
PHYSICAL REVIEW B 89, 104514 (2014)

Suppression of geometric barrier in type-II superconducting strips
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We study the magnetic response of a superconducting double strip, i.e., two parallel coplanar thin strips of
width 2w, thickness d � w, and infinite length, separated by a gap of width 2s and subject to a perpendicular
magnetic field H . The magnetic properties of this system are governed by the presence of a geometric energy
barrier for vortex penetration which we investigate as a function of applied field H and gap parameter s. The
new results deal with the case of a narrow gap s � w, where the field penetration from the inner edges is
facilitated by large flux focusing. Upon reducing the gap width 2s, we observe a considerable rearrangement
of the screening currents, leading to a strong reduction of the penetration field and the overall magnetization
loop, with a suppression factor reaching ∼(d/w)1/2 as the gap drops below the sample thickness, 2s < d . We
compare our results with similar systems of different shapes (elliptic and rectangular platelet) and include effects
of surface barriers as well. Furthermore, we verify that corrections arising from the magnetic response of the
Shubnikov phase in the penetrated state are small and can be omitted. Extending the analysis to multiple strips,
we determine the specific sequence of flux penetrations into the different strips. Our studies are relevant for the
understanding of platelet-shaped samples with cracks or the penetration into layered superconductors at oblique
magnetic fields.
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I. INTRODUCTION

The characteristic properties of a superconductor are its dia-
magnetic response [1] M to an external magnetic field H and
its ability to transport electric current without dissipation [2].
In the Meissner phase the magnetic induction B = H + 4πM

vanishes inside the superconductor and the linear response
M = −H/4π is that of a perfect (bulk) diamagnet. In type-II
superconductors, a sufficiently large magnetic field H > Hp

penetrates the material via quantized flux lines (with flux �0 =
hc/2e); we denote with Hp the field of first penetration. Within
the mixed (or Shubnikov [3]) phase the presence of vortices
reduces the bulk diamagnetic signal and the magnetization
M(H ) decreases in magnitude. The magnetic properties of the
material then depend on the behavior of the vortex state. In this
paper, we determine the magnetic response of superconducting
samples of more complex shape, in particular a double strip:
two parallel coplanar thin strips of infinite length and subject
to a perpendicular magnetic field H ; see Fig. 1. The response
of such a system is hysteretic and dominated by the so-called
geometrical barrier [4,5], i.e., an energy barrier retarding the
magnetic field penetration. Our main result is an apparent
suppression of the geometrical barrier for the situation where
the two strips are close by, i.e., separated by a narrow gap
or crack. Such a suppression of geometrical barriers may
be of practical interest in experiments, as has been the case
in disentangling the vortex lattice melting and irreversibility
lines in layered BiSCCO superconductors [6] or in separating
the phenomenon of bulk vortex pinning by defects. So far,
the geometrical barrier has been deliberately suppressed by
polishing the sample into the shape of a prism [6]; the
suppression of the geometrical barrier observed when tilting
the magnetic field applied to the sample [7] and attributed
to the appearance of Josephson vortex stacks resembles the
mechanism reported in the present paper.

The precise shape of the magnetization curve depends
on the specific configuration assumed by the vortices after

penetration, which is determined by the sample shape and
its surface properties (we assume a sample free of defects).
The sample surface is relevant in the determination of the
penetration field Hp as defined in the asymptotic region far
from the sample. A flat surface parallel to the field generates
an image vortex which results in a surface barrier hindering
vortices from entering the sample [8,9]. The metastable
Meissner state survives until the local field at the surface is
increased beyond the critical value Hs which is of the order
of the thermodynamic critical field Hc, Hs ∼ Hc > Hc1, with
Hc1 the lower critical field. For a nonideal surface the effective
surface barrier is reduced and assumes a value Hs between Hc1

and Hc.
The sample shape is relevant, too, in the determination

of the penetration field Hp. This is well known for elliptic-
shaped samples, cf. Fig. 2, where the magnetic field is
enhanced near the sample edge: For a cylindrical shaped
diamagnetic (i.e., μ = 0) sample with an elliptic cross section
of height d and width 2w, the demagnetization factor [10]
n = 2w/(2w + d) generates a field enhancement Hedge =
(1 − n)−1H . Correspondingly, the penetration field is given by
Hp = (1 − n)Hs = d/(2w + d)Hs . Once the penetration field
is reached, vortices enter the sample, reversibly in the absence
of a surface barrier (i.e., if Hs = Hc1) and irreversibly else.
Without surface barrier, the vortices distribute homogeneously
inside the sample, a result that is consistent with the constant
induction inside a magnetic ellipsoid [11]. On a microscopic
level, this corresponds to an exact matching of the energy gain
of vortex motion in the field of the screening current and the
energy cost εl associated with the increasing vortex length
upon penetration; see Fig. 2.

For a platelet-shaped sample (of width 2w and thickness d)
with a rectangular edge, the field at the boundary is enhanced
as well, although (effectively) less than for the elliptic sample.
A distance d away from the edge [12], the applied field H is
enhanced by a factor ∼(w/d)1/2, resulting in a penetration field
Hp ∼ (d/w)1/2Hs . At this field strength, the barrier for vortex
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FIG. 1. Side-view representation (xz plane) of two flat supercon-
ducting strips (parallel to y) subject to a perpendicular magnetic field
H (directed along z). The cross sections of the strips have a width 2w

and a thickness d � w, while the separation 2s between their inner
edges measures the width of the gap. The outer edges of the strips
at ±(2w + s) are denoted by ±W . Any position in the xz plane is
described by the complex coordinate ξ = x + iz.

entry into the sample has vanished and vortices move to the
center of the sample where they accumulate in a dome-shaped
form; cf. Fig. 2. Under further increase of the external field
H , the vortex dome grows both in height and width until the
sample is fully penetrated. In this geometry, the cost εld to
create the vortex is paid upon vortex entry at the sample edge;

FIG. 2. Top: Sketch of field enhancement near the edges of
an elliptic- (left) and a rectangular- (right) shaped sample. Below
penetration H < Hp , for both geometries, the field is enhanced by the
factor ∼√

w/d a distance d away from the edges. The field remains
unchanged on approaching the rectangular edge but increases by a
further factor ∼√

w/d for the elliptic geometry. Upon increasing
H beyond Hp , the field penetrates homogeneously into the elliptic
shaped sample and concentrates in a central dome for the rectangular
sample. This is due to the different potential landscapes Ugeo(x) (see
bottom sketch) felt by the vortices penetrating the sample at H ∼ Hp ,
flat for the ellipse (dotted line) and attractive for the rectangle (solid
line). Note that the penetration fields differ by the factor

√
d/w for the

elliptic and the rectangular sample. The sketch illustrates the situation
without additional surface barrier.

beyond the edge region the energy gain in the current field
I (x) is no longer balanced by the energy cost and the vortex is
driven to the sample center. Hence, the field penetration into
the platelet shaped sample is irreversible even in the absence
of a surface barrier, what is due to the presence of a geometric
barrier defined through the energy cost for flux entry. It is this
type of geometric barrier effects [4,5] which is at the focus of
the present paper.

Another situation arises in dirty samples where vortices are
pinned onto defects. Once the surface and geometrical barriers
are overcome, the vortex arrangement may be dominated by
bulk pinning and the magnetic induction (or magnetization)
is given by a Bean profile [13]. What is common to all three
cases (surface, geometric, and bulk pinning) is the irreversible,
hysteretic behavior of the magnetization M(H ) with changing
external field H . In this paper, we concentrate on the defect-
free case and thus ignore possible modifications due to bulk
pinning.

The motivation to study geometrical barriers in samples of
complex shape is manifold: Originally, the understanding of
the flux penetration and vortex lattice melting in layered high-
Tc superconductors necessitated a proper analysis of the vortex
state in platelet-shaped samples [4]. On the technological side,
the structuring of current-carrying strips [14,15] enhances
their critical current as the incorporation of slits generates
geometrical barriers hindering vortex motion. Recently, Segev
et al. [7] observed a structured vortex dome in layered
Bi2Sr2CaCu2O8+δ samples subject to a tilted magnetic field.
This finding can be interpreted as arising from stacks of
in-plane (Josephson) vortices reducing the superconducting
order parameter [16] and acting as weak links for the
perpendicular field (pancake vortices [17,18]). Our analysis
of vortex penetration into a double strip with a narrow gap, see
Fig. 1, may serve as a first step towards the understanding of
flux penetration in this geometry.

From a general perspective, the magnetic response asso-
ciated with superconducting samples can be calculated nu-
merically. Effects of complex sample shapes, inhomogeneous
material equations, and time-dependent perturbations then can
be studied quantitatively [19]. On the other hand, analytic
approaches give more qualitative insights into the system’s
behavior. Earlier work on geometrical barriers in samples with
more complex shapes considered the case of two coplanar thin
strips in the Meissner phase [20] and the full magnetization
curve for a strip-shaped sample with a slit [21], i.e., two strips
shunted at their ends; this ring-type topology with circulating
currents exhibits a markedly different magnetization M(H )
as compared to our unshunted situation. The situation of an
unshunted double stripline in the critical state was investigated
in Ref. [22]. In our work, we go beyond these results in various
ways, including the situation where the sample thickness d

plays an important role.
The most pertinent new result is the dramatic suppression

of the geometrical barrier which we illustrate in Fig. 3. This
suppression is driven by a large flux focusing into the gap
between the strips, forcing the flux penetration into the sample
to start from the inner edges. In tracing the evolution of the
penetration field Hp as a function of separation s between
the strips, we find it decay from Hp ∼ √

d/w Hs at large s
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FIG. 3. Sketch of the geometric energy barrier Ub for vortex
penetration as a function of the applied field H and the gap parameter
s; see also Fig. 1. In this figure we neglect an additional surface barrier,
i.e., Hs = Hc1. The thick black curve marks the geometric barrier
height U

eq
b (s) at the equilibrium field Heq as defined in Eq. (37) and

provides a measure for the irreversibility of the sample. Note the rapid
decrease of the geometric barrier U

eq
b (s � d,H ) with increasing field

H at small separation s between the two strips; the small geometric
barrier U

eq
b (s) tells that irreversibility is reduced when s � d . Still,

a finite irreversibility remains with the geometrical barrier rapidly
reinstalled when reversing the applied field.

to Hp ∼
√

sd/w2 log(w/s) Hs at intermediate separation d <

s < w to Hp ∼ (d/w) Hs at small s � d; the latter coincides
with the result for the elliptic sample where the geometrical
barrier is absent altogether. We emphasize, however, that
the narrow-gap double strip still differs from the ellipse as
the geometrical barrier remains present but rapidly collapses
from εld to zero with increasing field, hence, maintaining the
hysteretic magnetization. The latter strongly decreases with
the separation s between strips as well: Within the individual
strips, the penetrated field assumes a domelike shape which is
increasingly skewed towards the gap when s becomes small.
Following the change in shape of the magnetization curve
through the various regimes, we find it to shrink by a factor
∝ (s/w)1/2 log(w/s) when s < w and by a factor ∝ (d/w)1/2

for narrow gaps s � d when compared to the single platelet
sample; this decay of the magnetization with decreasing s ends
up in a flat and nearly constant value M = −(Hs/4π )(4wd)
at small s log(W/s) � d.

In the following, we briefly recall the key features of the
magnetic response for elliptically shaped strips in Sec. II A and
proceed with the description of coplanar parallel rectangular
strips for the case where the thickness d is the smallest
geometric length in the problem (Sec. II B). We review the
appearance and consequences of a geometric barrier in a single
strip (Sec. II C) and continue with the analysis of two adjacent
strips (Sec. II D) discussing the behavior of the Meissner and
penetrated states. In Sec. III, we analyze the double strip for the
situation where the separation 2s between the strips is smaller
than the strip thickness d, s � d. Section IV is devoted to
multistrips and a summary and conclusions are given in Sec. V.

II. THIN STRIPS

A. Introduction: Elliptical strip

Before considering samples with rectangular geometries, it
is instructive to revisit the magnetic properties of a flat super-
conducting strip with an elliptic cross section. The strip extends
infinitely in the y direction and the semiaxes along x and z are
w and d/2 (d � w), respectively, with the upper or lower

sample surface parametrized by z±(x) = ±(d/2w)
√

w2 − x2.
The magnetic field H is applied parallel to the z axis;
outside the sample, B = H , while Bel = μ(Bel)Hel is constant
and parallel to the z axis inside the elliptic sample [11], a
consequence of the special elliptic shape. Here,

μ(B) = B

4π

(
dF

dB

)−1

(1)

is the magnetic permeability of the material as obtained from
the free energy density F (B). The magnetic field at the sample
edges (±w,0) is continuous [11], Hel = Hedge, where Hedge

denotes the magnetic field strength at the sample edge. The
latter is modified due to demagnetization effects of the sample
which are described by the geometric demagnetizing fac-
tor [10] n = 2w/(2w + d) ≈ 1 − d/2w. Exploiting the fact
that the magnetic induction Bel is constant within the ellipse,
we decompose the total field B(x,z) into two components,
a constant one, Bel = (0,0,Bel), and the remaining field,
B0(x,z), which does not penetrate the sample. Far away
from the sample, all fields point along z, B0 ≡ (0,0,B∞

0 )
and we have Bel + B∞

0 = H . The component B0(x,z) then
describes the field of a perfectly diamagnetic ellipse in the
reduced external field B∞

0 = H − Bel. The magnetic field at
the sample edge (x = ±w) points along z, involves the two
components Bel and B0 = B∞

0 /(1 − n), the latter enhanced by
demagnetization effects, and reads

Hedge = Bel + B∞
0

1 − n
. (2)

Using B∞
0 = H − Bel as well as Bel = μ(Bel)Hel =

μ(Bel)Hedge, we obtain the standard formula for the field
strength inside the sample [11],

Bel = μ(Bel)

1 − n[1 − μ(Bel)]
H, (3)

where the value for Bel has to be determined self-consistently.
For notational simplicity we denote by μ the value for μ(Bel)
after solving the above equation.

The B field at the surface outside of the ellipse has both a
normal (⊥) and a tangential (‖) component. Their magnitudes
can be determined from the boundary conditions [11], which
state that B⊥ and B‖/μ are continuous across the surface. For
the upper surface z = z+(x) of the ellipse we find

(B‖(x),B⊥(x)) = H

1 − n(1 − μ)
( sin(α),μ cos(α)), (4)

where

α(x) = arctan

(
d

2w

−x√
w2 − x2

)
(5)

measures the angle between the external field orientation (z
axis) and the direction normal to the elliptic surface at the
position (x,z+(x)). In most of the strip region (when w −
|x| � d2/w) the surface of the ellipse is almost parallel to the
x axis and the above field expression (4) simplifies to

(B‖(x),B⊥(x)) ≈ H

1 − n(1 − μ)

(−x(1 − n)√
w2 − x2

,μ

)
. (6)

The discontinuity of the field parallel to the boundary
determines the surface current that generates the magnetization
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of the sample. Using Ampère’s law and defining the sheet
current density I (x) = ∫ z+

z−
dz j (x,z) across the sample, we

find

I (x) ≈ 2c

4π
[B‖(x) − Bel sin(α)], (7)

≈ −Hc

2π

(1 − n)(1 − μ)

1 − n(1 − μ)

x√
w2 − x2

, (8)

= − (H − Bel)c

2π

x√
w2 − x2

. (9)

The factor 2 originates from the two current contributions at the
upper and lower sample surface. The last expression shows that
only the expelled component B∞

0 = H − Bel contributes to the
shielding currents. The magnetization M (per unit length) is
obtained from the relation 4πM/A = Bel − Hel, where A =
πwd/2 is the area of the strip’s cross section. Using Hel =
Hedge and Eq. (2) gives for the magnetization

M = −B∞
0

4
w2 = −H

4

(1 − n)(1 − μ)

1 − n(1 − μ)
w2. (10)

In the last equality we used B∞
0 = H − Bel and Eq. (3).

1. Meissner state

At low fields, the superconducting elliptic strip remains in
the Meissner state (μ = 0), resulting in a vanishing induction,
i.e., Bel = B = 0. The field strength at the edge, see Eq. (2),
is enhanced by the geometric factor 1/(1 − n) ≈ 2w/d as
compared to the applied field H . At the sample surface,
the field is everywhere tangential and its strength is given
by H sin(α)/(1 − n) (≈ −Hx/

√
w2 − x2) as obtained from

Eqs. (4) and (6). The resulting sheet current density inside the
sample is obtained from Eq. (9),

I (x) ≈ −Hc

2π

x√
w2 − x2

. (11)

The perfectly diamagnetic response [Eq. (10) with μ = 0]

M = −H

4
w2 (12)

lasts until the magnetic flux starts penetrating the supercon-
ducting sample in the form of vortices.

To bring a vortex to the position x inside the sample costs
an energy UL(x) = εl�(x), gradually rising with the vortex
length �(x) = z+(x) − z−(x) from zero at the sample edges to
d in the sample center; here the line energy εl = ε0 log(λ/ξ ) =
�0(dF/dB)|B=0 is the cost per unit length associated with the
nucleation of a single vortex in the bulk superconductor. On
the other hand, the work gained from the Lorentz force [due
to the current I (x) in Eq. (11)] drives the vortex entrance.
The two energy contributions can be combined to an effective
potential landscape [23] for a single vortex,

Ugeo(x) = UL(x) − �0

c

∫ x

w

du I (u). (13)

In the elliptical geometry, the functional form of the driving
energy due to the current Eq. (11) coincides with the
geometrical thickness �(x) = d

√
1 − x2/w2 of the sample and

the energy profile (13) reduces to

Ugeo(x) = εl�(x)

(
1 − H�0

4πεl

2w

d

)
. (14)

The barrier then vanishes throughout the sample at the
penetration field

Hp = 4πεl

�0

d

2w
= Hc1

d

2w
, (15)

where the local field strength at the edge reaches Hc1 and
the magnetization (per unit length) as obtained from Eq. (12)
amounts to

Mp = −Hc1

8
wd = −Hc1

4π

πwd

2
, (16)

with πwd/2 the cross section of the strip.

2. Penetrated state

Beyond the field of first penetration Hp, vortices homoge-
neously flood the sample, and the potential landscape takes the
form (we replace Bel → B)

Ugeo(x) = εl(B)
d

w

√
w2 − x2 − �0

c

∫ x

w

du I (u). (17)

The line energy εl(B) describes the energy difference (per unit
length) between the vortex state and the homogeneous field
configuration, i.e.,

εl(B) = �0
d

dB

[
F (B) − B2

8π

]
= �0B

4π

1 − μ(B)

μ(B)
(18)

with F (B) the free energy density of the superconducting
state. The second term on the right-hand side of Eq. (17) is
modified as well, since only the nonpenetrating (diamagnetic)
part H − B of the field drives the diamagnetic currents in
Eq. (9). The resulting state remains in equilibrium for all H >

Hp, i.e., Ugeo(x) ≡ 0, and the reversible magnetic response
follows the form in Eq. (10),

M = −H − B

4
w2 (19)

with B determined by the self-consistency equation (3). A
finite surface barrier as discussed further below will retard the
vortex penetration and generate a hysteretic response.

In order to illustrate the above results, we consider a
superconductor with the Abrikosov (bulk) induction [24]

B = C1Hc1

[
log

(
C2Hc1

H − Hc1

)]−2

(20)

near the penetration field, with C1,2 constants of order unity.
In this equation, H = Hedge is the local field strength at the
surface of the bulk sample. The magnetic permeability μ(B)
can be extracted from the above expression via the relation
μ(B) = B/H (B) and we find

μ(B) = B

Hc1

[
1 + C2 exp

(
−

√
C1Hc1

B

)]−1

. (21)

The linear slope 1/Hc1 of the permeability near B = 0 follows
from the vertical onset of the induction [see Eq. (20)] beyond
Hc1. Dropping the exponential term in Eq. (21) close to
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FIG. 4. Magnetic response of a superconducting elliptic strip with
demagnetizing factor n ≈ d/2w (here n = 0.9) as obtained from
Eq. (19) and with material properties described by (21) (solid line).
For comparison, we show the bulk (Abrikosov) magnetization with
the same permeability μ(B) (thin solid line). The vertical onset in the
bulk magnetization goes over into the linear reduction of M in the
ellipse, extrapolating to M = 0 at H = Hc1 (thin dashed line).

the penetration (B � Hc1) and substituting μ to the self-
consistency equation (3) we obtain the induction

B(H ) = (H − Hp)/n, (22)

resulting in a linear decrease of the diamagnetic response,

M(H ) = −Hp

4n
w2

(
1 − H

Hc1

)
. (23)

Note that for small inductions B � Hc1, the diamagnetic re-
sponse (23) differs substantially from the usual bulk Abrikosov
magnetization (see, e.g., Ref. [24]). The linear decrease in
Eq. (23) extrapolates to M = 0 at H = Hc1. The full solution
of Eq. (3) for the permeability (21) leads to the magnetic
response illustrated in Fig. 4.

B. Rectangular strips: Formalism

Having familiarized ourselves with the results for the
elliptic strip, we turn our attention to strips with rectangular
shape, i.e., samples with constant thickness d as opposed
to the ellipse where the height is changing over the entire
sample width. Specifically, we will consider (smooth) sample
edges with a typical radius of curvature �d in contrast to
the much sharper edge of the ellipse where the radius of
curvature is d2/4w � d. We consider a set of coplanar (in
the xy plane) and parallel superconducting strips of infinite
length (along y), each with a rectangular shape of width
2w (along x) and thickness d � 2w (along z), subject to a
perpendicular magnetic field H along z. The strip thickness
d is assumed to be the smallest geometric length and is
set to zero in the following mathematical analysis; its finite
value is properly reinstalled through appropriate boundary
conditions. Because the system is effectively two-dimensional,
we express the magnetic field B(x,z) in the xz plane through
the complex function [4] B(ξ ) = Bz(x,z) + iBx(x,z), with the
two-dimensional coordinate (x,z) replaced by the complex
variable ξ = x + iz. The magnetostatic problem of solving the
Laplace equation (
B = 0) for B is translated to a problem
in complex analysis, where the holomorphic function B(ξ )
satisfies the Cauchy-Riemann equations (correspnding to the
magnetostatic equations ∇ · B = 0 and ∇ ∧ B = 0) in the
superconductor-free region; the presence of the superconduc-

tor is accounted for through appropriate boundary conditions.
The latter derive from two physical conditions: on the one
hand, no vortices are present in regions where current is
flowing, i.e.,

Bz(x) = 0 when I (x) �= 0. (24)

Here and below we simply call “current” the sheet current
density I (x) flowing between z± = ±d/2. On the other hand,
no currents flow in the vortex-filled regions,

I (x) = 0 when Bz(x) �= 0. (25)

This last condition neglects the microscopic structure of the
vortex state by treating the penetrated region as magnetically
inactive, μ = 1; the accuracy of this simplification will be
discussed later in this section. Using Ampère’s law,

I (x) = c

2π
Bx(x,0+) = c

2π
Im[B(x + i0+)], (26)

the boundary conditions (24) and (25) transform to

Bz(x) = 0 when Bx(x) �= 0, and
(27)

Bx(x) = 0 when Bz(x) �= 0.

For a single strip centered a the origin (ξ = 0) the
holomorphic field

B(ξ ) = H

√
ξ 2 − b2

0(H )

ξ 2 − w2
(28)

is known to satisfy all the above requirements [4]; the param-
eter b0 then determines the field configuration of the entire
system. For the double strip studied below, the corresponding
expression reads

B(ξ ) = H

√[
ξ 2 − b2

1(H )
][

ξ 2 − b2
2(H )

]
(ξ 2 − s2)(ξ 2 − W 2)

. (29)

Here, the strips are arranged symmetrically, extending between
±s and ±W (with W = s + 2w) on the x axis.

In order to specify the field and current distributions for
these geometries, the parameters b0, b1, and b2 (with 0 �
b0 < w and s < b1 � b2 < W ) describing the boundaries of
the field-filled region have to be determined from two physical
conditions: First, the net current along each strip vanishes, i.e.,∫

strip
dx I (x) = 0. (30)

This (first) condition is independent of the magnetic state of the
strips, Meissner or Shubnikov. The second condition regulates
the penetration process of vortices into the superconducting
sample. In the Meissner phase, no field penetrates the super-
conductor and the width of the vortex dome vanishes, imposing
the (second) condition

b0 = 0 for the single, or

b1 = b2 for the double
(31)

strip geometry. The second condition for the penetrated state
derives from the analysis of vortex penetration at the sample
edge. We consider a smooth edge of shape z±(r) = ±�(r)/2
with r measured from the sample edge, rising to � = d within a
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distance r ≈ d/2 (e.g., �(r < d/2) = √
2rd). The (tangential)

field Hedge at the surface is assumed constant and generates a
current density j = cHedge/4πλ at the sample boundary, with
λ denoting the London penetration depth, λ � d. A simple
geometrical consideration provides us with the sheet current
I (r) = 2(cHedge/4π )

√
1 + [�′(r)/2]2 and using Eq. (13), we

obtain the rise of the vortex energy near the edge

Ugeo(r) = εl�(r) − �0Hedge

2π

∫ r

0
du

√
1 + [�′(u)/2]2. (32)

For a smooth edge with radius of curvature �d we have �′ � 1
for r � d (consistent with a roughly constant field Hedge) and
we can simplify the above expression to read

Ugeo(r) = εl�(r)

[
1 − �0Hedge

4πεl

]
. (33)

Hence, we find that the energy barrier for vortex entry is
eliminated when the local field strength reaches the first
critical field Hedge = Hc1 = 4πεl/�0. Once the edge region
of width d has been overcome, the vortices are driven to the
sample center where they arrange within the vortex dome.
The vortices deep inside the sample reduce the field at the
edge and the penetration of flux is stopped when Hedge drops
below Hc1. With a further increase of the external field,
vortices continue to penetrate the sample when the condition
Hedge = Hc1 is satisfied again. This stop-and-go criterion for
vortex penetration then is the second condition imposed on
the fields in Eqs. (28) and (29) and determines, together with
Eq. (30), the parameters b0, b1, and b2.

The above discussion ignores the possible presence of a
surface barrier [9] appearing on small length scales below
λ. In the most effective case, this barrier further retards the
penetration of vortices until the local field reaches the critical
strength Hedge ∼ Hc. In order to deal with the general situation
accounting for effects due to a surface barrier we denote the
local critical field for vortex penetration by Hs (Hc1 < Hs <

Hc). The second condition determining the fields Eqs. (28)
and (29) in the penetrated (H > Hp) state then can be cast in
the form

Hedge = Hs. (34)

The above equation replaces the condition Eq. (31) valid for
the Meissner phase. In the regime of very high fields, H > Hs ,
diamagnetic screening becomes small and the field strength at
the sample edge lines up with the applied field, Hedge ≈ H ;
however, this large-field limit will not be considered below.

Finally, we comment on the precision of this second condi-
tion: The field strengths in Eqs. (28) and (29) show square-root
singularities near the sample edges. The description of the
spacial dependence of the field when approaching the edges
to distances smaller than d then requires a detailed analysis of
the edge region. On the other hand, the typical scale for the
field strength needed for overcoming the edge region can be
obtained by the considerations presented above, once we have
a proper definition for the edge field Hedge at our disposal.
Below, we identify this field strength with the field evaluated
a distance d/2 away from the edge, Hedge = Bz(r = −d/2).

The surface barrier retarding the penetration of flux appears
on the small length scale between λ (at low fields of order Hc1)

and ξ (near Hc). On the contrary, the geometric energy barrier
is a macroscopic object appearing on the scale d. We define the
geometric barrier Ub of a platelet sample as the maximum of
Eq. (32) that is reached near d. The second term in Eq. (32) then
reduces the geometric barrier linearly to zero at Hedge = Hc1

and the barrier takes the functional form

Ub = εld

(
1 − Hedge

Hc1

)
= εld

(
1 − H

Hp

Hs

Hc1

)
, (35)

where the first (second) equality expresses the barrier in terms
of the local (asymptotic) field (note that field penetration
only starts when Hedge = Hs , where the additional surface
barrier has disappeared). While the geometric barrier (35) only
vanishes when the local field reaches Hc1, the vortex state may
become thermodynamically stable at a lower equilibrium field
Heq, defined as the applied field where a global minimum of
the energy profile Eq. (13) develops inside the sample. For the
single (double) strip, this minimum appears at x0 = 0 (x0 = b)
and Heq is determined from the condition

εld − �0

c

∫ x0

e

du I (u)

∣∣∣∣
H=Heq

= 0, (36)

where e denotes the position of the sample edge penetrated
first, e = w for the single strip, and e = s for the double strip;
see Sec. II D. The geometrical barrier at the thermodynamic
field Heq,

U
eq
b = εld

(
1 − Heq

Hp

Hs

Hc1

)
, (37)

then provides us with a measure for the irreversibility of the
system; see Fig. 3.

Having analyzed and determined the conditions determin-
ing the parameters b0, b1, and b2 in the expressions (28)
and (29) for the magnetic field, we now are in a position to
evaluate the magnetic response (magnetization) of the sample.
For this purpose, we make use of Ampère’s law and write the
holomorphic field in the form (Biot-Savart, see also Ref. [21])

B(ξ ) = H − 2

c

∫
strips

du
I (u)

ξ − u
. (38)

This field assumes the asymptotic form (we expand for
|ξ | � w)

B(ξ ) = H − 2

c ξ 2

∫
strips

du u I (u) + O(ξ−4), (39)

where we have used that the total current in each strip vanishes.
The second term in Eq. (39) describes the field of a line of
magnetic dipoles distributed along the y axis (ξ = 0). We thus
identify the magnetization M per unit length (from here on
called magnetization) with the expression

M = 1

c

∫
strips

du u I (u). (40)

This result differs from the usual textbook formula [11,25],

M = 1

2c

∫
d3r r × j (r), (41)

relating the total magnetic momentM to its generating current
density j (r) flowing in a loop. The translation invariant 2D
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result (40) can easily be shown to be consistent with the 3D
textbook formula for a finite size (2L along y) strip taking also
into account the currents jx(y) flowing near the ends y = ±L

of the strips and closing the loop.
Formally expanding the left-hand side of Eq. (39) in ξ−2

and comparing terms, the magnetization can be rewritten as

M(H ) = −1

2

∂B(ξ )

∂(1/ξ 2)

∣∣∣∣
ξ−2→0

. (42)

The magnetic responses of the single- and double-strip
geometries [as obtained from Eqs. (42), (28), and (29)] take
the particularly simple form

M(H ) = −H

4

(
w2 − b2

0

)
, (43)

M(H ) = −H

4

(
W 2 + s2 − b2

1 − b2
2

)
. (44)

C. Single strip

We briefly review the physics of geometrical barriers for
a single strip derived by Zeldov and coworkers [4]. The
function B(ξ ), holomorphic in the superconductor-free region
and satisfying the required boundary conditions, is given by
Eq. (28). On the x axis (z = 0), the magnetic field component
along z is given by

Bz(x) =

⎧⎪⎪⎨
⎪⎪⎩

H

√
b2

0−x2

w2−x2 for |x| � b0,

H

√
x2−b2

0
x2−w2 for w � |x|,

0 for b0 � |x| � w.

(45)

The region |x| � b0 describes the field-penetrated part of the
sample where Bz is finite. The current I (x) flows in the
complementary regions b0 � |x| � w inside the strip; making
use of Eq. (28) and Ampere’s law in the form of Eq. (26) we
obtain the current,

I (x) = −Hc

2π

x

|x|

√
x2 − b2

0

w2 − x2
. (46)

The antisymmetry of I (x) guarantees the vanishing of the total
current as required by Eq. (30). The diamagnetic response
resulting from these currents can be obtained with the formula
given in Eq. (40) or directly via Eq. (43).

1. Meissner state

In the Meissner state the field is fully expelled from the
strip, b0 = 0, and Eqs. (45) and (46) simplify to

Bz(x) =
{

H x√
x2−w2 for w � |x|,

0 for |x| � w,
(47)

and

I (x) = −Hc

2π

x√
w2 − x2

, (48)

respectively. This antisymmetric current density preserves the
Meissner state and is identical to the one for the elliptic strip
discussed before; see Eq. (11). The divergencies in Eq. (47) at
x = ±w have to be cut at the distance ∼d away from the edges

and we choose the specific value d/2. The local field strength
at the edge (we drop corrections of higher order in d/w)

Hedge ≡ Bz(w + d/2) � H

√
w

d
(49)

then is enhanced by the factor
√

w/d . This enhancement
is parametrically smaller as compared to the flat ellipsoid
with corresponding dimensions where the enhancement factor
is 2w/d. The response of the superconducting strip in the
Meissner state produces the magnetization [see Eq. (43) with
b0 = 0],

M(H ) = −H

4
w2, (50)

corresponding to the expulsion of the field H from a region of
size ∼w2. Similar to the currents, the diamagnetic response is
identical with that of an elliptic sample; see Eq. (12).

The Meissner state becomes unstable at H = Hp as deter-
mined by the condition Eq. (34); with the field enhancement
given in Eq. (49), we find

Hp � Hs

√
d

w
(51)

and the (maximum) magnetization at penetration reads

Mp = −Hs

4
w2

√
d

w
= −Hp

4
w2. (52)

As discussed above, the precise value for Hp depends on
the details of the edge geometry; the latter will modify the
result (51) by a numerical factor of order unity and affect all
further results in this section in a straightforward way. For an
elliptic strip, the larger field enhancement near the edges causes
the penetration field Eq. (15) to be parametrically (∼√

d/w)
smaller than that of the platelet sample.

Although penetration is delayed to Hp, a field-filled state
is thermodynamically stable (yet inaccessible due to the
geometric barrier) beyond the equilibrium field

Heq = Hc1
d

2w
(53)

as obtained from evaluating Eq. (36). The geometric barrier
height [from Eq. (37) with Hs = Hc1] at that specific field
amounts to

U
eq
b = εld (1 −

√
d/4w). (54)

2. Penetrated state

Increasing the external field H beyond Hp, vortices
accumulate inside the strip in a dome-like density distribution
of width 2b0. The field (current) profile along the x axis
(z = 0) is given by the general form (45) [(46)]. The absence
of a net current inside the strip is satisfied by symmetry,
I (−x) = −I (x). The evolution

b2
0(H ) � w2[1 − (Hp/H )2] (55)

of the dome width as a function of the applied field H

is determined by imposing a critical field strength at the
edges, i.e., by solving Eq. (34) for Hedge = Bz(w + d/2). The
induction in the vortex dome takes the maximal value (b0/w)H
at the gap center. For a largely penetrated strip, w − b0 � w,
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the induction is almost uniform and equal to the external field,
B(x) ≈ H . The presence of vortices inside the superconductor
reduces the diamagnetic response, see Eq. (43),

M(H ) � − H 2
p

4H
w2 = − H 2

s

4H
wd. (56)

The magnetization (56) is shown in Figs. 5 and 10. The
applicability of the expressions (55) and (56) is limited to
the regime where the screening currents flow in regions much
wider than the sample thickness (w − b0 � d), a limit reached
when the external field H is very large, of order Hs . At this
point, the strip is almost uniformly penetrated by the field
with Bz ≈ Hs , while the remaining screening currents flow in
a narrow region of width ∼d near the edges, maintaining a
diamagnetic response,

M(Hs) ≈ −Hp

4
w2

√
d

w
. (57)

Predictions on the system’s behavior for very large applied
fields H > Hs require a precise knowledge of the field
distribution near the sample edge, a topic which is beyond
our present analysis.

The penetration process of vortices across a geometric
energy barrier in a platelet strip features a hysteretic behav-
ior [4,26]; upon reduction of the external field from a maximal
value H�, the flux φ�

d = φd (H�) of vortices through the sample,
where

φd =
∫ b0

−b0

dx Bz(x), (58)

is trapped unless the vortex dome boundaries reach the sample
edges. Evaluating the above flux with the field (45), we find

φd = 2wH

[
E(b0/w) − w2 − b2

0

w2
K(b0/w)

]
, (59)

with K (E) the complete elliptic integral of the first (second)
kind defined according to standard textbooks on mathematical
functions; e.g., see Eqs. (17.2.18)–(17.3.3) of Ref. [27],

K(κ) =
∫ π/2

0

dθ√
1 − κ2 sin2(θ )

, (60)

E(κ) =
∫ π/2

0
dθ

√
1 − κ2 sin2(θ ). (61)

For κ � 1, the elliptic functions show the limiting behavior

K(κ) = π

2

[
1 + κ2

4
+ 9κ4

64
+ O(κ6)

]
, (62)

E(κ) = π

2

[
1 − κ2

4
− 3κ4

64
+ O(κ6)

]
, (63)

while for the opposite limit, κ = √
1 − ν with ν � 1, we find

K(
√

1 − ν) = 1

2
log

(
16

ν

)
− ν

8

[
2 − log

(
16

ν

)]
+ O(ν2),

(64)

E(
√

1 − ν) = 1 − ν

4

[
1 − log

(
16

ν

)]
+ O(ν2). (65)

The constraint φd (H < H�) = φ�
d reduces to a condition for

the dome width b0(H ) of the form

E(b0/w) − w2 − b2
0

w2
K(b0/w) = φ�

d

2w H
, (66)

in agreement with Ref. [5]. The left-hand side is limited by
unity from above (for b0 = w). Upon decreasing H , the vortex
dome expands over the sample until reaching the edge. Since
for a large dome, w − b0 � w, the induction is uniform and
equal to H , we find that vortices leave the sample at H =
Hex = φ�

d/2w, where formally b0 = w and M = 0.
For a narrow dome b0/w � 1, the above condition (66) can

be simplified using the asymptotic expressions (62) and (63)
for the elliptic functions; to lowest (quadratic) order in κ =
b0/w, we find

b2
0

w2
= 4

π

Hex

H
. (67)

The growth of the dome width b2
0 = b�

0
2H�/H [with b�

0 =
b0(H�)] results in a magnetic response of the form

M(H ) = −H

4
w2 + H�

4
b�

0
2
, (68)

with a slope identical to the Meissner state. Higher-order cor-
rections (quartic in κ = b0/w) are straightforwardly obtained
from Eqs. (62) and (63): The condition (66) then yields

b2
0

w2
= 4

{√
1 + H�

H

[(
1 + 1

4

b�
0

2

w2

)2

− 1

]
− 1

}
. (69)

Inserting this solution into the expression (43) for the magne-
tization, the Meissner slope is corrected according to

dM

dH
= −w2

4

{
1 − 1

2

(
H�

H

)2[(
1 + 1

4

b�
0

2

w2

)2

− 1

]2}

≈ −w2

4

[
1 − 1

8

(
H�

H

b�
0

2

w2

)2]
. (70)

The rapid growth of the dome width on both the
field-increasing (filling the dome with additional flux) and
-decreasing (expanding the dome at fixed flux) branches leads
to a fast violation of the condition b0 � w assumed above and,
hence, these results have a rather limited range of validity.
Another limit is reached when b0 is large, w − b0 � w.
Defining ν = 1 − b2

0/w
2, the asymptotic expressions (64)

and (65) can be used to simplify (up to linear order in ν)
the condition (66) to

1 − ν

4

[
log

(
16

ν

)
+ 1

]
= Hex

H
. (71)

In most of the M-H diagram, the system’s magnetic re-
sponse on the descending branch then is given by M(H ) =
−Hw2ν(H )/4. Taking the derivative of M with respect to H ,
the slope of the descending branch can be evaluated and, after
some reordering, we find that

dM

dH
= −w2

4

4 − ν

log(16/ν)
. (72)
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FIG. 5. The magnetization for the descending field branches are
shown for different values of the turning field H� (H�/Hp = 1.25,
1.5, 2.5, 3). The numerical solution of Eq. (66) (thick solid lines)
is compared to the magnetic response obtained from small domes
(thin solid lines) featuring a constant Meissner slope, see Eq. (68).
For H� = 1.25Hp and 1.5Hp , the dotted curves show the magnetic
response as obtained from a next-to-leading order expansion of
Eq. (66) in b0/w, see Eq. (69). For H� = 2.5Hp and 3Hp , where
the dome is sufficiently large at H�, i.e., ν� = (Hp/H�) � 1, the
magnetization is well described by the expression (73) shown as
dashed lines.

The derivative (72) deviates from the Meissner slope −w2/4
by a numerical factor which assumes the value ≈1.01 for
ν ∼ 1/2, when the previous approach of a narrow dome
predicts a perfect Meissner slope [see Eq. (68)]. In the regime
of applicability, where ν may change by several orders of
magnitude, the factor (4 − ν)/ log(16/ν) changes noticeably
but not parametrically. Typically, the slope of the descending
branch is numerically close to the Meissner slope within the
parameter range under consideration; see Fig. 5. For large
reversal fields H� � Hp, we replace the parameter ν(H ) by
its value at the field reversal ν(H�) = ν� = 1 − b�

0
2/w2 =

(Hp/H�)2, where we have used Eq. (55). The magnetization

M(H ) = M(H�) − H − H�

4
w2 4 − ν�

log(16/ν�)
(73)

as obtained from Eq. (72) and integration from H� to H

provides a good description of the descending branch in this
regime; see Fig. 5.

As the boundaries of the dome approach the edges of the
strip to a distance ∼d (which is the case when H ≈ [1 +
O(d/w)]Hex) the precise geometric shape of the sample edge
needs to be taken into account, requiring a more accurate
analysis going beyond the present description. An attempt to
cope with this situation has been undertaken by Zeldov and
coworkers in Refs. [26,28,29].

3. Magnetization of the vortex dome

The physical properties of quantized flux lines appeared
in the above analysis merely as a criterion for vortex entry
at the sample edges. The vortex dome in the penetrated state
has been described by a smooth field Bz(x) �= 0 residing in
a magnetically inactive medium with μ = 1 whose extend
[−b0,b0] derives from the solution B(ξ ) of the boundary value
problem. In reality, the vortex state in the dome is described
by a field h(x) modulated on the scale of the intervortex
distance due to vortex currents. In the following, we show
that the currents associated with the vortex state in the dome

generate a magnetization which remains small as compared to
the magnetization produced by the screening currents flowing
in the field-free regions.

An analogous problem appears in the context of surface
barriers as discussed by Clem [9] and Koshelev [30]: Quite
similar to our analysis, in Ref. [9] the vortex-penetrated bulk,
separated from the boundary by a layer of screening (Meissner)
currents, has been described by an induction Bz averaged
over the intervortex spacing. This approximation neglects all
field and current modulations due to the vortex state and the
resulting magnetization density is given by [9]

m(H ) = − H

4π

[
1 −

√
1 − (Hs/H )2

]
. (74)

A way to account for the local currents in the vortex state has
been proposed by Koshelev [30], who found that these con-
tribute a paramagnetic correction δm = (

√
3/48)(�0/4πλ2)

to the magnetization density m(H ) in the limit B � �0/λ
2.

Following a similar ideology as in Ref. [30], we describe
the flux-filled region in terms of a vortex lattice along z

with vortex rows aligned along y and separated by b� in
the x direction with b2

� = (3/4)1/2�0/Bz. While in Ref. [30]
Bz(x) was determined self-consistently, here we estimate the
corrections to the magnetization by adopting the averaged field
Bz(x) obtained from the above analytic solution. In our strip
geometry, the spacing b� between vortex rows slowly varies
along x, as the induction Bz changes on macroscopic length
scales. The connection between the local field h(x) and the
induction Bz(x) is given by the average

Bz(x) = 1

b�

∫ x+b�/2

x−b�/2
dx ′h(x ′). (75)

The local field h(x) satisfies the one-dimensional London
equation λ2h′′(x) + h(x) = 0 between the vortex rows with
the boundary conditions replaced by the constraint (75). For
a slowly varying dome profile, i.e., b�∂xBz(x) � Bz(x), we
obtain the field modulation between vortex rows,

h(x) ≈ Bz(xc)
b�

2λ

cosh[(x − xc)/λ]

sinh(b�/2λ)
, (76)

with xc the center between the two adjacent rows and |x −
xc| < b�/2. Ampère’s law then provides us with the current
profile,

j (x) ≈ −Bz(xc)c

4π

b�

2λ2

sinh[(x − xc)/λ]

sinh(b�/2λ)
, (77)

and we can evaluate the associated average magnetization
density at the vortex location xv

m(xv) ≈ 1

b�c

∫ xv+b�/2

xv−b�/2
dx ′x ′j (x ′) (78)

≈ Bz(xv)

4π

[
1 − b�

2λ

1

sinh(b�/2λ)

]
. (79)

For small fields Bz � Hc1, we find that m(x) ≈ Bz(x)/4π ,
while the magnetization density saturates at (�0/4πλ2)

√
3/48

for large fields Bz � Hc1, consistent with the results presented
in Ref. [30]. In order to estimate the correction to the strips’
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magnetic response, we introduce the upper bound

m(x) � Bz(x)

4π

Hc1

Hc1 + Bz(x)
(80)

with the correct asymptotic behavior for B � Hc1 and log-
arithmically [∝ log(λ/ξ )] overestimating the magnetization
when B � Hc1. Integrating m(x) over the dome and replacing
the dome profile Bz(x) by its maximum Hb0/w at the center,
see Eq. (45), we obtain the bound

δM <
H

4π

Hc1

Hc1 + Hb0/w

b2
0

w2
2wd. (81)

For a small dome, b0 � w, this expression simplifies to

δM <
H

4π

(
1 − H 2

p

H 2

)
2wd, (82)

whereas for a large part of the penetrated region d � w −
b0(H ) � w, we find that

δM <
H

4π

Hc1

Hc1 + H
2wd. (83)

As a result, the correction δM due to the reversible magne-
tization measured on the magnetization M of the screening
currents Eq. (56) is bounded from above by

δM

M
<

2

π

H 2

H 2
s

Hc1

Hc1 + H
. (84)

In the absence of a surface barrier (Hs = Hc1) these corrections
are small and become of order unity at the largest fields
H ∼ Hc1 where our analysis applies. In the presence of a
large surface barrier where Hs � Hc1, the corrections are
even smaller and reach a maximum ∼Hc1/Hs � 1 when
H ∼ Hs . We conclude that the corrections arising from the
vortex currents can be omitted in the single-strip geometry.

D. Double strip

We now investigate the double-strip configuration defined
in Fig. 1, a system of two coplanar, parallel strips of width
2w each and separated by a gap 2s. Assuming a gap that
is large as compared to the strip thickness, s � d, the
system can be treated within the framework introduced in
Sec. II B. The holomorphic function has been presented in
Eq. (29), from which the [symmetric, Bz(−x) = Bz(x)] field
and [antisymmetric, I (−x) = −I (x)] current distribution on
the x axis can be readily deduced,

Bz(x)

H
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
(b2

1−x2)(b2
2−x2)

(s2−x2)(W 2−x2) for 0 � x � s,√
(x2−b2

1)(b2
2−x2)

(x2−s2)(W 2−x2) for b1 � x � b2,√
(x2−b2

1)(x2−b2
2)

(x2−s2)(x2−W 2) for W � x,

0 otherwise,

(85)

and

2πI (x)

cH
=

⎧⎪⎪⎨
⎪⎪⎩

√
(b2

1−x2)(b2
2−x2)

(x2−s2)(W 2−x2) for s � x � b1,

−
√

(x2−b2
1)(x2−b2

2)
(x2−s2)(W 2−x2) for b2 � x � W,

0 otherwise.

(86)

The resulting magnetization is given by Eq. (44).

FIG. 6. Normalized current density 2πI (x)/Hc (solid line) flow-
ing along the y direction and dimensionless magnetic field Bz(x)/H
(dashed line) of a double strip in the Meissner state. The two strips
with width 2w and thickness d (d/w → 0) are separated by a gap 2s

(here w/s = 100). According to Eqs. (29) and (91), the local current
reverts its sign at ±b, with b ≈ 0.38 W . The magnetic field inside the
gap between the strips (see inset) is far above the range of this graph,
Bz(|x| < s)/H � b2/Ws ≈ 30.

1. Meissner state

In the (low-field) Meissner state the parameters b1, b2 in
Eq. (29) coincide, b1 = b2 = b, with ±b marking the the
positions inside the strips where the current density changes
sign (see Fig. 6). The magnetic field component Bz [from
Eq. (85)] is nonvanishing whenever |x| � s or W � |x| and
reads

Bz(x) = H
|x2 − b2|√

(x2 − s2)(x2 − W 2)
. (87)

In the complementary region s � |x| � W , the screening
current

I (x) = −Hc

2π

x

|x|
x2 − b2√

(x2 − s2)(W 2 − x2)
(88)

guarantees a perfect diamagnetic (Meissner) response

M(H ) = −H

4
(W 2 + s2 − 2b2), (89)

with b independent of H . The condition (30) that no net current
flows along each strip requires that∫ W

s

dx x2√
(x2 − s2)(W 2 − x2)

=
∫ W

s

dx b2√
(x2 − s2)(W 2 − x2)

,

(90)

from which we find the value of b,

b2 = W 2 E(κ ′)
K(κ ′)

, (91)

in agreement with Ref. [20]. Here, K (E) is the complete
elliptic integral of the first (second) kind, as defined in Eq. (60)
[(61)], and κ ′ = √

1 − κ2 is the complementary modulus of
κ = s/W . For large gaps, the double strip behaves as two
independent strips: Indeed, for s/w → ∞, the parameter b

approaches the sample center w + s and the magnetization
assumes the asymptotic value M(H ) → −Hw2/2, twice that
of an isolated strip, see Eq. (50).
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Let us then focus on the opposite limit s � W = 2w + s,
where the right-hand side of Eq. (90) shows a logarithmic
divergence ∝ log(W/s), while the left-hand side is regular; in
this limit, the parameter b takes the asymptotic form

b2 = W 2

log (4W/s)
, (92)

and the position b where the current I (x) changes sign is
no longer at the sample center but has shifted towards the
inner edge; see Figs. 6, 8, and 15. The magnetization (per unit
length) (89) to leading order in s/W reads

M(H ) = −H

4
W 2

[
1 − 2

log(4W/s)

]
. (93)

In the limit s/W → 0, the Meissner slope approaches that of
a single strip with double width; see Eq. (50). We conclude
that over the full range of gap widths s (from s � W down
to s/W → 0) the slope in the magnetization of the Meissner
state increases only by a factor 2.

For the double-strip geometry, the flux (per unit length) φg

passing through the gap |x| < s is defined as the z component
of the magnetic field (87) integrated over the gap width,

φg =
∫ s

−s

dx Bz(x) = 2WH

[
E(κ) −

(
1 − b2

W 2

)
K(κ)

]
, (94)

where the elliptic functions are evaluated at κ = s/W . In the
regime of almost independent strips, s � W , the flux 2sH of
the homogeneous field in the empty gap region is enhanced
by half of the flux φb = 4wH blocked by the two strips, thus
adding up to φg ≈ (2s + 2w)H . In the opposite limit s � W ,
the expression (94) for the flux in the gap simplifies to

φg � πb2

W
H � πW

log(4W/s)
H. (95)

An essential part (up to a logarithmic factor) of the blocked flux
φb = 2WH is pushed through the gap. This slow reduction of
φg upon reducing s goes hand in hand with an enhancement
of the field strength at the gap center,

Bz(0) = H
b2

sW
= 2

π

φg

2s
= H

W/s

log(4W/s)
, (96)

and near the inner edges,

Bz(s − d/2) � H
b2

√
sd W

= H
W/

√
sd

log(4W/s)
. (97)

This last expression is parametrically larger than the enhance-
ment observed at the edge of an isolated strip, see Eq. (49).
Note that the field inside the gap is far from constant but
increases by a factor

√
s/d from the gap center to one strip

edge (see the inset in Fig. 6). On the other hand, the field
strength near the outer edges

Bz(W + d/2) � H
W 2 − b2

W
√

Wd
= H

√
W

d

[
1 − 1

log(4W/s)

]
(98)

is comparable to that of an isolated strip; see Eq. (49). From
this analysis we conclude that the local critical field Hs is
first reached near the inner edges, such that the penetration of

vortices occurs from inside. The field of first penetration Hp

then is determined by the condition

Hedge = Bz(s − d/2) = Hs (99)

and, making use of Eq. (97), we find that the penetration field
for small gaps s � W ,

Hp � Hs

√
sd

W 2

W 2

b2
= Hs

√
sd

W 2
log (4W/s), (100)

is substantially reduced as compared to the one for isolated
strips Hp � Hs

√
d/w. As discussed for the single strip [see

Eq. (51) and thereafter], the precise edge geometry will alter
the above expression for Hp by a numerical factor of order
unity (the same factor as for the single strip), a correction that
will be neglected in the following. At penetration H = Hp,
the Meissner state reaches the maximal diamagnetic response
[see Eq. (93)],

Mp = −Hs

4
W

√
sd [log (4W/s) − 2]. (101)

Upon reducing the gap width s, the penetration field dimin-
ishes and the geometrical barrier is more strongly suppressed;
see Eq. (35). Vortices become energetically favorable (deep)
inside the sample beyond the equilibrium field [we use Eq. (36)
in the regime s � W ]

Heq = Hc1
d

2W

{
1 − log[4 log(4W/s)] + 1

2 log(4W/s)

}−1

, (102)

resulting in a geometric barrier (37) at Heq which decreases
with s,

U
eq
b (s)

εld
= 1 −

√
d/s

2 log(4W/s) − log[4 log(4W/s)] − 1
.

(103)

2. Penetrated state

Increasing the external field beyond its critical value, Hp,
vortices penetrate the superconductor from the inner edges at
x = ±s and accumulate near the position b inside the strips
where the potential Ugeo(x) is minimal. The field and currents
take the general form given in Eqs. (85) and (86), with the
nontrivial vortex state determined by the two boundaries of
the vortex dome b1 and b2. These two parameters satisfy the
constraint of vanishing net current in each strip,∫ b1

s

dx I (x) +
∫ W

b2

dx I (x) = 0, (104)

together with the condition [from Eq. (34)]

Hedge = Bz(s − d/2) = Hs. (105)

While this constraint locks the field strength at the inner edge
to Hs , the field strength near the outer edge continuously grows
but remains below Hs . In Fig. 7 we show the field and current
profiles in the penetrated state for H = 1.2Hp as obtained from
solving Eqs. (104) and (105) numerically. The evolution of the
dome’s boundaries and its width b2 − b1 with increasing field
is shown in Fig. 8. The maximal field value in the dome can
be estimated with the interpolation formula Bdome ∼ H (b2 −
b1)/W .
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FIG. 7. Dimensionless field Bz(x)/H (dashed line) and current
2πI (x)/Hc (solid line) as a function of x (for z = 0) for the same
geometry (w/s = 100 and s/d = 100) as in Fig. 6 and an external
field H = 1.2Hp above first penetration. In the penetrated state above
Hp , vortices accumulate in a finite region inside each strip (the vortex
dome), with boundaries given by ±b1 and ±b2.

In order to find analytic results describing the penetrated
state, we have to simplify the problem of determining the
parameters b1, b2. Evaluating the condition (105) for the
field (85) and expressing the result through the penetration
field Hp, the dome boundaries b1(H ) and b2(H ) are related
via √

b2
1 − s2 b2

b2
= Hp

H
, (106)

where b is the (field-independent) zero-current location in the
Meissner state, Eq. (91).

It turns out that a perturbative calculation around the pene-
tration field with the small parameter h = (H − Hp)/Hp � 1
produces results with a very limited range of validity. This
is due to the rapid growth of the dome width b2 − b1 with
increasing h, leading to a fast breakdown of the approximation.
Approaching the problem from the high field limit H � Hp

is more successful: Starting from the regime where the dome
extends over a large fraction of the strip b1 � b2, we can adopt
another perturbative approach which provides accurate results
all the way down to Hp. We use the ansatz b2 = W (1 − ν)1/2

FIG. 8. Evolution of the dome edges b1(H ) and b2(H ) with
increasing field H for parameters w/s = 100 and s/d = 100. For
small fields H < Hp , the double strip is in the Meissner phase and
b1 = b2 = b, where b is shifted away from the sample center w + s.
In the penetrated state H > Hp , vortices accumulate inside the strip
and the dome width b2 − b1 widens. The field and current profiles for
the field H = 1.2Hp are shown in Fig. 7.

with ν(H ) < 1. For s � b1, where Eq. (106) simplifies to

b1 = W
b2

W 2

Hp

H

1√
1 − ν

, (107)

the constraint (104) of vanishing net current in the strips can
be written as

Hp

H

b2

W 2

[
log

(
4W

s

b2

W 2

Hp

H

1√
1 − ν

)
− 1

]

= E(
√

ν) − (1 − ν) K(
√

ν). (108)

Solving this equation to leading order in Hp/H where ν � 1,
we find that

ν(H ) = 4

π

Hp

H

b2

W 2

[
log

(
4W

s

b2

W 2

Hp

H

)
− 1

]
. (109)

To leading order in ν(H ), the magnetic response in Eq. (44)
takes the form M � −Hν(H )W 2/4, resulting in a logarithmic
field dependence,

M(H ) � −Hs

4π
(2Wd)

√
4s

d

[
log

(
4Hs

H

√
d

s

)
− 1

]
. (110)

Because of the simplification in Eq. (107), the validity of the
result (110) is limited to fields H � H |b1∼2s ∼ (b2/sW )Hp ≈√

d/s Hs , where the restriction s � b1 is satisfied. As shown
in Fig. 9, the expression (110) is in good agreement with the
numerical solution and describes the evolution of the magnetic
response over a large range of fields Hp � H � H |b1∼2s .

For b1 − s � s, the same ansatz b2 = W (1 − ν)1/2 allows
us to simplify the constraint Eq. (104) to

b1 = s + Wν/2, (111)

while Eq. (106) takes the form

s + Wν/2 =
√

s2 + W 2

(
Hp

H

b2

W 2

)2

. (112)

FIG. 9. Magnetization of a double-strip system obtained from nu-
merical evaluation (solid line) and from the analytic solutions (dashed
lines) for parameters w/s = 100 and s/d = 100. The expression in
Eq. (110) is applicable in the field range Hp � H � H |b1∼2s . It
turns out that the analytic approximation is accurate almost down
to Hp , where the magnetization is Mp = M(Hp); see Eq. (101).
For very large fields, H > H |b1∼2s , where the distance between
the dome boundary b1 and the sample edge s falls below s, the
magnetic response is well described by the asymptotic result in
Eq. (114). The dome reaches the edges at a distance d only when
H ∼ Hs � H |b1∼2s . Both approximations (110) and (114) are shown
in their domain of applicability.
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FIG. 10. The magnetic response of the double strip is shown
for different separation s (solid lines) and a fixed ratio w/d = 103.
For s larger or equal to d , we adopt the thin-strip approach of
Sec. II D, while for s < d (see top expansion), the determination of
the magnetization curves has to account for the finite thickness of the
strips as described in Sec. III. The magnetization Mp at the penetration
field Hp is largest for isolated strips (s/w → ∞) and reduces upon
decreasing s. The parametric curve (Hp,Mp) as a function of s is
indicated by the dotted line. In the limit s/w → 0 the slope of the
magnetization curve in the Meissner state doubles as compared to
that for isolated strips (s/w → ∞). The dashed line indicates the
magnetization of a single strip of width 2W , corresponding to s = 0.

To leading order in Hp/H we find

ν(H ) = W

s

(
Hp

H

b2

W 2

)2

(113)

and the magnetization reads

M(H ) = − H 2
s

4H
Wd. (114)

For the strongly penetrated double strip, when the current-
carrying regions are smaller than s but still wider than d, the
mutual influence of the two strips becomes negligible. The
magnetization (114) thus approaches that of two independent
single strips of width W each [see Eq. (56)]. The magnetization
as obtained from solving Eqs. (104) and (105) numerically is
shown in Fig. 10 for different gap width s.

Pushing the above “thin-strip” solution obtained for s � d

to the limit s = d, we find for the penetration field in Eq. (100)

Hp ≈ Hs

d

W
log (4W/d), (115)

which is substantially smaller than that of an isolated strip as
given in Eq. (51). Similarly, in this limit the magnetization as
approximated by Eq. (110) becomes

M(H ) = −Hs

4π
4Wd [log (4Hs/H ) − 1]. (116)

This expression is valid for fields up to H |b1∼2d ∼ Hs , where
the dome reaches the edges and is consistent with the limit
s ↗ d approaching the thickness d from below as discussed in
Sec. III below.

In order to understand the penetration mechanism in the
double strip for the full range of strip separations 2s, below we
extend our analysis to a system where the gap width 2s is much
smaller than the thickness d of the strips, s � d; see Sec. III.
Before doing that, we briefly elaborate on the corrections due
to the vortex structure in the dome.

3. Magnetization of the vortex dome

To estimate the quantitative effects arising from the currents
around the flux lines in the vortex dome, we give an upper
bound to the corrections of the magnetic response in Eqs. (110)
and (114). Following the analysis presented in Sec. II C 3, we
find an upper bound

δM <
H

4π

Hc1

Hc1 + H
2Wd (117)

for the magnetization corrections. In the regime s � W the
relative correction to the magnetic response is bounded by

δM

M
<

H

Hs

Hc1

Hc1 + H

√
d

4s

1

log(4Hs/H
√

d/s) − 1
(118)

in the low field range H < Hs

√
d/s [see Eq. (110)] and by

δM

M
<

H 2

H 2
s

Hc1

Hc1 + H

2

π
(119)

for higher fields field, H > Hs

√
d/s [see Eq. (114)]. The first

expression (118) is always small by the order d/s, while the
second expression (119) predicts small corrections ∝ (H/Hs)2

in the field range H � Hs , spanning the range of validity
for the results presented in this section. We conclude that
the corrections arising due to the vortex state inside the
superconducting strips are small, justifying the simplified
model for the penetrated state (μ = 1) used in our analysis.

III. STRIPS WITH FINITE THICKNESS d

A. Introduction

We now explore the double-strip geometry for narrow gaps
2s � d. In order to simplify our discussion, the penetration
depth λ is assumed to be negligible [31], λ � s. With the
gap width s the smallest geometric length and using d � w,
the results are presented to leading order in s/d and d/w,
respectively; in particular, the half-width W of the system is
approximated by the width 2w of one strip.

The solutions for infinitely thin strips derived in the previous
sections have been regularized near the sample edges with a
cutoff δ of the order of the thickness, δ ∼ d. This approach
is not appropriate anymore when the spacial solution near
(inside) the gap is determined by the length scale s rather than
d. The appropriate boundary conditions then have to be taken
into account on the entire rectangular cross section and the
strips cannot be treated as infinitely thin anymore.

The detailed derivation of the field distribution in the
vicinity of the narrow (2s) and elongated (d) gap (see Fig. 11)
presented in Sec. III B below will provide us with a uniform
field inside the gap of strength,

Bg = φg

2s
, (120)
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FIG. 11. Left panel: Field lines for the estuary problem (solid
lines in the ξ̃ plane) as calculated numerically from Eq. (125). Right
panel: The field lines of a point source in the upper half ζ plane from
which the estuary flow is derived via the inverse Schwarz-Christoffel
transformation ζ (ξ̃ ). The field lines of the estuary problem approach
that of a point source (dashed lines in the left panel) within a distance
s away from the opening.

where the flux φg through the gap has to be determined
consistently with the field distribution far away from the gap.
For distances s < |r| � w away from the upper (+) and lower
(−) gap opening, the field assumes the form of a monopole
with radial decay,

B(r) = ±φg

π

r
|r|2 . (121)

The corresponding result expressed through the holomorphic
field reads

B(ξ ) = i
φg

πξ
. (122)

In Sec. III C we find the field distribution far away from the
gap, match the far-field solution with the solution in the gap,
and thereby find the flux φg through the gap. Along with this
derivation, we will discuss the consequences on the double-
strip solution originating from the current and field distribution
in and around the gap.

B. Estuary problem

The field distribution inside the gap and near the opening at
ξout = 0 + id/2 is described by a so-called estuary flow, i.e.,
the flow into open space of an incompressible fluid leaving
a canal of width 2s and large (infinite) length d; see Fig. 11.
We define the shifted coordinate system ξ̃ = ξ − ξout centered
at the gap opening two-dimensional estuary geometry and
determine the holomorphic function B(ξ̃ ). For a diamagnetic
superconductor, the field component perpendicular to the
surface vanishes everywhere such that B(ξ̃ ) is purely real
(Bx = 0 and Bz �= 0) at the surfaces inside the gap (Re [ξ̃ ] =
±s, Im [ξ̃ ] < 0) and imaginary (Bx �= 0 and Bz = 0) on the
surfaces along x, i.e., for Im [ξ̃ ] = 0 and |Re [ξ̃ ]| � s.

This boundary value problem can be solved with the help
of a Schwarz-Christoffel transformation [32] describing a
biholomorphic mapping of the upper complex half plane ζ ,
Im [ζ ] � 0, onto the inner of a polygon. Indeed, the field-
allowed region in the estuary geometry is a special case of
an unbounded triangle (visualized in Figs. 12 and 13), with
vertices ξ̃v at −s, −i∞, and s and internal angles 3π/2, 0, and
3π/2. The corresponding Schwarz-Christoffel transformation

FIG. 12. Illustration of the stereographic projection of a (conven-
tional) triangle from the Euclidean plane (top left) to the Riemann
sphere (top right). Replacing one edge of this triangle by its
complement (passing through infinity) generates an unbound triangle.
This situation is illustrated both in the Euclidean plane (bottom
left) and on the Riemann sphere (bottom right) after a stereographic
projection.

takes the form

ξ̃ (ζ ) = s + 2

π

[√
ζ 2 − s2 − 2s arctan

√
ζ − s

ζ + s

]
(123)

and maps the upper half plane ζ (Fig. 11, right) to the estuary
plane ξ̃ (Fig. 11, left). The flux φg emanating from the vertex
at ξ̃v = −i∞ in the estuary is conserved in the transformation
Eq. (123) and maps to a point source of strength φg at ζ = 0,
with field lines dispersing into the upper half plane Im[ζ ] � 0.

FIG. 13. Visualization of the field-allowed region (light gray) of
the estuary geometry on the Riemann sphere (filled region) via a
stereographic projection. The triangular shape of the boundary of the
estuary, with vertices ξ̃v at ±s and −i∞, is clearly visible on the
Riemann sphere representation; see also Fig. 12. Here, the north pole
corresponds to the origin of the complex plane ξ̃ , while the complex
infinity is projected onto the south pole. A line in the original plane ξ̃

is mapped to a circle (passing through the south pole) on the Riemann
sphere.
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The complex potential [33]

�̄(ζ ) = iφg

π
log(ζ ) (124)

is generating the field B̄(ζ ) = d�̄/dζ = iφg/πζ of this point
source in the upper half plane. Transforming back to the estuary
geometry, the potential �(ξ̃ ) = �̄[ζ (ξ̃ )] generates the field

B(ξ̃ ) = d�

dξ̃
= iφg

2

1√
ζ (ξ̃ )2 − s2

. (125)

The last equality was obtained by using the Schwarz-
Christoffel transformation (123). Alternatively, the analysis
on the level of fields involves the solution B̄(ζ ) = iφg/πζ

for a point source and the transformation back involves an
additional derivative, B(ξ̃ ) = (dζ/dξ̃ )B̄[ζ (ξ̃ )]. In Fig. 11, we
show the resulting field lines of Eq. (125) as obtained from
inverting Eq. (123) numerically.

In our further discussion it is sufficient to determine the field
distribution in the asymptotic regimes where analytic results
are available. Deep inside the gap (− Im [ξ̃ ] � s) the inverse
of Eq. (123) takes the form

ζ (ξ̃ ) = 2s e−[iπ(ξ̃−1)/2s]−1 (126)

and, using Eq. (125), we find [up to corrections ∝ exp(πz̃/2s)]
a uniform field directed along z of strength

Bg = φg

2s
. (127)

Near the corner of the estuary, |ξ̃ − s| � s, the transformation
Eq. (123) reads

ξ̃ − s

2s
∼ 2

3π

(
ζ − s

2s

)3/2

(128)

and a similar expression is found near ξ̃ = −s. For both
corners, the holomorphic field (125) shows a power-law
singularity ∝ |ξ̃ ± s|−1/3, which will be regularized in a real
sample by the partial penetration (at a depth ∼s) of vortices
into the sample corners.

Far from the opening, |ξ̃ | � s and Im [ξ̃ ] � 0, the inverse
transform becomes ζ (ξ̃ ) = πξ̃/2 and the holomorphic func-
tion (125) assumes the limiting form

B(ξ̃ ) = i
φg

πξ̃
, (129)

describing a point source of strength φg located at ξ̃ = 0.

C. Narrow gap double strip

Away from the gap and from the outer strip edges, a
thin-strip description similar to the one discussed in Sec. II
is applicable, with the holomorphic field taking the form

B(ξ ) = H

√(
ξ 2 − b2

1

)(
ξ 2 − b2

2

)
ξ 2(ξ 2 − W 2)

. (130)

The factor ξ 2 in the denominator [replacing (ξ 2 − s2) in
Eq. (29)] captures the flux emanating from the pointlike source
as derived in Eq. (129). From the above expression, the field

distribution along the x axis is given by

Bz(x)

H
=

⎧⎨
⎩

√
(x2−b2

1)(b2
2−x2)

x2(W 2−x2) , for b1 � x � b2,√
(x2−b2

1)(x2−b2
2)

x2(x2−W 2) , for W � x.

(131)

Comparing Eqs. (129) and (130) in the regime |ξ | � b1, we
find the flux

φg = πb1b2

W
H (132)

and the uniform field strength (127) inside the gap |x| < s

takes the form

Bg = H
πW

2s

b1b2

W 2
. (133)

Note that for s � d � w, the difference between the shifted
coordinate ξ̃ and ξ is beyond our resolution such that ξ̃ = ξ .

The current contribution from the region away from the
gap is obtained from the holomorphic field in Eq. (130) via
Ampères law (26) and reads

I (x) =

⎧⎪⎪⎨
⎪⎪⎩

Hc
2π

√
(b2

1−x2)(b2
2−x2)

x2(W 2−x2) , s � |x| � b1,

−Hc
2π

√
(x2−b2

1)(x2−b2
2)

x2(W 2−x2) , b2 � |x| � W,

0, otherwise.

(134)

The 1/x dependence of the current is applicable only for |x| �
s. However, it turns out that the deviation of I (x) [as obtained
from solving Eq. (123) numerically] from 1/x is not relevant
for the further analysis, and the expression given above for the
sheet current density I (x) can be used down to |x| = s.

The homogeneous field (133) inside the gap is generated
by a screening current density

jg(x,|z| < d/2) = x

|x|
Bg c

4π
δ(|x| − s) (135)

flowing along y at the gap surfaces (x = ±s, |z| � d/2).
Here δ is the Dirac δ function, which accounts for the
assumption λ → 0. The two current channels at x = ±s

provide a significant contribution to the total current in the
strips. Note that these channels exist for s � d as well; for
large gaps their contribution to the total current is negligible,
though. To treat these currents on equal footing with the sheet
current flowing in the strips (s � x � W ) we define the sheet
current density for the gap currents

Ig(x) = x

|x|
Bgc

4π
d δ(|x| − s) (136)

by integrating Eq. (135) over the strip thickness d.
The currents flowing along the vertical surfaces at the outer

edges (|x| = W ) are parametrically smaller as compared to the
contributions near the gap (|x| = s) and are neglected here.
The two dominant current contributions then add up to the
total current, Itot(x) = I (x) + Ig(x). This current distribution,
when compared to the thin-strip case, corresponds to a
rearrangement of the current densities towards the inner edges
of the strips, see Fig. 14.

The diamagnetic contribution from the current I (x) in the
strip,

M(H ) = −H

4

(
W 2 − b2

1 − b2
2

)
, (137)
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FIG. 14. Dimensionless current 2πI (x)/Hc (thick solid line) and
reduced magnetic field Bz(x)/H (dashed line) as a function of x and
for z = 0 in a double strip in the Meissner state. The profiles are
calculated for the case s � d � 2w with the parameters w/d =
d/s = 100. The current profile inside the strips changes sign at ±b,
with |b| ≈ 0.21w. The additional current Ig(x) from Eq. (136) flowing
near the inner edges of the strips changes the condition of zero net
current (143) dramatically. The thin lines show the current and field
profiles of the double strip in the thin-strip limit, d/s → 0, for fixed
s = 10−4w.

as obtained from evaluating Eq. (42) with the field (130),
is parametrically larger (∝ W/d) than the paramagnetic
contribution

Mg(H ) = H

4
W 2 b1b2d

W 3
(138)

from the current Ig(x) along the gap surface and we neglect
the latter in the following. The problem is then, once again,
reduced to finding the parameters b1 and b2 within the Meissner
and penetrated states.

1. Meissner state

In the Meissner state were b1 = b2 = b, the field Bz

[Eq. (130)] along the x axis simplifies to

Bz(x) = H
x2 − b2

|x|√x2 − W 2
(139)

for |x| > W and is constant [Eq. (133)],

Bg = Hπ
b2

2sW
, (140)

inside the gap (|x| < s). The total sheet current density reads

Itot(x) = −Hc

2π

[
x2 − b2

x
√

W 2 − x2
− x

|x|
πb2

4sW
d δ(|x| − s)

]
(141)

and the general expression (137) for the magnetization takes
the form

M(H ) = −H

4
(W 2 − 2b2). (142)

The value of the parameter b is fixed by the constraint of
vanishing net current given as∫ W

s

dx x√
W 2 − x2

= b2

[
πd

4sW
+

∫ W

s

dx

x
√

W 2 − x2

]
. (143)

FIG. 15. The parameter b characterizing the Meissner phase of
the double strip is plotted against the half-width s of the gap between
the strips. All lengths are normalized to the half-width w of the strips.
The fixed strip thickness d = 10−3w separates two regimes; in the
thin-strip regime d � s, b depends on s via Eq. (91). For s � d ,
b(s) is given through Eq. (144). In between, i.e., for s ∼ d , a smooth
crossover (dashed line) connects the two limits. In both far asymptotic
limits s ≪ d and s ≫ d , the position b(s) follows a simple behavior
b(s) = 2w

√
4s/πd and b(s) = w + s, respectively (thin lines).

The above integrals simplify in the limit s � W and the
parameter b takes the asymptotic form

b2 = W 2

πd/4s + log(2W/s)
. (144)

In contrast to the result for thin strips [see Eq. (92)], where
b2 changes logarithmically with s, in the present case the
dependence on s is dominated by the linear term d/s in
the denominator. As a result, the parameter b is substantially
reduced when s � d, see Fig. 15, which is due to the additional
currents Ig flowing at the (vertical) gap surface and producing
a substantial rearrangement of the overall current density as
shown in Fig. 14.

We note that the numerical factor π/4 of the term d/s

in the above expression is precisely known since it derives
from the current Ig(x) originating from screening the uniform
field inside the gap, Eq. (136). The prefactor under the
logarithm, however, will be modified if the field distribution
at the opening of the estuary is accurately taken into account.
Indeed, approaching the corner (s,d/2) from both surfaces
(x,d/2) and (s,z) the field deviates from the assumed behavior
Bx(x) ∝ 1/x and Bz(z) = const [following from Eqs. (130)
and (133), respectively]. The precise field distribution (and its
related current profile) can be derived by solving Eq. (123)
numerically and inserting the result into Eq. (125). Neglecting
partial penetration of the edge corners, Eq. (144) will be
modified to

b2 = W 2

πd/4s + log(2.38W/s)
. (145)

Since the precision of this expression also suffers from
corrections (e.g., from partial penetration of the edge corners),
we will use the relation (144) in the following.

The diamagnetic response in the Meissner phase follows
from (142) and reduces to

M(H ) ≈ −H

4
W 2

[
1 − 8s/πd

1 + (4s/πd) log(2W/s)

]
. (146)
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This result approaches that of a single strip of double width
[cf. Eq. (50) with w → W ] upon reducing s far below d.

Using Eq. (144) in the expression (132) for the flux through
the gap, we find that

φg = H2W
2s/d

1 + (4s/πd) log(2W/s)
(147)

shrinks (up to logarithmic corrections) linearly with decreasing
s (note that b1b2 = b2). Compared to the blocked flux φb ≈
H 2W , only a small fraction ∼2s/d passes through the narrow
gap of width 2s and length d. Consequently, the field strength
inside the gap,

Bg = H
2W

d

1

1 + (4s/πd) log(2W/s)
, (148)

does not diverge for s/d → 0 but saturates at H 2W/d.
As the field profile inside the gap from where vortices

start penetrating the sample is precisely known, the present
penetration process is more accurately described than the one
for the thin-strip limit where the strips are separated by a
distance larger than d. Corrections originating from the precise
field distribution near the opening of the estuary affect the
results only to the next-to-leading order.

As before, the penetration starts when the field inside the
gap reaches the strength Hs , i.e., at the penetration field,

Hp = Hs

2s

πW

W 2

b2
= Hs

d

2W

[
1 + 4s

πd
log

(
2W

s

)]
. (149)

In the limit s/d → 0, the penetration field asymptotically
reaches the value Hsd/2W , that is the penetration field of the
elliptic strip, cf. Eq. (15). The retardation of field penetration
originating from the geometrical barrier has completely disap-
peared in this limit. At penetration, H = Hp, the diamagnetic
response

Mp = −Hs

16
(2Wd)

{
1 + 2s

πd

[
2 log

(
2W

s

)
− 1

]}
(150)

= −Hp

4
W 2

[
1 − 8s/πd

1 + (4s/πd) log(2W/s)

]
, (151)

has collapsed by a factor ∼(d/W )1/2 as compared to that of a
single strip, Eq. (52), for which the geometrical barrier is fully
active. This so-called “suppression of the geometrical barrier,”
the collapse of Hp and of M(H ), is a central result of this work.
Although in the limiting case s/d → 0, the Meissner response
and the field of first penetration coincide with that of an
elliptically shaped strip, beyond Hp, the magnetic signatures
of the double strip still differs substantially from those of the
elliptic sample, see Figs. 16 and 17 as well as the discussion
below.

Upon decreasing the gap width s, the penetration field Hp is
reduced, which leads to a stronger suppression of the geomet-
rical barrier as follows from Eq. (35). The calculation of the
equilibrium field defined through Eq. (36) provides the result

Heq = Hc1
d

2W

[
1 − log(W 2/b2) − 1

πd/2s + log(4W 2/s2)

]−1

, (152)

FIG. 16. The diamagnetic response M(H ) (solid line) for the
double strip in the limit s � d � w (here w/d = d/s = 100) as
obtained from solving Eqs. (155) and (156) numerically. In addition,
the dotted (dashed) line shows the analytic result for the magnetization
M(H ) = −Hν(H )W 2/4, where ν(H ) is obtained from solving
Eq. (158) to linear (quadratic) order in Hp/H ; see Eq. (159). It
is necessary to express the solution to second order in Hp/H as
the first-order solution gives only poor results close to Hp . The
magnetization of a single elliptic strip of width 2W and thickness
d (long thin dashes) is reversible and with linear slope beyond Hp (as
also shown in Fig. 4).

approaching Hc1d/2W and the corresponding geometrical
barrier height (37) vanishes as s log(s),

U
eq
b

εld
= 1 −

{
1 + 2s

πd
[log(4b2/s2) − 1]

}−1

(153)

≈ 2s

πd
[log(16W 2/πsd) − 1], (154)

where we have assumed that s log(W/s) � d for the last
equality.

2. Penetrated state

The field and current distributions Eqs. (130) and (133)
and Eqs. (134) and (136) describe the penetrated state once
the parameters b1 and b2 have been found; the latter have
to respect the limits b1 − s � s and W − b2 � d and are
determined by the usual conditions governing the evolution
of the vortex dome, the vanishing of the total currents in the

FIG. 17. Numerical solution for the magnetization of the de-
scending branch for narrow gaps s � d . The two conditions of
vanishing net current and conserved trapped flux is solved for H� =
nHp (with integer 2 � n � 5). Parameters are w/d = d/s = 100.
The analytic result (172) (dashed lines) as obtained from an expansion
close to H = H� gives a reasonable description of the numerical
solution over a wide field range.
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strips, ∫ b1

s−
dx Itot(x) +

∫ W

b2

dx Itot(x) = 0 (155)

and the condition of criticality at the edge regulating the vortex
entrance, here Bg = Hs . The latter condition is equivalent to
the requirement that the flux φg in (132) saturates at Hs2s, or

b1b2

b2
= Hp

H
, (156)

as expressed through the penetration field Hp and the zero-
current position b of the Meissner state.

As before, the perturbative calculation around the pen-
etration field Hp is very limited due to the rapid growth
of the dome width b2 − b1 beyond Hp and we concentrate
on the high-field expansion where the vortex domes occupy
a large fraction of the strips b1 � b2, providing results over
a large field range. The two conditions regulating the dome
evolution then can be simplified and an analytic solution can
be given. With the ansatz b2 = W (1 − ν)1/2 with ν < 1, the
inner dome edge

b1 = b2

W

Hp

H

1√
1 − ν

(157)

is expressed through ν with the help of Eq. (156). Assuming
s � b1 and b1 � b2, the requirement of vanishing net current
in Eq. (155) simplifies to

Hp

H

b2

W 2

[
W 2

b2
+ log

(
b2

W 2

Hp

H

1√
1 − ν

)
− 1

]

= E(
√

ν) − (1 − ν) K(
√

ν). (158)

For large fields H � Hp, where ν is small, the above equation
can be expanded in ν. Solving for ν(H ) to second order in
Hp/H , we obtain

ν(H ) ≈ 4

π

Hp

H

{
1 + b2

W 2

[
log

(
b2

W 2

Hp

H

)
− 1

]}

− 2

π2

H 2
p

H 2

{
1 + b2

W 2

[
log

(
b2

W 2

Hp

H

)
− 1

]}2

+ 8

π2

H 2
p

H 2

b2

W 2

{
1 + b2

W 2

[
log

(
b2

W 2

Hp

H

)
− 1

]}
.

(159)

The magnetic response given in Eq. (137) simplifies to
M(H ) = −Hν(H )W 2/4 and Fig. 16 shows the result of
combining this expression with ν(H ) from Eq. (159). Although
the range of applicability Hp � H of the above expression
does not a priori cover the regime near penetration, the results
are still in good agreement with the numerical solution down
to H ≈ Hp. Numerical solutions of the magnetization curves
for different gap width s are shown in Fig. 10.

Neglecting irrelevant terms of order (b/W )2(Hp/H )2 and
higher in Eq. (159), the magnetization reads

M(H ) ≈ M̄

{
1 + b2

W 2

[
log

(
b2

W 2

Hp

H

)
− 1

]
− 1

2π

Hp

H

}
,

(160)

with M̄ = −HpW 2/π . In contrast to the thin-strip case [see
Eq. (110)], where the magnetization depends logarithmically
∝ log (Hs/H ) on the applied field, the magnetic response in the
present limit is dominated by a field-independent contribution,

M̄ ≈ −Hp

π
W 2 ≈ −Hs

4π
2Wd, (161)

producing an almost flat magnetization. This flatness is the
result of the particular current distribution inside the strips:
The current flowing close to the inner edge is dominated by
the contribution Ig(x) from the gap, i.e.,

∫ b1

s−
dx Itot(x) ≈

∫ s+

s−
dx Ig(x) = Hsc

4π
d. (162)

To satisfy the condition (155) of vanishing net current, the
current density I (x) between b2 and W has to compensate the
gap contribution, leading to

∫ W

b2

dx Itot(x) ≈ −Hsc

4π
d. (163)

Once the dome occupies a large fraction of the sample, these
currents flow at the outer edge, i.e., a distance ∼W away from
the origin and produce the dominant (field-independent) con-
tribution −Hs(2Wd)/4π [cf. Eq. (161)] to the magnetization
at large fields (the factor 2 originates from the integration over
both strips). Note that in the limit s/d → 0, the leveling out of
the magnetization at the value given in Eq. (161) is by a factor
4/π larger than its value at penetration Hp [see Eq. (150)].

Although almost constant, the magnetization (160) assumes
a maximal diamagnetic signal,

M(Hm) = M̄

{
1 + 4s

πd

[
log

(
32s2

πd2

)
− 2

]}
, (164)

at the applied field,

Hm ≈ Hp

d

8s
≈ Hs

16

d2

sW
. (165)

For s/d � d/16W , the diamagnetic response monotonically
increases up to H ∼ Hs . On the other hand, we may extrapolate
the expression (165) to s � d and predict a value of the gap
parameter s ∼ d/8, where Hm merges with the penetration
field Hp upon increasing s. The “flatness” of the magnetization
curve in the penetrated state is quantified by relating the slope
M ′(H ) [as obtained from Eq. (160)] to the Meissner slope
−W 2/4, yielding

−4M ′(H )

W 2
= 2

π2

(
H 2

p

H 2
− 8s

d

Hp

H

)
� 1. (166)
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As for thin strips and wide gaps (see Sec. II D 2), we can
push the results obtained in the limit s � d to the extreme case
s → d. The penetration field

Hp ≈ Hs

d

2W

[
1 + 4

π
log

(
2W

d

)]
(167)

as obtained from Eq. (149) with s = d, agrees up to numbers
of order unity with the result obtained from the opposite limit
s � d, see Eq. (115). Taking the limit s → d from the regime
of small gaps s � d, the magnetization is dominated by the
first term in Eq. (159) and simplifies to

M(H ) ≈ −Hs

4π
(4Wd)

[
2

π
log

(
4Hs

πH

)
+ 4 − π

2π

]
. (168)

This expression agrees well with the corresponding ex-
pression (116) obtained in the limit s ↘ d approaching the
thickness d from above.

Although the penetration field (149) asymptotically
(s/d → 0) approaches the equilibrium field (152), a finite irre-
versibility persists and the geometric barrier rapidly reappears
upon reducing the applied field. Upon decreasing the magnetic
field from a maximal value H�, the vortex dome expands while
keeping the trapped flux constant,

φd (H ) ≡
∫ b2

b1

dx H

√(
x2 − b2

1

)(
b2

2 − x2
)

x2(W 2 − x2)
= φ�

d, (169)

where φ�
d = φd (H�). This constraint for the decreasing field

replaces the constraint Bg = Hs for the increasing field.
Excluding a narrow field range H� � Hp, the dome extends
over a large fraction of the sample and the constraint of
conserved trapped flux can be simplified under the assumptions
b1 � b2 and W − b2 � W to read

HW

{
1 − ν

4
[log(16/ν) + 1]

}
= φ�

d, (170)

where we used ν(H ) = 1 − [b2(H )/W ]2 � 1 as before. Sim-
ilar to the single-strip calculations [see Eq. (72)], the slope of
the magnetic response M(H ) = −Hν(H )W 2/4 is given by

dM

dH
= −W 2

4

4 − ν

log(16/ν)
, (171)

which is numerically close to that of the Meissner phase
(−W 2/4). At the onset of the descending branch, i.e., H� −
H � H�, we find an analytic expression for the magnetization
of the form

M(H ) = M(H�) − H − H�

4
W 2 4 − ν�

log(16/ν�)
, (172)

where ν� = ν(H�) is obtained from Eq. (159). The above
expression and the result of an exact numerical calculation
of the magnetization are shown in Fig. 17.

3. Magnetization of the vortex dome

In the limit s � d, the diamagnetic response of the double
strip is flat and small by the factor ∼√

d/W as compared
to the single strip at Hp; hence, we should verify that the

magnetic response of the vortex state in the flux-filled region
does not substantially alter the above results. Following again
the analysis discussed earlier in Sec. II C 3, the corrections to
the magnetic response (161) are bounded from above by the
function

δM <
H

4π

Hc1

Hc1 + H
2Wd (173)

leading to relative corrections

δM

M
<

H

Hs

Hc1

Hc1 + H

4

π
(174)

that are small as long as H � Hs . Without surface barrier,
Hs = Hc1, the corrections become of order unity only when
H ∼ Hc1. On the other hand, for a large surface barrier Hs �
Hc1, the corrections remain small when H ∼ Hs . We conclude
that the contribution of the equilibrium magnetization of the
Shubnikov state to the overall magnetization of the double-
strip geometry (with s � d � w) is small and can, in most
cases, be neglected in the entire field range H < Hc1.

IV. SEVERAL STRIPS

So far, we have given a detailed description of the single-
and double-strip geometries. A discussion of three coplanar
strips will reveal additional features as compared to the
previous systems and allows for a qualitative understanding of
the response of a system of a finite number n � 3 of coplanar
strips in a parallel arrangement.

The general holomorphic field for n (n � 1) parallel strips
arranged symmetrically around the origin ξ = 0 assumes the
form

B(ξ ) = H

√√√√∏
i

ξ 2 − b2
i (H )

ξ 2 − e2
i

, (175)

where ±ei denote the strip edges and the parameters bi(H )
define the boundaries of the vortex states. For an even number
n = 2m of strips, the kth strip (0 < k � m) as counted along
the positive x axis ranges from e2k−1 to e2k and vortices fill the
region b2k−1 to b2k . Every strip has a symmetric counterpart
on the negative x axis. For an odd number n = 2m + 1 of
strips, the above remains unchanged except for an additional
innermost strip ranging from −e0 to e0 with a dome between
−b0 and b0. The product in Eq. (175) runs from 1 to n (from
0 to n − 1) for the even- (odd-) numbered configurations. The
expressions (28) and (29) are special cases for the single-
and double-strip geometries. The magnetization of the n-strip
system as obtained from Eq. (42) reads

M(H ) = −H

4

∑
i

(
e2
i − b2

i

)
. (176)

In this section, we consider strips of equal width 2w and
separated by a gap 2s. We also limit the analysis to the thin-strip
case, i.e., the thickness d of the strips is the smallest of all
geometric lengths.
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A. Three strips

The holomorphic field for three parallel strips reads

B(ξ ) = H

√[
ξ 2 − b2

0(H )
][

ξ 2 − b2
1(H )

][
ξ 2 − b2

2(H )
]

(
ξ 2 − e2

0

)(
ξ 2 − e2

1

)(
ξ 2 − e2

2

) ,

(177)

with e0 = w, e1 = w + 2s, and e2 = 3w + 2s.

1. Meissner state

For small fields, where the entire system is in the Meissner
state, i.e., no vortices have penetrated in either of the strips,
the holomorphic field reduces to

B(ξ ) = H

√
ξ 2(ξ 2 − b2)2(

ξ 2 − e2
0

)(
ξ 2 − e2

1

)(
ξ 2 − e2

2

) , (178)

where the remaining parameter b (= b1 = b2, note that b0 = 0)
is determined from requiring a vanishing total current in the
outer strip pair,∫ e2

e1

dx x b2√(
x2 − e2

0

)(
x2 − e2

1

)(
e2

2 − x2
)

=
∫ e2

e1

dx x3√(
x2 − e2

0

)(
x2 − e2

1

)(
e2

2 − x2
) . (179)

With the substitution x2 → e2
1 + (e2

2 − e2
1)t2 the solution can

formally be expressed through

b2 = e2
0 + (

e2
1 − e2

0

) E(κ)

K(κ)
, (180)

where the elliptic integrals, defined in Eqs. (60)
and (61), are evaluated at the imaginary argument κ =√

(e2
2 − e2

1)/(e2
0 − e2

1), κ2 < 0. In two asymptotic regimes the
above result simplifies to

b2 �
{

4(w + s)2 for s � w,

w2
[
1 + 16

log (32w/s)

]
for s � w.

(181)

The first limit (s � w) describes three almost isolated strips,
while in the latter case of nearby strips with s � w a
logarithmic dependence of b on s shows up, analogous to
the expression (92) for two strips. Focusing on the regime of
nearby strips s � w, we find that the flux

φg =
∫ e1

e0

dx Bz(x) ≈ H6w
π

√
2

3

1

log (32w/s)
(182)

passing through each of the two gaps carries a substantial
fraction of the flux φb = H6w that is blocked by the strips.
The field enhancement ∼H

√
w2/sd at the strip edges e0 and

e1 [see Eq. (178)] is found to be parametrically ∼√
w/s larger

than at the outermost edge e2. A more detailed calculation
reveals that the field strength is largest near e0, followed by a
slightly lower field near e1,

Bz(e1 − d/2)

Bz(e0 + d/2)
= 1 − 21w2 − 5b2

b2 − w2

s

4w
. (183)

We conclude that the critical field Hs [as discussed in Eq. (34)]
is first reached at the edges ±e0 (strip index k = 0) where the
field enhancement is most pronounced. Thus, the geometrical
barrier is first suppressed in the central strip and vortices start
to penetrate the innermost strip beyond

Hk=0
p ≈ Hs

√
sd

8w2
log(32w/s). (184)

This critical field is parametrically similar to the field of first
penetration of the double-strip geometry; see Eq. (100).

2. Penetrated state(s)

In general, for a multiple-strip geometry, the strips are
not equivalent and the penetration of vortices starts at a
different field value for each strip. The penetration sequence
may depend on the geometrical setup as well as on the
boundary condition at y → ±∞ (shunted vs. unshunted ends).
In particular, we shall compare our results to the findings by
Mawatari et al., who considered a system of three shunted
strips in Ref. [21]. As the external field H increases beyond
Hk=0

p , vortices populate the innermost strip (b0 �= 0), while the
two other strips remain free of flux (b1 = b2 = b). The field
distribution then is given by

B(ξ ) = H

√ (
ξ 2 − b2

0

)
(ξ 2 − b2)2(

ξ 2 − e2
0

)(
ξ 2 − e2

1

)(
ξ 2 − e2

2

) , (185)

where the two parameters b0 and b (now both depending on
H ) are fixed by the constraints of critical field strength Hs near
the edge e0 and vanishing net current∫ e2

e1

dx I (x) = 0 (186)

in the outer strips. The outer strip pair will first be penetrated
by vortices only at a higher field Hk=1

p , where a critical field
strength Hs is reached at the edge e1. At this particular field,
the requirement that the field strength is critical at both edges
e0 and e1 while the outer dome has not yet developed (b1 =
b2 = b) gives a relation between b0 and b of the form

b2
0 = w2

[
1 − 8(b2 − w2)

16w2 + 5(b2 − w2)

]
. (187)

Inserting this relation b0(b) into the constraint (186) of
vanishing net current in the outer strip fixes the last degree
of freedom b and permits to express the second penetration
field through

Hk=1
p = Hs

√
32w4sd

[w2 − b0(b)2](b2 − w2)2
. (188)

Solving Eqs. (186) and (187) numerically, we show the
results for the two penetration fields Hk=0

p and Hk=1
p in Fig. 18.

Using the same numerical solution, we visualize in Fig. 19 the
dome boundaries b0 and b within the strips at the first (second)
penetration field Hk=0

p (Hk=1
p ) for different values of the gap

width 2s. We observe that b(H ) changes only little between
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FIG. 18. Penetration fields Hk=0
p (dotted) and Hk=1

p (dashed) as a
function of s/w for a system of three coplanar superconducting strips.
The vertical scale is fixed by the specific choice of the ratio d/w. The
position of the parameters b0 and b = b1 = b2 corresponding to these
two penetration fields is shown in Fig. 19.

Hk=0
p and Hk=1

p . This finding allows us to give an estimate
for Hk=1

p ; indeed, inserting b(Hk=1
p ) ≈ b(Hk=0

p ) in Eq. (188)
where b(Hk=0

p ) is taken from Eq. (181), we find

Hk=1
p

Hk=0
p

≈
√

w2

w2−b0(b)2 ≈
√

5+log(32w/s)
8 . (189)

Beyond Hk=1
p , all three strips are penetrated, and the dome

widths are determined by the restriction of no net current in
the outer strips and the two critical field conditions at the edges
e0 and e1. Note, that the central strip is penetrated from both
edges while the strips of the pair k = 1 are penetrated from
the inner edges ±e1 only.

The order in which the strips are populated with vortices
depends on the specification of the problem. Indeed, if the
same geometrical configuration was shunted at both ends (y →
±∞), as considered in Ref. [21], the outer strip pair would be
populated by vortices from ±e2, while the innermost strip
remains free of flux until much higher fields.

FIG. 19. Position of the vortex dome boundaries b0 and b = b1 =
b2 of the three-strip system at the penetration fields Hk=0

p (dotted
lines) and Hk=1

p (dashed lines) (see also Fig. 18) as a function of s/w.
The strip areas along the positive x axis are indicated in gray. For
H � Hk=0

p , the system is described by one nonvanishing parameter
b (b0 = 0); its dependence on s is shown as a dotted line. Increasing
H beyond Hk=0

p , a vortex dome forms in the innermost strip (0 <

b0 < w) reaching a finite width at the second penetration field Hk=1
p

(dashed line). For that field, the position b has shifted towards the
center of the outer strip 2w + 2s (dashed line). Beyond Hk=1

p , a pair
of domes forms in the two outer strips (b1 �= b2, not shown here).

B. Many strips: General picture

For any finite number of unshunted strips, the field
enhancement in the Meissner state is strongest at the innermost
edges, i.e., the inner edges at ±e1 for an even number of
strips and the two edges at ±e0 of the central strip for an odd
number of strips (the only case where a strip is penetrated from
both sides). Subsequently, the strips are always penetrated
asymmetrically from the inner edges. Specifically, when the
applied field is raised beyond the first penetration field, vortices
start to populate the innermost strip(s) through the respective
edges, while all other strips are still free of flux. Under further
increase of H , the critical field strength Hs is successively
reached at the inner strip edges e2k−1 and vortices penetrate the
strip pair k, when H > Hk

p , with Hk
p > Hk−1

p , with k starting
from 1 (2) in the case of an odd (even) number of strips. In
the limit of a large number of strips, the field strengths in the
different gaps are almost the same, such that vortex penetration
starts within a narrow field range in all the strips.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the magnetic response of
(two) aligned superconducting strips subject to a perpendicular
magnetic field H . The penetration of vortices in these systems
is dominated by a macroscopic energy barrier, the so-called
geometrical barrier. We have found that a narrow slit between
the strips completely suppresses this geometrical barrier as
manifested in an early field penetration and the collapse of
the hysteretic magnetization loop. We have compared the
results for a pair of rectangular (platelet shaped) strips to
those of various other shapes and geometries. Of particular
interest is the comparison with a single elliptic strip, i.e.,
the generic shape defining demagnetization effects, and a
single platelet strip, the simplest system exhibiting a geometric
barrier. In the elliptic case, vortices penetrate the sample above
a field Hp = Hsd/2w (Hc1 � Hs < Hc), distribute uniformly
inside the sample, and produce a reversible response (in the
absence of a surface barrier). The penetration of vortices
in a platelet sample is impeded by a geometrical energy
barrier (and potentially an additional surface barrier) at the
sample edges, Hp = Hs

√
d/w. Once this barrier is overcome,

vortices occupy a finite region inside the sample (vortex dome),
while the rest carries the diamagnetic shielding currents. Upon
decreasing the applied field, the strip shows a irreversible
response, where the penetrated flux is trapped inside the sample
until the vortex dome expands to the sample edges. These
qualitative features remain valid for an array of rectangular
strips.

The attention of the present work has mainly focused on
the double strip. In the regime of a small gap parameter
s � w, where the strip system is equivalent to a single strip
of width 2W = 4w + 2s cut in half by a narrow gap, the
geometrical barrier is overcome at much lower applied fields
H . When d is the smallest geometric length, the situation still
resembles the one of the single strip; modifications concern the
field of first penetration, Hp = Hs

√
d/W [

√
s/W log(4W/s)],

the exclusive penetration from the inner edges, and the
asymmetric shape of the vortex domes leaning towards the
gap. When the gap width 2s drops below the thickness d,
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the currents rearrange strongly, piling up at the inner surfaces
and channeling a larger field through the central opening.
In the limit s/d → 0, the geometrical barrier is maximally
suppressed and the penetration field Hp = Hsd/2W of the
double strip coincides with that of a single ellipse with
aspect ratio d/2W . In contrast to the previously discussed
cases where the magnetization decreases beyond penetration,
here the magnetic response levels off at the magnitude M =
HsWd/2π , a factor 4/π above the magnetization at the
penetration field.

In order to study the irreversibility due to the geometric
barrier, we have examined the descending branch in the
magnetization upon reduction of the field. Remarkably, our
analytic results show that the initial slope of the descending
branch is close to the Meissner response, with a correction
factor approaching unity when the reversing field approaches
Hp from above; reversing the field at larger H , the Meissner
slope is changed by a factor (4 − ν)/ log(16/ν), where ν

depends only on the point (H,M) where the slope is evaluated,
ν = −4M/Hw2. Surprisingly, the correction factor remains
close to unity over a wide range of ν < 1. The latter result
is equally valid for both the single and narrow-gap (s � d)
double strip.

In addition, we have examined the influence of the vortex
currents in the Shubnikov phase; while our complex-analysis
approach describes the vortex-phase in terms of a nonmagnetic
medium, it intrinsically exhibits a finite magnetic response.
We have shown that the magnetization due to the structure of
the vortex state in the dome remains small within the region
H < Hs where our analysis is valid. Finally, we have extended
our analysis to n (� 3) strips and have given a qualitative
discussion of the field penetration for this more complex
geometry.

The suppression of the geometrical barrier can be beneficial
in many circumstances, as the hysteretic behavior due to
geometrical effects often obscures other interesting physical
phenomena. For example, this has been the case in the iden-
tification of the vortex-lattice melting-transition in platelet-
shaped layered BiSCCO samples, where the irreversibility
line potentially interferes with the first-order melting line:
Polishing the sample into a prism shape, the geometrical

barrier could be suppressed, which has allowed to demonstrate
experimentally that melting and irreversibility are uncorrelated
phenomena [6]. Another example is the competition between
bulk pinning of vortices and pinning due to surface- and shape
effects as analyzed in the present work: Again, the suppression
of the geometrical barrier provides access to an unambiguous
study of bulk pinning phenomena. In evaluating different
means to suppress the geometrical barrier, the generation of a
simple gap or crack in the sample appears as a rather simple
alternative. Recently, the suppression of geometrical barriers in
platelet BiSCCO samples has also been observed when tilting
the magnetic field [7]. This finding has been related to the
appearance of Josephson vortex stacks due to the parallel field
component weakening the superconductor and channeling the
perpendicular component of the magnetic field into the sample.
Relating our present study to this experiment, we have modeled
a stack of Josephson vortices by a sample crack (of width 2s)
and observe a similar suppression of the geometrical barrier.

Another topic where the suppression of geometrical barriers
is advantageous is the generation of low-density vortex states,
which are difficult to realize in bulk samples due to the
rapid accumulation of vortices when increasing H beyond
Hs . In elliptic samples, low vortex densities of the order
of Hp/�0 ∼ Hs(d/w)/�0 could be achieved; however, it
appears difficult to fabricate samples with this shape. In a
realistic platelet-shape sample, typical vortex densities are
larger, of order Hs

√
d/w/�0. Introducing a narrow gap in

the sample suppresses the geometrical barrier and low vortex
densities Hs(d/w)�0 can be reached.

Further possible applications of the narrow-gap double strip
include the lensing of magnetic fields near the gap, which
may be useful for focusing weak magnetic signals. Finally,
the analysis and results discussed in this paper may be of
relevance in the design of superconducting atom chips for the
manipulation of ultracold atoms [34].
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