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Multiple half-quantum vortices in rotating superfluid 3He
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Half-quantum vortices and ordinary vortices in a rotating thin-film superfluid 3He under a strong magnetic
field are considered. It is shown that 2n + 1 half-quantum vortices interpolate between n singular vortices and
n + 1 singular vortices as the angular velocity is changed when the external magnetic field is strong enough. The
phase diagram of the vortex configurations in the angular velocity–magnetic field space is obtained for p = 0.
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I. INTRODUCTION

Superfluid 3He exhibits extremely exotic and interesting
properties due to its complex order parameter [1–3], which
has attracted much attention not only from condensed mat-
ter physicists but also from particle theorists. One of the
manifestations of such exotic properties is a vortex having a
half-amount of vortex quantum, called a half-quantum vortex
(HQV), whose existence was predicted first by Volovik and
Mineev in 1976 [4]. An HQV is also expected to be present in
BECs of alkali atoms [5–7] and spin-triplet superconductors
[8–10], among other physical systems.

In spite of extensive theoretical [11–13] and experimental
[14,15] research on HQVs in superfluid 3He, since then, their
existence has yet to be experimentally confirmed. Recently, we
investigated a rotating superfluid 3He in a slab geometry under
a strong magnetic field [16], in which we have shown that an
HQV is energetically stable compared to a singular vortex (SV)
in the A2 phase in the vicinity of the A1-A2 phase boundary.
In this part of the phase diagram, a HQV will nucleate first as
the angular velocity of the rotation is increased from 0 when
the external magnetic field is strong enough.

In this paper, we investigate textures arising when the
angular velocity is further increased. It will be shown that
HQVs are arranged on two concentric circles with different
radii supporting two different types of HQVs, respectively,
when a small number of HQVs exist. When the angular
velocity is further increased, an HQV appears at the center
of the slab geometry. From these data, we construct a phase
diagram of possible textures in the magnetic field–angular
velocity plane.

We summarize the result of [16] in the next section, to
make this paper self-contained and to establish notations
and convention. In Sec. III, we evaluate the free energies of
multiple HQVs and multiple SVs and obtain the phase diagram
of vortices realized. Section IV is devoted to a summary and
discussion.

II. HALF-QUANTUM VORTEX

Consider a rotating thin film of superfluid 3He in the A2

phase in a cylindrical slab geometry under a strong magnetic
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field H . In the presence of a magnetic field, the superfluid
has different populations between the spin ↑↑-condensate,
which is called the (+)-condensate for simplicity, and the
spin ↓↓-condensate, called the (−)-condensate, where the spin
direction is measured with respect to the magnetic field. The
angular velocity � and the magnetic field H are taken parallel
to the z axis and the film is perpendicular to the z axis. The
thickness and the radius of the film are denoted d and R,
respectively, where d must be less than the dipole coherence
length so that the d̂ vector stays in the xy plane throughout the
condensate. The boundary condition forces the condensate to
have only êx + i êy or êx − i êy orbital component throughout
the system. We assume that the vortices are embedded in a
texture with l̂ = ẑ for definiteness in this paper.

We use the Ginzburg-Landau free energy [1] in our analysis.
The bulk free energy is

FB = −αA∗
αiAαi + β1A

∗
αiA

∗
αiAβjAβj

+β2A
∗
αiAαiA

∗
βjAβj + β3A

∗
αiA

∗
βiAαjAβj

+β4A
∗
αiAβiA

∗
βjAαj + β5A

∗
αiAβiAβjA

∗
αj , (1)

where the strong coupling correction to the fourth-order
coefficients βi is taken into account following the Rainer and
Serene formalism [17] as

β1 = −(1 + 0.03)β0, β2 = (2 + 0.0)β0,

β3 = (2 − 0.01)β0, β4 = (2 − 0.05)β0,

β5 = −(2 + 0.09)β0.

Here we employed deviations of βi from BSC weak-coupling
values (the integer parts of βi above) at p = 0 based on the
Helsinki data given in [18]. We have chosen p = 0 since our
previous observation [16] shows that the HQV-stable region is
sizable for a small paramagnon parameter δ, corresponding to
low pressure.

The gradient energy takes the form [1]

FG = K1∂iAαj ∂iA
∗
αj + K2∂iAαi∂jA

∗
αj

+K3∂iAαj ∂jA
∗
αi, (2)

where K1 = K2 = K3 ≡ K in the weak-coupling limit. The
coherence length in the absence of a magnetic field is
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defined as

ξ (t) =
√

K

α(t)
. (3)

Instead of expanding the order parameter in terms of the
standard Cartesian base {ei} = {ex,ey,ez}, we expand it in
terms of the {eν} = {e±,e0} base defined by

e± = ∓ 1√
2

(ex ± iey), e0 = ez.

The boundary condition l̂ = ±ẑ forces Aν± to have nonva-
nishing values in the bulk. Here the first subscript to A is
the spin index, while the second one is the orbital index. A
strong magnetic field along the z axis further forces the order
parameter to have only four nonvanishing components A±± in
the bulk. Let t = 1 − T/Tc, Tc being the critical temperature
with a vanishing magnetic field, and α(t) = α′t , where α(t) is
the coefficient of the second-order term of the bulk free energy,
(1), and define the scaled magnetic field h by h = ηH/α′Tc,
where η is a constant coupling strength between H and the
condensate. It turns out to be convenient to further scale h as
ĥ = h/t . The bulk order parameter is found by minimizing
the uniform Ginzburg-Landau free energy. Suppose there is a
vortex at r = 0, the center of the cylinder. We assume that the
vortex is embedded in an l̂ = +ẑ texture, for concreteness, and
the order parameter has only nonvanishing components A±+
at r 	 1, where the length is scaled by the coherence length
with vanishing external magnetic field. We parametrize the
components as Aμν = Cμν(r)einμνφ assuming the cylindrical
symmetry, where φ is the azimuthal angle in the xy plane
and nμν ∈ Z. It turns out that nμν satisfy the quantization
condition nμ− = nμ+ + 2 due to the coupling between Aμ+
and Aμ− through the gradient free energy [16].

When the HQV order parameter is expanded in {eν}, it is
found that the order parameter is a superposition of the (+)-
condensate, with no winding number, and the (−)-condensate,
with a unit winding number, or the other way around. Such an
HQV has a free energy

F
(±)
HQV = 2π

∫ R

0
rdr(F − F0) = 4π

(
A

(0)
±+

)2
(ln R + C±),

(4)

where F0 is the bulk free energy without a vortex. Here
A

(0)
±+ stands for the amplitude of the bulk order parameter

with orbital state lz = +1 of the (+)- or the (−)-condensate,
while C± is the vortex core energy of the (±)-condensate.
The parameters C± are obtained numerically as functions of
the scaled external magnetic field ĥ [16]. The coefficient of
the second-order term in the bulk free energy is modified as
α(t) → (1 + ĥ)α(t) for the spin-up condensate, and α(t) →
(1 − ĥ)α(t) for the spin-down condensate, in the presence of
an external magnetic field ĥ. Then Eq. (3) leads to an inequality,
ξ+ < ξ−. As a result, the inequality C− < C+ is always
satisfied, from which we find that an HQV carrying a vortex
of unit winding number in the (−)-condensate has less energy
compared to that with a vortex in the (+)-condensate. Let
L(−) = 4π (2m/�)(A(0)

−+)2R2 be the angular momentum of the
(−)-condensate. By considering the free energy F (−)

vor − �L(−)

0.1

FIG. 1. (Color online) ĥ dependence of the parameters C+ [upper
(red) line], C− [lower (blue) line], and CS (middle, black line) at
vanishing pressure. See Eqs. (4) and (5) for definitions of these
parameters.

in the rotating frame, we find that an HQV nucleates in the
(−)-condensate at � = �(−)

c = ln R + C−, where � is scaled
by �/2mR2.

In an SV, each of (+)- and (−)-condensates carries a
vortex with a unit winding number and these components are
superposed so that the vortex cores overlap exactly. An SV has
the free energy

FSV = 4π
[(

A
(0)
++

)2 + (
A

(0)
−+

)2]
(ln R + CS). (5)

The parameter CS is the SV core energy and is a function of ĥ.
An SV nucleates at a critical angular velocity �S

c = ln R + CS .
Figure 1 depicts the parameters C± and CS at p = 0 as

functions of ĥ. Observe that, where ĥ is large, there is a range in
the diagram where CS > C−, which implies that a single HQV,
having a phase factor eiφ in the (−)-condensate, nucleates first
as � is gradually increased from 0.

III. MULTIPLE HALF-QUANTUM VORTICES

In this paper, we consider the case in which the angular
velocity � is further increased and investigate how many
HQVs and SVs exist in the superfluid and the patterns of
the stable configurations of these vortices. We again assume
that l̂ = +ẑ at r 	 1. The free energy of the system with
more than one vortex is evaluated by making use of C± and
CS numerically obtained in Fig. 1. We again take p = 0 for
numerical calculations, expecting a larger HQV-stable region
[16]. Let r i be the position of the ith vortex center. When
the condition |r i − rj | 	 1 is satisfied for all pairs i �= j ,
the London approximation is valid and the energies of the
vortices in the (+)-condensate and that of the vortices in
the (−)-condensate may be evaluated independently since
the coupling between two condensates appears only through
the fourth-order free energy, which is insensitive to the
relative positions of the vortices. The hydrodynamic energy
associated with the flow around vortices has been evaluated
previously for superfluid 4He [19], which we employ in this
paper.

Let us first consider SVs. Suppose the number n of SVs
satisfies n � 5. Then the vortices are distributed uniformly on
a circle with radius r ≈ √

(n − 1)/2� R centered at the origin
of the cylinder, where � is scaled by �/2mR2 as before. Then
the free energy of n SVs in the A2 phase of superfluid 3He in
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the rotating frame takes the form

F (S)
n (�,u) = 4π

[(
A

(0)
++

)2 + (
A

(0)
−+

)2]
Fn(�,u), (6)

where u = r/R and

Fn(�,u) = n[ln R + CS + ln(1 − u2n)

− (n − 1) ln u − ln n − �(1 − u2)]. (7)

Here the core energy of the vortices has been taken into account
in the definition of Fn. It has been shown that the function
Fn(�,u) has a minimum at u in the physical region (0,1)
when � is greater than some critical value �0(n) [19]. Let

fn(�) = min
u∈(0,1)

Fn(�,u)

≈ n(ln R + CS − �)

+ 1
2n(n − 1)[1 + ln(2�) − ln(n − 1)] (8)

be the minimum value of Fn(�,u), where the approximate
value u ≈ √

(n − 1)/2� has been used. This approximation is
verified numerically to be quite accurate in the given parameter
range when n � 2. Then the energy of the stable configuration
of n SVs is given by

F (S)
n (�) = 4π

[(
A

(0)
++

)2 + (
A

(0)
−+

)2]
fn(�) (9)

for n � 5.
Next, let us consider n SVs, where 6 � n � 8. It was shown

for superfluid 4He that a stable configuration for 6 � n � 8
is n − 1 vortices distributed uniformly in a circle centered
at the origin plus a single vortex at the origin [19]. A
vortex configuration with less symmetry is expected as the
angular velocity is further increased beyond n = 8. These
patterns are verified both experimentally [20] and by numerical
simulation [21]. When 6 � n � 8, Fn(�,u) in Eq. (6) takes the
form [19]

Fn(�,u) = n(ln R + CS) + (n − 1)[ln(1 − u2n)

− n ln u − ln(n − 1) − �(1 − u2)] − �. (10)

With the same approximation employed to obtain Eq. (8), the
free energy minimizing configuration is given by u ≈ √

n/2�,
which gives the minimum energy

fn(�) = min
u∈(0,1)

Fn(�,u)

= n(ln R + CS − �) − (n − 1) ln(n − 1)

+ 1
2n(n − 1)[1 + ln(2�) − ln n]. (11)

Similarly, the free energies of n HQVs with vortices in the
(+)-condensate and (−)-condensate are evaluated as

F (±)
n (�) = 4π

(
A

(0)
±+

)2
(fn(�) + n�C±), (12)

where �C± = C± − CS . Equation (12) applies to cases in
which 2 � n � 8, provided that Eq. (8) and Eq. (11) are used
for fn(�) for 2 � n � 5 and 6 � n � 8, respectively.

It is expected that HQVs appear in the vicinity of the
parameter domain where the free energy difference between
the n SVs and the n + 1 SVs is small. We expect that there are
n HQVs in the (+)-condensate and n + 1 HQVs in the (−)-
condensate in the process of the transition from n SVs to n + 1
SVs. We denote this configuration of HQVs as HQV(n + 1,n),

0.2 0.4 0.6 0.8 1.00.

FIG. 2. (Color online) �Fn as a function of ĥ for n = 0 (blue
line), 1 (green line), 2 (purple line), 3 (orange line), 4 (red line),
5 (black line), and 6 (dashed black line) at p = 0. Singular vortices
are formed when �Fn > 0, while an HQV(n + 1,n) is formed when
�Fn < 0 and � is properly chosen. �Fn is always positive for
n � 6.

while a configuration with n SVs is denoted SV(n). In a
sense, HQV(n + 1,n) is roughly regarded as “SV(n + 1/2)”.
Note that the number of HQVs in the (−)-condensate should
be larger than that of HQVs in the (+)-condensate due to the
inequality C− < C+ (see Fig. 1); it is energetically favorable
to have an extra vortex in the (−)-condensate rather than
in the (+)-condensate.

The conditions under which HQV(n + 1,n) is stabilized are

F
(−)
n+1(�) + F (+)

n (�) < F (S)
n (�) (13)

and

F
(−)
n+1(�) + F (+)

n (�) < F
(S)
n+1(�) (14)

simultaneously. More explicitly, these conditions are written
as (

A
(0)
−+

)2
(fn+1(�) − fn(�))

+ (
A

(0)
++

)2
n�C+ + (

A
(0)
−+

)2
(n + 1)�C− < 0 (15)

and

−(
A

(0)
++

)2
(fn+1(�) − fn(�))

+ (
A

(0)
++

)2
n�C+ + (

A
(0)
−+

)2
(n + 1)�C− < 0, (16)

from which the necessary condition for the existence of a stable
HQV(n + 1,n) configuration is found to be

�Fn ≡ (
A

(0)
++

)2
n�C+ + (

A
(0)
−+

)2
(n + 1)�C− < 0. (17)

Figure 2 shows the magnetic-field (ĥ) dependence of �Fn

for n = 0,1, . . . ,6. Note that �Fn < 0 is a necessary condition
for the existence of an HQV(n + 1,n), but not a sufficient
condition. The stability of HQVs and SVs also depends on
� as shown in the phase diagram (Fig. 3). It is observed that
the stability of an HQV(n + 1,n) requires a larger magnetic
field as n becomes larger. �Fn is always positive for n �
6, implying that there are no HQV(n + 1,n) phases with
n � 6.

We plot the phase diagram of various vortex configurations
in the ĥ-� plane in Fig. 3. For definiteness, we have taken
p = 0, R = 1000, and n = 0, 1, 2, 3, 4, and 5. The dashed
(red) line near P0 shows the first critical angular velocity �S

c
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FIG. 3. (Color online) Phase diagram of various types of vortices
for � > 0 for p = 0. SV(n) is the domain where n SVs are the
most stable configuration, while the wedge-shaped domain between
the solid (blue) curves, denoted HQV(n + 1,n), is a region where a
configurations of n + 1 HQVs in the (−)-condensate and n HQVs in
the (+)-condensate are most stable. A dashed (red) line is a boundary
between two types of SVs, while a solid (blue) line is a boundary
between SVs and HQVs. Point Pi denotes the point of the same
symbol in Fig. 2.

for formation of an SV, while the lower (blue) solid line of
domain HQV(1,0) is the first critical angular velocity �(−)

c for
formation of an HQV in the (−)-condensate.

Figure 4(a) depicts an HQV arrangement for ĥ = 0.7 and
� = 12.9, for which HQV(4,3) is the most stable configura-
tion. The inner circle, of radius u+ = √

(3 − 1)/2� ≈ 0.28,
supports three (+)-HQVs, while the outer circle, of radius
u− = √

(4 − 1)/2� ≈ 0.34, supports four (−)-HQVs. Here
the radius is scaled so that the wall of the cylinder is at u = 1.

FIG. 4. (a) Configuration of HQV(4,3) for ĥ = 0.7 and � =
12.9. The inner circle, of radius u+ ≈ 0.28, supports three (+)-HQVs,
denoted by circles containing a cross, while the outer circle, of
radius u− ≈ 0.34, supports four (−)-HQVs, denoted by circles
containing a horizontal line. The relative orientation of (+)-HQVs and
(−)-HQVs is arbitrary. The wall of the cylinder at u = 1 is not shown.
(b) Configuration of an HQV(6,5) for ĥ = 0.7 and � = 16.4. There
are (−)-HQV at the center, five (−)-HQVs on a circle of radius
u− ≈ 0.43, and five (+)-HQVs on a circle of radius u+ ≈ 0.35.

TABLE I. An HQV(n + 1,n) is stable between Tn (mK) and Tc2 �
0.907 mK. The difference Tc2 − Tn is given in the third row. The fourth
row lists � (rad/s) for R = 10−4 m.

n

0 1 2 3 4 5

1/ĥn 16.5 5.51 3.32 2.39 1.87 1.51
tn 0.351 0.117 0.0707 0.0507 0.0398 0.0323
Tc2 − Tn (mK) 0.304 0.0865 0.0435 0.0249 0.0148 0.00784
� (rad/s) 7.24 9.93 11.7 13.6 15.5 17.3

Figure 4(b) shows the HQV arrangement for ĥ = 0.7 and � =
16.4, for which HQC(6,5) is stabilized. There is a single (−)-
HQV in the center and five (−)-HQVs on the circle of radius
u− = √

6/2� ≈ 0.43, while five (+)-HQVs are distributed
uniformly on a circle of radius u+ = √

(5 − 1)/2� ≈ 0.35.
Suppose h is fixed. The critical temperature Tc1 of the

A1 phase is set to t = −h in our convention [16], namely,
Tc1 − Tc = hTc. The transition temperature to the A2 phase
is then given by t = −β5/β245 � 1.12h, giving Tc − Tc2 �
1.12hTc. Let H = 5 T as a concrete example. Then we find
h = ηH/α′Tc � 2.13 × 10−2 at p = 0 [22], from which we
find Tc1 − Tc � 0.0198 mK, where we put Tc � 0.929 mK.
Similarly, we obtain Tc − Tc2 � 0.0222 mK.

The critical 1/ĥn and � for the appearance of an HQV(n +
1,n) is obtained from Fig. 3 as reported in Table I. Here Tn

stands for the critical temperature, above which an HQV(n +
1,n) is stabilized and tn = 1 − Tn/Tc = h/ĥn. � in Fig. 3 is
scaled by �/2mR2 and the values of � (rad/s) in Table I are
evaluated with R = 10−4 m [�/2mR2 � 1.05 (rad/s)]. For
R = r × 10−4 cm, it scales as �/r2. Thus a lower critical
angular velocity is obtained for a larger cylinder.

IV. CONCLUSION

In summary, we have analyzed the stable textures of a thin
film of rotating superfluid 3He under a magnetic field by using
the Ginzurg-Landau free energy. It was shown that n HQVs
in the spin (+)-condensate and n + 1 HQVs in the spin (−)-
condensate interpolate between an n-SV texture and an n + 1-
SV texture as the scaled angular velocity � is increased for a
sufficiently large scaled magnetic field ĥ. There is a re-entrant
transition to the SV texture as the magnetic field is further
increased. The phase diagram for 0 � n � 5 has been plotted
in the ĥ-� plane.
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