

We turn to compare the mean-field results for a translation-
invariant system obtained in Sec. III and the exact solutions for
a fixed-number open-end chain here. First, both cases show that
a pairing state exists only if the corresponding pairing coupling
is attractive (negative). If two or more pairing couplings are
attractive, the corresponding pairing states will compete with
each other. Second, the quantities that characterize pairing
(the gaps in Sec. III or the pair fractions here) always
satisfy the same time-reversal or SU(2) symmetry or both
as the Hamiltonian does. Given time-reversal symmetry, both
cases can show mixed-pairing solutions of singlet and triplet
pairings. Given both time-reversal and SU(2) symmetries, the
mean-field case still shows this mixture but the open-chain
case does not. In addition, the open-chain case does not
exhibit notable topological signatures as the BdG Hamiltonian
does in the mean-field case. We attribute these issues to the
finite-size effects in the open-chain case and expect the two
cases’ results closer to each other as the open-end chain size
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increases. To achieve this, the study using density matrix
renormalization-group methods [74,75] would be helpful.

V. CONCLUSION

In this paper, we studied a low-filling Hubbard chain
model with nearest-neighbor charge and spin interactions,
which produce four independently tunable pairing couplings,
corresponding to two intrapin triplet, one interspin triplet, and
one singlet pairing channels, respectively. First, we performed
a mean-field treatment on a large-size system with translational
invariance and derived four gap equations characterizing the
pairing order parameters. The BdG Hamiltonian obtained in
the treatment can exhibit nontrivial topology in a chemical
potential range that is the same as Kitaev’s model [49] in
a purely triplet pairing state but shrinks with the presence
of a singlet pairing order. The mean-field phase diagram
under the time-reversal and SU(2) symmetries shows a purely
triplet or singlet pairing region if the corresponding coupling
overwhelms the other and a mixed pairing region when
both couplings are compatible. (After the completion of this
work, we perceived that two other works investigating two-
dimensional electronic systems also indicated a topological
phase transition due to the competition between triplet and
singlet pairing states [76,77].) Second, we employed an exact-
diagonalization algorithm to compute the many-body ground
state of an open-end fixed-number system with modification
to reduce the finite-size effect. We used three signatures of
pair fractions to identify a stable pairing state of the system,
which approaches a pair condensate if such trends persist.
Our results under the time-reversal symmetry show a stable
intraspin triplet, interspin triplet, or singlet pairing state in
a region where the corresponding coupling dominates and
an overlapped region of mixed intraspin and interspin triplet
or mixed interspin triplet and singlet pairing states. The
system’s switch from the singlet or intraspin triplet pairing
state to the interspin triplet one accompanies a peak in the
pair susceptibility, and that from the singlet or interspin
triplet pairing state to the intraspin triplet one accompanies
a sign change in the relative entanglement entropy. Both the
mean-field and exact-diagonalization cases agreeably show
a competitive nature of these pairings and hence enable the
tuning of the system between different pairing states as well
as mixtures of them.

Finally, we point out two platforms with properties suited
for the potential realization of tunable pairing channels—the
key mechanism in our model. First, recently focused Rydberg
or Rydberg-dressed atomic gases [78] exhibit controllable
s-wave and p-wave two-body interactions [79,80] as well
as significant nearest-neighbor couplings when loaded in
optical lattices [81–85]. Second, multispecies dipolar gases
[86] have been investigated for the competition between
short-range singlet and long-range triplet interactions, capable
of realizing various pairing states and their mixture in higher-
dimensional systems. In addition, a recent experiment [87]
has demonstrated a method to measure the spin-correlation in
optical lattices, which is directly related to the pair fraction in
our study. However, how to tailor theses ideas to a practical
scheme for our chain lattices is a challenge. One of the
future directions is to study the model realization and to

propose experimental detection for its pairing order as well
as topological state.
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APPENDIX A: VALIDITY OF MEAN-FIELD
AND EXACT-DIAGONALIZATION CALCULATIONS

ON THE RICHARDSON MODEL

In this Appendix, we perform mean-field (MF) and exact-
diagonalization (ED) calculations on the Richardson model
[67,68], which is a 1D exactly solvable model approaching
the BCS limit. Our results show the critical coupling for the
onset of superconductivity consistent with the exact solution
and thus the validity of both methods on 1D superconducting
systems (such as our model) to a certain extent.

For both U(1)-preserving finite-size and U(1)-breaking
infinite-size systems, computing the pair density matrix of
Eq. (29) is a valid method to determine the presence of
superconducting pairing [2]. A macroscopic eigenvalue of
the pair density matrix shows the region of coupling constant
corresponding to a pair condensation or the superconducting
pairing. In the following, we calculate the pair density matrix
by performing ED on a few-body finite-size Richardson
model and MF treatment on the model in the thermodynamic
limit. The Richardson model is described by a half filling
Hamiltonian in the form of

HR = 1

2

N∑
j=1,σ=↑,↓

εjσ c
†
jσ cjσ − G

N∑
j,j ′=1

c
†
j↑c

†
j↓cj ′↓cj ′↑,

(A1)
where N denotes the number of sites, which is equal to the
number of particles, and G is the coupling constant. The
Hamiltonian is different from the BCS [3] Hamiltonian in
lattices. The single-body term describes an on-site energy
(εjσ ) instead of hopping, and the two-body term represents
interaction within all possible ranges rather than the on-site
one. The Hamiltonian above still preserves U(1) symmetry
and can be exactly solved to obtain the many-body ground
state and the ground-state energy. By choosing some specific
energy (εjσ ) distribution, the physical phase of the system
can be determined in the thermodynamic limit (N → ∞). In
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FIG. 5. (Color online) The relative pair fraction PN vs normal-
ized coupling constant g at half filling with three different particle
numbers of N = 6, 8, and 10 (blue dotted, green dashed, and red
solid curves, respectively). In the region of g/ε1 < −1, larger N

means larger PN , so the system is regarded as a superconducting
state. The inset shows that the phase-transition point PN − PN−2 = 0
approaches the exact solution gc = −ε1 as N increases. The red
circles, which are for an infinitely large-size system predicted by the
mean-field (MF) treatment, show that P rises from zero exactly at gc.

the following, we discuss the onset of superconductivity in a
two-level distribution εjσ = ±ε1. For the comparison between
different system sizes, we normalize the interacting effects by
defining a normalized coupling constant g = GN . We note that
the arrangement of the energies on each site does not change
the physical properties because the strength of the interaction
in each range is described by the same coupling constant G.

By performing ED, we obtain the pair density matrices
for the ground states of N = 6, 8, and 10. The presence
of the superconducting pairing is determined by the largest
eigenvalue of the pair density matrix being O(N ). In our ED
case, the system size is always too small to make a conclusion.
Instead, we calculate the relative pair fraction PN for N

particles as defined in Eq. (30) but only for the singlet pairing
here (so the spin index α is dropped for convenience). The
−2 in the definition of P is to measure the eigenvalue from
that of a free system [73] (also see detailed discussions in
Sec. IV). If the superconducting pairing occurs, we expect that
P increases as N increases, which suggests that PN − PN−2

changes sign across the transition point. As shown in the inset
of Fig. 5, at N = 10 the transition point is near g = −1 and
PN > PN−2 as g < −1 so the region of g < −1 corresponds to
possible superconductor pairing. Our result is consistent with
the two-level Richardson model in the thermodynamic limit
discussed in Ref. [67].

In the following, we use a MF treatment to calculate the pair
fraction in the thermodynamic limit (N → ∞) and compare it
with the results from ED as well as the exact solution. The order
parameter is defined as a function of spacial coordination 	i =∑

j (−Gij )〈cj↓cj↑〉 (where the coupling Gij is first assumed
spatial dependent). At the MF level, the Hamiltonian can be
rewritten as

H MF
R =

∑
i

(c†i↑,ci↓)Hi

(
ci↑
c
†
i↓

)
−

∑
ij

(G−1)ij	
∗
i 	j ,

Hi =
(

1
2 (εi↑ − μ) 	∗

i

	i − 1
2 (εi↓ − μ)

)
. (A2)

The energy and the corresponding eigenstates are the
following:

E± = μi ± Ei, (A3)

μi = 1

4
(εj↑ − εj↓), (A4)

Ei =
√

1

16
(εj↑ + εj↓ − 2μ)2 + |	j |2

≡
√

ε2
i + |	i |2, (A5)

�
†
i+|ψg〉 =

(
cos

θi

2
c
†
i↑ + sin

θi

2
eiφi ci↓

)
|ψg〉

≡ (uic
†
i↑ + vici↓)|ψg〉, (A6)

�
†
i−|ψg〉 =

(
− sin

θi

2
c
†
i↑ + cos

θi

2
eiφi ci↓

)
|ψg〉, (A7)

tan θi = |	i |
εi

, tan φi = Im	i

Re	i
. (A8)

Here |ψg〉 is the ground state and �
†
i± are quasiparticle

operators. Similar to the BCS theory, we have the self-
consistent gap equation as

	i =
∑

j

(−Gij )
	j

2Ej

[
1

eβ(μj +Ej ) + 1
− 1

eβ(μj −Ej ) + 1

]
.

(A9)
For simplicity, we consider the same setup as in the ED case,
μi = 0 and εi = ε1/2. By assuming the homogeneity of the
system, 	i = 	, Gij = G, and Ei = E, the gap equation
becomes

|	| = (−g)
|	|
2E

tanh

(
βE

4

)
. (A10)

At zero temperature, the gap equation can be simplified as

|	| = (−g)
|	|
2E

, (A11)

and results in a solution |	| =
√

g2 − ε2
1/2. The transition

from a normal phase (	 = 0) to a superconducting phase (	 	=
0) appears at a critical coupling gc = −ε1 as g goes below gc.
These results agree with the exact solution.

Now we turn to calculate the pair fraction. The MF ground
state can be obtained as

|ψg〉 =
∏

i

(uic
†
i↑c

†
i↓ + vi)|vac〉. (A12)

Then the pair density matrix is of the form

ρ
pair
i1σ1,i2σ2;i ′1σ

′
1,i

′
2σ

′
2

= 〈
ĉ
†
i1σ1

ĉ
†
i2σ2

ĉi ′2σ
′
2
ĉi ′1σ

′
1

〉
= δi1i2δi ′1i

′
2
δσ1,−σ2δσ ′

1,−σ ′
2

(
δσ1,↑ − δσ1,↓

)(
δσ ′

1,↑ − δσ ′
1,↓

)
× [

δi1,i
′
1

∣∣ui1

∣∣2 + (
1 − δi1,i

′
1

)
u∗

i1
v∗

i ′1
ui ′1vi1

]
+ (

1 − δi1,i2

)[
δi1i

′
1
δi2i

′
2
δσ1,σ

′
1
δσ2,σ

′
2

− δi1i
′
2
δi2i

′
1
δσ1,σ

′
2
δσ2,σ

′
1

]
. (A13)
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In the uniform case, only the off-diagonal elements

ρ
pair
iσ,i(−σ );i ′σ,i ′(−σ ) = −ρ

pair
iσ,i(−σ );i ′(−σ ),i ′σ = |u|2|v|2

(i 	= i ′) contribute to the macroscopic eigenvalue λ(0) and
hence the pair fraction P in the large-N limit [2,71,72,88].
They are obtained as

λ(0) ≈ 2N |u|2|v|2 = N

2

[
1 −

(
ε

E

)2
]

, (A14)

P = λmax − 2

N
≈

(
g2 − ε2

1

)
2g2

. (A15)

The above equations work only for g < 0 or attractive
interaction. We can see that the pair fraction P rises from zero
when g < gc = −ε1 (see red circles in Fig. 5), which means
that the superconducting pairing appears as the attractive
interaction becomes stronger than the critical value. This
predicted gc = −1 from the pair fraction agrees with our ED
calculations. We also see a trend that the ED results approach
the MF ones as N increases.

APPENDIX B: Z2 TOPOLOGICAL INVARIANT
IN A CLASS DIII CHAIN

In this Appendix, we compute Z2 invariant for the BdG
Hamiltonian H BdG

p in Eq. (13), which can distinguish the
topologically nontrivial and trivial phases more rigorously.
To simplify the problem, let us first perform an SU(2)
transformation in spin basis,

(
c
†
↑

c
†
↓

)
=

(
ν η

−η∗ ν∗

)(
c
′†
↑

c
′†
↓

)
. (B1)

The unitarity of SU(2) requires |ν|2 + |η|2 = 1. After the
SU(2) transformation, the pairing functions in H BdG

p is given
by

	′
↑ =	↑ν2 + 	↓η∗2 +

√
2	+νη∗, (B2)

	′
↓ =	↑η2 + 	↓ν∗2 −

√
2	+ν∗η, (B3)

	′
+ = −

√
2	↑νη +

√
2	↓ν∗η∗ + 	+(|ν|2 − |η|2), (B4)

	′
− =	−. (B5)

Therefore, 	− is invariant under SU(2) due to the singlet
pairing. Furthermore, we find 	2

+ − 2	↑	↓ and |	t |2 =
|	|2 + |	↑|2 + |	↓|2 also invariant under the SU(2) trans-
formation. We note that the time-reversal constraints for the
pairings in Eq. (14) still hold under SU(2) so 	− is real.
By choosing a proper SU(2) transformation, the three triplet
pairings can be simplified as 	↑ = 	↓ ≡ 	t/

√
2 is real and

	+ vanishes. Therefore, the BdG Hamiltonian can be written

as

H BdG
p =

⎛
⎜⎜⎜⎜⎝

−2t cos p−μ

2 0 i sin p	t√
2

− cos p	−√
2

0 −2t cos p−μ

2
cos p	−√

2
i sin p	t√

2

− i sin p	t√
2

cos p	−√
2

2t cos p+μ

2 0

− cos p	−√
2

− i sin p	t√
2

0 2t cos p+μ

2

⎞
⎟⎟⎟⎟⎠.

(B6)

After performing a unitary transformation

U = 1

2

⎛
⎜⎝

i −1 −i 1
1 −i 1 −i

−i 1 −i 1
−1 i 1 −i

⎞
⎟⎠, (B7)

we can simplify the BdG Hamiltonian as

H ′BdG
p = UH BdG

p U †

=

⎛
⎜⎜⎝

0 0 A+e−iθ+ 0
0 0 0 A−e−iθ−

A+eiθ+ 0 0 0
0 A−eiθ− 0 0

⎞
⎟⎟⎠,

(B8)

where

A±(p)eiθ±(p) = 2t cos p + μ

2
+ i√

2
(cos p	− ± sin p	t ).

(B9)

Similarly, the time-reversal operator under the unitary trans-
formation becomes


′ =
(

0 iτy

iτy 0

)
K. (B10)

Solving the eigenproblem in the half filling scenario, we have
two occupied eigenstates with negative energies,

|uI(p)〉 = (e−iθ+(p)/2 0 eiθ+(p)/2 0)
T
, (B11)

|uII(p)〉 = (0 e−iθ−(p)/2 0 eiθ−(p)/2)
T
. (B12)

Furthermore, these two states are time-reversal partners
(|uI(p)〉 = 
′|uII(−p)〉, |uII(p)〉 = −
′|uI(−p)〉).

Finally, we are able to compute the topological invariant
from the occupied states. The definition of the Z2 topological
invariant in one dimension for symmetry class DIII is given
by [89–90]

P I
o = 1

2π

[∫ π

0
dpAo(p) + iln

(
Pfθo(π )

Pfθo(0)

)]
, (B13)

where Ao(p) = −i(〈uI(p)|∂p|uI(p)〉 + 〈uII(p)|∂p|uII(p)〉),
θo(p) is a matrix defined as θ

αβ
o (p) = 〈uα(p)|
′|uβ(−p)〉

and Pf denotes the Pfaffian. When particle-hole symmetry
is present, P I

o is quantized and its value (mod 1) describes
topology in 1D time-reversal superconductors (0 trivial and
1/2 nontrivial). In our case,

P I
o = i

2π
ln

(
cos

(
θ−(0)−θ+(0)

2

)
cos

(
θ−(π)−θ+(π)

2

)
)

, (B14)
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where

θ−(0) − θ+(0) = 0, (B15)

θ−(π ) − θ+(π ) =
⎧⎨
⎩

0, as 4	2
t t2

	2
t +	2−

< μ2,

−2π, as 4	2
t t2

	2
t +	2−

> μ2.
(B16)

Therefore, when 4	2
t t

2

	2
t +	2−

> μ2, P I
o = 1/2 corresponds to a

topologically nontrivial phase, which is consistent with the
topological region in Eq. (17) with SU(2) invariant 	− and
	2

t .

APPENDIX C: TRENDS OF THE PAIR FRACTION
IN A HUBBARD CHAIN WITH ONSITE INTERACTION

In this Appendix, we show that the three signatures of the
relative pair fraction P [defined in Eq. (30)], (i) being positive,
(ii) increasing as the system extends, and (iii) increasing as
the system dilutes, which are used in Sec. IV to identify a
stable pairing state in our extended Hubbard chain, also apply
to the original Hubbard chain with only on-site interaction.
The Hamiltonian of the original Hubbard model has the same
form as Eq. (1) with the nearest-neighbor couplings V and J

vanishing. In this case, the on-site interaction U can induce
only the singlet pairing in the system.

First, we perform exact diagonalization on a finite-size
setup similar to that in Sec. IV, with the same noninteracting
terms and the interacting terms replaced by the on-site
interaction. Figure 6 shows P as a function of U at various
particle numbers N↑ = N↓ = N/2 and sizes L of the system.
In the attractive region (U < 0), comparing the cases of
(N,L) = (8,16), (8,18), and (8,20) (blue dotted, green dashed,
and red solid curves, respectively), we see positive and
increasing P as the system dilutes. Comparing the cases of

0.4 0.2 0.0 0.2 0.4
0

5

10

15

20

U t

P

N L 8 20
8 18
8 16
4 10

FIG. 6. (Color online) The relative pair fraction P vs on-site
interaction U in a Hubbard chain with various numbers of particles
N and sites L. The red solid, green dashed, blue dotted, and purple
dot-dashed curves represent the cases of (N,L) = (8,20), (8,18),
(8,16), and (4,10), respectively. In the attractive interaction region
(U < 0), increasing size at fixed N (as the system dilutes) and at
fixed N/L (extends) coincides with positive and increasing P , so the
system is regarded as a stable pairing state or a superconducting state
in the thermodynamic limit. Such trends do not hold in the repulsive
interaction region (U > 0). Therefore, we obtain the transition point
at U = 0, consistent with the solution from the BCS gap equation
(see text).

(N,L) = (4,10) and (8,20) (purple dot-dashed and red solid
curves, respectively), we see positive and increasing P as the
system extends at a fixed density. In the repulsive region
(U > 0), although P can be positive, the other signatures
disappear. As the trends persist toward the thermodynamic
limit, we expect that P approaches a finite value, indicating
a stable pairing or superconducting state, at U < 0 and 0,
indicating a normal state, at U > 0. The transition point is
thus U = 0.

Second, we apply the same mean-field treatment as in
Sec. III and obtain the BCS gap equation,

	∗
−

U
= −	∗

−
βL

∑
p,n

1

ω2
n + (

E0
p − μ

)2 + |	−|2
, (C1)

where E0
p is the single-particle energy spectrum. The gap

equation has nonzero solutions if U < 0 and the only solution
of 	− = 0 if U > 0. These also indicate a transition point
at U = 0. Therefore, with the use of the three signatures,
the exact-diagonalization results agree with those from the
mean-field treatment.

APPENDIX D: SU(2) SYMMETRY AND EIGENVALUES
OF PAIR DENSITY MATRIX

In this Appendix, we show that the three triplet blocks
of the pair density matrix in Eq. (29) are identical under
SU(2) symmetry and hence have the same set of eigenvalues.
Provided that there is a unique ground-state subject to our
Hamiltonian under SU(2) symmetry, it should also be invariant
under the SU(2) transformation. In addition, our Hamiltonian
commutes with the total spin Ŝz (= N̂↑ − N̂↓) of the system,
so Sz is a good quantum number for the unique ground state.
In other words, any spin-flip operator that changes Sz should
vanish when sandwiched by the ground state.

A general form of the pair density matrix is block-
diagonalized with two intraspin blocks and one interspin
block, due to the Sz conservation. The interspin trplet block
can be further separated from the singlet one after a proper
transformation. As a result, the matrix elements of the three
triplet blocks that correspond to the same spatial coordinate
{i,j} can be written respectively as

m↑ = 〈ĉ†j↑ĉ
†
i↑ĉi↑ĉj↑〉, (D1)

m↓ = 〈ĉ†j↓ĉ
†
i↓ĉi↓ĉj↓〉, (D2)

m+ = 1
2 〈(ĉ†j↓ĉ

†
i↑ + ĉ

†
j↑ĉ

†
i↓)(ĉi↑ĉj↓ + ĉi↓ĉj↑)〉. (D3)

Performing an SU(2) transformation,

ĉ↑ = 1√
2

(ĉ′
↑ + c′

↓), ĉ↓ = 1√
2

(−ĉ′
↑ + ĉ′

↓), (D4)

we obtain a relation between the matrix elements in the original
and the new spin basis as

m↑ = 1
4 (m′

↑ + m′
↓ + 2m′

+), (D5)

m↓ = 1
4 (m′

↑ + m′
↓ + 2m′

+), (D6)

m+ = 1
2 (m′

↑ + m′
↓), (D7)
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which immediately shows m↑ = m↓. Since each matrix ele-
ment is a physical observable (two-body correlation), which
should be the same SU(2) invariant as the Hamiltonian, we
have

m′
↑ = m↑, m′

↓ = m↓, m′
+ = m+. (D8)

Combining these relations, we obtain

m↑ = m↓ = m+. (D9)

The result is valid for every spatial coordinate {i,j}, so the
three triplet blocks are identical.
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[75] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005); ,Ann. Phys.
326, 96 (2011).

[76] Y.-M. Lu, T. Xiang, and D.-H. Lee, arXiv:1311.5892.
[77] H. Yao and F. Yang, arXiv:1312.0077.
[78] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302

(2010); G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky,
and P. Zoller, ibid. 104, 223002 (2010); M. Saffman, T. G.
Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010);
J. Honer, H. Weimer, T. Pfau, and H. P. Büchler, Phys. Rev.
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D. Muth, D. Petrosyan, and M. Fleischhauer, ibid. 87, 023401
(2013).

[79] E. L. Hamilton, C. H. Greene, and H. R. Sadeghpour, J. Phys. B
35, L199 (2002).

[80] M. Kurz and P. Schmelcher, Phys. Rev. A 88, 022501 (2013).
[81] T. Pohl, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 104,

043002 (2010).
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