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Skyrmions induced by dissipationless drag in U(1)×U(1) superconductors
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Rather generically, multicomponent superconductors and superfluids have intercomponent current-current
interaction. We show that in superconductors with substantially strong intercomponent drag interaction, the
topological defects which form in an external field are characterized by a skyrmionic topological charge. We then
demonstrate that they can be distinguished from ordinary vortex matter by a very characteristic magnetization
process due to the dipolar nature of inter-skyrmion forces. The results provide an experimental signature to
confirm or rule out the formation p-wave state with reduced spin stiffness in p-wave superconductors.
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In multicomponent superconductors and superfluids, the
intercomponent current-current interaction is rather generic. It
usually assumes the form of the scalar product of supercurrents
in the two components Fd ∝ J1 · J2. This kind of interaction
between components can have various microscopic origins.
It was discussed in connection with 3He-4He mixtures [1],
components of order parameters of spin-triplet superfluids and
superconductors [2–5], hadronic superfluids in neutron stars
[6–10], metallic hydrogen and deuterium [11,12], ultracold
atomic mixtures [13,14], and strongly correlated atomic
mixtures in optical lattices [15]. In the latter case, it was
shown that it could be tuned to have arbitrary strength (in
relative units) [15]. This kind of interaction for example affects
rotational response of neutron stars [8] and phase transitions,
phase diagrams, and rotational response of superfluid mixtures
[12,16–21]. Despite the generic character of such interaction,
much less is known about its effect on the properties of
topological excitations and magnetic response, beyond the
simplest London approximation. In particular, little is known
about collective properties of such defects. Here, we address
this problem. We show that beyond a certain interaction
threshold, the topological defects in the system acquire a
skyrmionic topological charge. This results in long-range
inter-skyrmion forces which alter dramatically the collective
behavior of vortex matter.

Note that current-current interaction is fourth order in
the order parameters densities and second order in their
derivatives. Importantly, it is not positively defined. Because
the total free energy is positively defined, the drag term
should come with other high-power terms consistent with
the U(1) × U(1) symmetry. Details of the model and how it
relates to usual London models are discussed in Appendix A.
The precise form of these terms is not principally important
for the purpose of this work, so we investigate a minimal
Ginzburg-Landau (GL) model, which is positively defined and
has the correct London limit [1]
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Here, ψa = |ψa|eiϕa are complex fields representing the in-
dependently conserved superconducting condensates denoted
by indices a = 1,2. The term (1b) contains the intercomponent
current interaction as well as higher-order terms which makes
the free energy bounded from below. Aside from the drag
interaction, the condensates are coupled by electromagnetic
interactions in the kinetic terms D = ∇ + ieA. We set the
Cooper-pair charge as twice the electronic charge, then in these
units the coupling constant e parametrizes the London penetra-
tion length of the magnetic field B = ∇ × A, and the supercur-
rent reads as J ≡ �a Ja = [1 + ν�b|ψb|2]�aIm(ψ∗

a Dψa).
In connection with spin-triplet systems, such models are
discussed in the situations where the variations of the relative
phase ϕ2 − ϕ1 of the condensates variations are associated
with spin degrees of freedom. The drag interaction is then
associated with the spin stiffness [2,3].

In this work, we consider a two-dimensional model. The
discussions thus also apply to three-dimensional systems in-
variant along the direction normal to the plane. The elementary
topological excitations of the model are fractional vortices.
These are field configurations with a 2π phase winding only
in one phase (e.g., ϕ1 has

∮ ∇ϕ1 = 2π winding while
∮ ∇ϕ2 =

0). A fractional vortex in the a condensate carries a fraction
of flux quantum 	a = ∮
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the flux quantum 	0 = 2π/e and the total superfluid density

2 = �a|ψa|2. Note that this flux quantization is the same as in
two-component superconductors without drag [22]. Fractional
vortices have logarithmically divergent energy. However, a
composite vortex being the bound state of fractional vortices
in both condensates (each phase ϕa winds 2π ) has finite energy
and carries an integer flux [22] (see details of the derivation
in Appendix A). In the London limit of a U(1) × U(1)
superconductor, fractional vortices can be described by point-
like particles interacting through logarithmic two-dimensional
Coulomb and Yukawa interactions, which read in the general
case (see details of the derivation in Appendix A) as
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FIG. 1. (Color online) A bound state of fractional vortices with e = 0.2 and the potential parameters (αa,βa) = (−3.0,1.0). The drag
coupling is ν = 2.0. Displayed quantities are the magnetic flux (a) and the densities of superconducting condensate |ψ1|2 (b) and |ψ2|2 (c). (d)
Shows the phase difference ϕ2 − ϕ1, while individual currents |J1| and |J2| are respectively displayed in (e) and (f). Both currents circulate
around each core due to drag effect. (g) Shows cross section of densities |ψ1|2 (red) |ψ2|2 (blue) along the y axis. Note the deformed w-shaped
modulation of densities above singularities of the other condensate. The inset shows the distance between cores as a function of the Josephson
coupling. At such sufficiently strong coupling, skyrmions collapse. The rightmost panel (h) displays the normalized projection of the psuedospin
n onto the plane, while colors give the magnitude of nz. Blue corresponds to the south pole (−1) while red is the north pole (+1) of the target
sphere S2.

Here, the interacting energies Eab, between vortices in the a

and b condensates, are expressed in units of 2π |ψ1|2|ψ2|2/
2.
K0 is the modified Bessel of the second kind and R denotes
the system size while the parameters m and w are m = |ψ1|2

|ψ2|2
and w = 1 + ν
2. λ = 1

e
√

w
2 is the penetration length of the

magnetic field. For vanishing drag (w = 1), the minimum
energy corresponds to an axially symmetric state of two
cocentered fractional vortices [22]. There, the Coulomb and
Yukawa contributions in E12 interaction compensate at x =
0 [23]. The drag term (1b) (i.e., when w > 1) penalizes
codirected currents so the Coulomb and Yukawa contributions
of the interacting energy E12 no longer cancel at x = 0 but at
some finite separation. In the case of half-quantum vortices,
this process was studied in detail in the London model [4].

Here, we investigate the structure of single-vortex and
multivortex states, beyond the London limit. To this end,
we numerically minimize the free energy (1) within a finite-
element framework provided by the FREEFEM++ library [24]
(see technical details in Appendix C). We find that in contrast
to the London limit, weak drag does not produce numerically
detectable splitting of vortex cores. This is connected with the
existence of finite cores where the current is modulated by
a density suppression. Larger drag splits a composite vortex
into a bound state of well-separated fractional vortices. This
is shown on Fig. 1. Note that a single fractional vortex has
nontrivial structure. In particular, its magnetic field is not
exponentially localized and can exhibit flux inversion [25].
Figure 1 shows that some of the features of isolated fractional
vortices, reported in [25] such as w-shaped modulation of
densities, are preserved in the split composite vortex.

In general, in multicomponent superconductors there could
be terms which break the U(1) × U(1) symmetry explicitly.
A typical example is −η|ψ1||ψ2| cos ϕ12. Such terms result in
asymptotically linear confinement of fractional vortices. We
find that when such terms are not very strong, the splitting
of cores is still present as shown on Fig. 1(g). In such a case,
dipolar forces are still present, but suppressed at the Josephson
length.

The bound state of well-separated fractional vortices is
a skyrmion. This follows from mapping the two-component
model (1) to an easy-plane nonlinear σ model [11,26].
There, the pseudospin unit vector n is the projection of
superconducting condensates on spin- 1
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2 ). When there is nonzero drag,
the free energy (1) can be written in n representation as
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where ε is the Levi-Civita symbol and V stands for the
potential terms in (1a) (see Appendix A for details of
this derivation). The pseudospin is a map n : S2 → S2,
classified by the homotopy class π2(S2) ∈ Z, thus defining
the integer-valued topological (skyrmionic) charge Q(n) =

1
4π

∫
R2 n · ∂xn × ∂yn dx dy. Ordinary (composite) vortices

with a single core � = 0 have Q = 0. Here, the core-split
vortices have nontrivial skyrmionic chargeQ = N , the number
of flux quanta. The quantization of Q is related to the flux
quantization, and 	 = Q	0 as long as cores are split (� �= 0).

The calculated pseudospin texture of n is shown on
Fig. 1(h). Numerically calculated topological charge was
found to be an integer (with a negligible error of order
10−4).1 Note that these skyrmions are quite different from the
skyrmions or nonaxially symmetric vortices considered in su-
perconducting states with different number of components and
symmetries [27–35]. In particular, the structural differences in
these skyrmions dictate different inter-skyrmion forces. This

1Note that the topological charge is an integer only for when a
skyrmion is sufficiently far from boundaries. Since when simulating
a finite sample in applied field, there are states where only part of the
skyrmion texture enters the sample, in general the topological charge
Q will not be integer.
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FIG. 2. (Color online) A Q = 10 quanta configuration bound by
dipolar forces. Parameters are (α1,β1) = (−3.6,1.0), (α2,β2) =
(−3.0,1.0) with e = 0.6 and the drag coupling ν = 2.0. Displayed
quantities are the magnetic flux (a) and the densities of superconduct-
ing condensate |ψ1|2 (b) and |ψ2|2 (c). Lower panel (d) shows a Monte
Carlo simulation of hundred point particles of each kind interacting
according to (2), with 0.036 particles per surface area which allows
us to emulate the skyrmionic lattice melting process. Here, u is the
total interaction energy per particle and �4 is the square lattice order
parameter (see Appendix C). They show a melting transition to a state
which has no square lattice ordering but still has bound pairs. Insets
show low- and high-temperature states, as well as the interaction
energies.

warrants investigation of a state of such a superconductor in
external field, which we address in the following.

The mapping of fractional vortices to Coulomb charges
(2) suggests that there will be asymptotically power-law
inter-skyrmion dipolar interaction forces (attractive for certain
orientations and repulsive for other). Indeed, the long-range
Coulomb interaction originates in the phase difference mode
ϕ12 ≡ ϕ2 − ϕ1 [23]. For the pair of fractional vortices, it has
a clear dipolelike structure shown on Fig. 1(d). The total
interaction forces, beyond the London limit, do not reduce to
Coulomb and Yukawa forces and are especially complicated
at shorter distances due to the presence of density modes
and Skyrme-like terms in (3). To investigate multiquanta
states, we compute configurations carrying several flux quanta
by energy minimization. First, as displayed in the first line
in Fig. 2, they can form compact “checkerboard” cluster.
Unlike type-1.5 vortex clusters, where (composite) vortices
can form cluster with inner triangular ordering [36–38], the
dipolar-attraction-driven structures have compact lattices with
two interlaced square lattices.2 Other kinds of structures which
we found for few vortex states are looplike and stripelike
structures. These are shown on Fig. 3 and details about

2Note that formation of checkerboard square lattices for p-wave
superconductors near Hc2 was found in [5,39]. Here, we consider a
different situation of vortex cluster formed due to attractive dipolar
interactions.

these configurations are included Appendix B. Some of these
configurations are metastable local minima. The trend which
we observed is that with increasing the drag coupling, multiple
quanta configurations become more compact. Remarkably,
some of the vortex structures which we obtain are quite similar
to those appearing in the easy-plane baby-Skyrme model
consisting of the pseudospin n alone [40]. This similarity in
structures is an interesting fact which could not be a priori
expected because n represents only a part of the degrees
of freedom of GL theory (3), and does not account for all
intervortex interaction forces. Moreover, at short length scales,
the GL model is certainly principally different from the Skyrme
model [11]. Our observations demonstrate that at least in
two dimensions there is a very close relationship between
structure formation of topological defects in multicomponent
superconductors and in pure baby-Skyrme models. Aside from
that, we find that structure formation exhibits also complicated
octagonal looplike periodic structure as in the first line in Fig. 4.
Their elementary cell carries Q = 4 flux quanta, and assumes
octagonal geometry as a result of rotated underlying square
fractional vortex structures.

Since the dipolar interactions are long range, they should
dominate the tail of inter-skyrmion interactions. We there-
fore examine how much of the structure formation can be
reproduced in the toy model of interacting point charges
(2). To this end, we perform Monte Carlo (MC) simulations
using the Metropolis algorithm with parallel tempering [41].
Although the point-charge model does not perfectly capture
all the underlying physics, it reproduces some aspects of
the structures obtained beyond the London limit (see Figs. 2
and 4). Moreover, the MC approach allows us to investigate
how the ordering depends on temperature. As shown on
Figs. 2(d) and 4(d), thermal fluctuations can cause unbinding
of the crystalline multiquanta skyrmionic bound states held
by dipolar forces. However, fractional vortices are still paired
and constitute well-defined skyrmions in higher-temperature
phases where there is no lattice structure.

Finally, we address the magnetization process of the
skyrmionic state. To this end, we simulate the Gibbs free
energy G = F − B · H of the system (1), on a finite domain in
an increasing external field H = H ez. Here, finite differences
are used instead of finite elements, and a quasi-Newton
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method instead
of conjugate gradients. For details, see [42] and Appendix
C. The magnetization process of the skyrmionic states is
quite specific. It can be easily distinguished from other
unconventional magnetization processes such as those of chiral
p-wave superconductors with multidomains [43], entropically
stabilized square lattices [44], and type-1.5 superconductors
[36,38]. As shown on Fig. 5, it is heavily influenced by
the existence of dipolar forces. In these simulations, we
typically observed that multi-skyrmion domains bound by
dipolar forces are formed near boundaries. These domains
are attracted to boundaries by long-range dipolar interaction
with image charges. This crucially modifies Bean-Livingston
barrier physics because dipolar attraction to the image “anti-
skyrmions” has longer range than the repulsion from the
boundary due to surface Meissner current. These domains
gradually fill the system until merging to form a (checkerboard)
square lattice of fractional vortices. When the field is increased
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FIG. 3. (Color online) Profile of the magnetic field for various bound states of vortices in the model (1), carrying N = 8, 10, 16, 8, and 4
flux quanta, respectively. The corresponding potential parameters and details of the other physical quantities are given in Appendix B. Note
that some regimes have extra biquadratic density potential term (∼|ψ1|2|ψ2|2) which is not essential but enriches the observed structures.

further, the density of skyrmions in the square lattice grows.
Importantly, during the magnetization process, the skyrmionic
charge does not change in integer steps. When the condensates
are not equivalent, there is a layer of one kind of fractional
vortices (or half-skyrmions) near boundaries as can be seen in
Fig. 5. This is in agreement with the thermodynamical stability
of fractional vortices near boundaries demonstrated by Silaev
in the London limit without drag [45].

In conclusion, we investigated topological defects and
magnetic response of U(1) × U(1) superconductors with
dissipationless drag, beyond the commonly used London
approximation. In contrast to the London limit, it requires a
critical strength of dissipationless drag to form unconventional
split vortex solutions. We demonstrated that split fractional
vortices in this model have a well-defined skyrmionic charge.
We established that, when the model is U(1) × U(1) or softly
broken U(1) × U(1), the vortex lattice structure is dominated
by the long-range dipolar inter-skyrmion forces. This results in
unconventional magnetic response in low fields which features
lack of hexagonal vortex lattice and formation of a layer of
square lattice growing inward from boundaries of the sample.
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FIG. 4. (Color online) A structure carrying Q = 16 flux quanta.
The elementary cell here is a Q = 4 skyrmion. The parameters are
(αa,βa) = (−5.0,5.0) with e = 0.6 and the drag coupling ν = 2.0.
Displayed quantities are the same as in Fig. 2. Lower panel shows
(d) shows a Monte Carlo simulation of 16 particles of each kind for
0.036 particles per surface area. In the low-temperature phase, the
fractional vortices are paired and ordered in a lattice, and for higher
temperature the lattice melts but the vortices are still paired.

This magnetization process can be easily identified for exam-
ple in scanning SQUID measurements and discriminated from
other models for p-wave superconductivity which by contrast
predict hexagonal vortex lattices in low fields and square lattice
in high fields. It can also be straightforwardly distinguished
from that of ordinary single-component type-II superconduc-
tors or multicomponent type-1.5 superconductors or chiral
p-wave multidomain superconductors. For example, the mag-
netic behavior of the putative triplet superconductor Sr2RuO4

is nontrivial, featuring phase separation [47–51]. However,
since square vortex lattices were observed only at elevated
fields and no boundary vortex states were reported, it is incon-
sistent with models which have long-range skyrmionic forces.

We thank J. Carlström for discussions. This work is
supported by the Swedish Research Council by the Knut
and Alice Wallenberg Foundation through the Royal Swedish
Academy of Sciences fellowship and by NSF CAREER Award
No. DMR-0955902. The computations were performed on
resources provided by the Swedish National Infrastructure
for Computing (SNIC) at National Supercomputer Center at
Linkoping, Sweden.

APPENDIX A: DETAILS OF THEORETICAL
FRAMEWORK

In two-component superconductors, the elementary topo-
logical excitations are fractional vortices. These are field
configurations having a 2π phase winding only in one phase
(e.g., ϕ1 has

∮ ∇ϕ1 = 2π winding while
∮ ∇ϕ2 = 0). The

physics of fractional vortices, as well as the role of the
intercomponent dissipationless drag, can be enlightened by
rewriting the theory in terms of charged and neutral modes.
Here, we derive the interaction between fractional vortices
for a two-component system. In particular, this shows how,
in the London limit, fractional vortices can be treated as
point particles with Coulomb and Yukawa interactions. The
Ginzburg-Landau free energy functional reads as

F = 1
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1
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FIG. 5. (Color online) Sequences of the skyrmionic states in in the magnetization process of a finite sample in slowly increased magnetic
flux. Corresponding values of the applied flux are respectively 96, 129, 201, 258, and 381 (in the unit of the flux quantum). Parameters of the
Ginzburg-Landau free energy are the same as in Fig. 2. First line shows |ψ1|2, second line |ψ2|2, while the third displays the magnetic field
B. The peaks of different intensities in the magnetic field correspond to vortices carrying different fractions of flux quantum. Note that there
is a layer of half-skyrmions near the boundary. This is consistent with the thermodynamic stability of fractional vortices near boundaries as
discussed in [45]. Animations of the magnetization process are available as online Supplemental Material [46].

Note that, for completeness, we added biquadratic density
coupling (A1c) to the potential energy. Obviously, its effect is
to enforce core splitting of fractional (when γ > 0) vortices.
Since we mostly focus on the role of the drag interaction,
the biquadratic density term is introduced here for sake of
completeness rather than an essential ingredient of the physics
we discuss.

1. Parametrization of the intercomponent drag
and its London limit

Traditionally, the intercomponent current-current interac-
tion is parametrized as the scalar product of supercurrents of
two componentsFd ∝ J1 · J2. Beyond the London limit, such
a term reads explicitly as Fd ∝ Im(ψ∗

1 Dψ1) · Im(ψ∗
2 Dψ2).

This term is fourth order in the order-parameter densities
and second order in their derivatives, moreover, it is not
positively defined. This leads to an unphysical instability:
by creating strong counterdirected currents and increasing
density, in a minimal GL model with such a term, makes free
energy negative and unbounded from below. Thus, this term
should come with other high-power terms consistent with the
symmetry, which make the total free energy positively defined.
The precise form of these terms is not principally important
for the purpose of this work, so we choose to use (A1d), which
is obviously positive. However, one should also make sure that

this term has the proper London limit. There, the free-energy
functional (A1a)–(A1d) reads as

F = 1

2
(∇ × A)2 +

∑
a

1

2
|Dψa|2 (A2a)

+ ν

2
|Im(ψ∗

1 Dψ1) + Im(ψ∗
2 Dψ2)|2. (A2b)

Since the densities are constant, the covariant derivative
reads as Dψa = i|ψa|(∇ϕa + eA)eiϕa and thus, expanding the
drag term (A2b) and collecting various orders, the free energy
assumes the form typically used for discussing the problem in
the London limit

F = 1

2
(∇ × A)2 +

∑
a=1,2

1

2
ρaa(∇ϕa + eA)2 (A3a)

+ ρd (∇ϕ1 + eA) · (∇ϕ2 + eA), (A3b)

where the prefactors are

ρaa = |ψa|2(1 + ν|ψa|2), ρd = ν|ψ1|2|ψ2|2. (A4)

The term (A3b) is the scalar product of the supercurrents of two
components. Thus, our parametrization (A1d) of intercompo-
nent current-current interaction has the conventional London
limit.

104508-5
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2. Derivation of neutral and charged modes

To understand the role of the fundamental excitations
(i.e., fractional vortices), the Ginzburg-Landau free energy
(A1a)–(A1d) can be rewritten into charged and neutral modes
by expanding the kinetic term (A1a) and the drag term (A1d)

F = 1

2
(∇ × A)2 + J2

2e2w
2
(A5a)

+
∑

a

1

2
(∇|ψa|)2 + αa|ψa|2 + βa

2
|ψa|4 (A5b)

+ γ |ψ1|2|ψ2|2 (A5c)

+ |ψ1|2|ψ2|2
2
2

(∇ϕ12)2. (A5d)

Here, ϕ12 ≡ ϕ2 − ϕ1 is the phase difference and

w = 1 + ν
2 and 
2 =
∑

a

|ψa|2. (A6)

The supercurrent defined from the Ampère’s equation ∇ ×
B + J = 0 reads as

J/e = ew
2 A +
∑

a

|ψa|2∇ϕa

+ ν(|ψ1|2 + |ψ2|2)(|ψ1|2∇ϕ1 + |ψ2|2∇ϕ2) (A7a)

= ew
2 A + w
∑

a

|ψa|2∇ϕa, (A7b)

while the supercurrent associated with a given condensate
reads as

Ja = e Im(ψ∗
a Dψa)(1 + ν|ψa|2)

+ |ψa|2νe Im(ψ∗
b Dψb), (A8)

with the band index b �= a. The term on the second line is
the current of the component a induced (dragged) by the
component b. Assuming phase winding in all components
and since far away from a vortex J decays exponentially,
the magnetic flux reads as

	 =
∫

B dS =
∮

A d�
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e2w
2

∮ (
J − ew

∑
a

|ψa|2∇ϕa

)
d�

= 	0

∑
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|ψa|2

2

, (A9)

where 	0 = 2π/e is the flux quantum and the closed path
integration is done so that the flux is positive. The flux
|ψa|2	0/


2 carried by a fractional vortex is the same as
that of two-component superconductors without drag [22].
The London limit assumes that |ψa| = const everywhere in
space except small vortex core sharp cutoff. The expression
(A5a)–(A5d) thus further simplifies

F = 1

2

(
B2 + 1

e2w
2
|∇ × B|2

)
(A10a)

+ |ψ1|2|ψ2|2
2
2

(∇ϕ12)2, (A10b)

where the Ampère’s law has been used to replace the current
in (A10a). The interaction energy of two nonoverlapping
fractional vortices can be approximated in this London limit
by considering charged (A10a) and neutral modes (A10b),
separately. With the identity

|∇ × B|2 = B · ∇ × ∇ × B − ∇ · (B × ∇ × B), (A11)

the energy of the charged sector (A10a) finally reads as

FCharged =
∫

B
2

(
B + 1

e2w
2
∇ × ∇ × B

)
. (A12)

The London equation for a (pointlike) vortex placed at xa and
carrying a flux 	a is

1

e2w
2
∇ × ∇ × B + B = 	aδ(x − xa), (A13)

and its solution is

Ba(x) = 	ae
2w
2

2π
K0

( |x − xa|
λ

)
. (A14)

Here, the London penetration length is λ = 1

e
√

w
2
and K0 is

the modified Bessel of second kind. For two vortices located
at xa and xb, and carrying fluxes 	a and 	b, the source term
in London equation reads as 	aδ(x − xa) + 	bδ(x − xb) and
the magnetic field is the superposition of two contributions
B(x) = Ba(x) + Bb(x). Thus,

FCharged =
∫

1

2
(Ba + Bb)[	aδ(x − xa) + 	bδ(x − xb)]

= 	a	be
2w
2

2π
K0

( |x2 − x1|
λ

)
+ Eva + Evb,

(A15)

and Eva ≡ ∫
Ba(xa)	a/2 denotes the (self-)energy of the

vortex a. Finally, the interaction energy of two vortices in
components a,b reads as

E
(int),Charged
ab = 2πw|ψa|2|ψb|2


2
K0

( |xa − xb|
λ

)
. (A16)

The interaction of the charged sector is thus a Yukawa-type
interaction given by the modified Bessel function. If we
do not consider antivortices, it is always positive (for any
a,b), then it gives repulsive interaction between any kind of
fractional vortices. On the other hand, the interaction through
the neutral sector is logarithmic. It is attractive (resp. repulsive)
for fractional vortices of the different (resp. same) kind. The
energy associated with the neutral mode (A10b) reads as

FNeutral = |ψ1|2|ψ2|2
2
2

∫
(∇ϕ12)2. (A17)

A phase winding around some singularity located at the point
xa is (at sufficiently large distance) well approximated by
ϕa = θ . Thus,

∇ϕa = eθ

|x − xa| = z × ∇ ln |x − xa|. (A18)

To evaluate the interaction between fractional vortices in
different condensates and respectively located at xa and xb,
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the neutral sector is expanded as

FNeutral = |ψ1|2|ψ2|2
2
2

∫
(∇ϕa)2 + (∇ϕb)2 − 2∇ϕa · ∇ϕb.

(A19)

Thus, the interacting part reads as

E
(int),Neutral
ab = −|ψ1|2|ψ2|2


2

∫
∇ϕa · ∇ϕb

= |ψ1|2|ψ2|2

2

∫
ϕa�ϕb

= |ψ1|2|ψ2|2

2

∫
ln |x − xa|δ(|x − xb|)

= 2π
|ψ1|2|ψ2|2


2
ln |xb − xa|. (A20)

Similarly, the interaction between two vortices in the same
condensate a is computed by requiring that the phase is the
sum of the individual phases ϕa = ϕ(1)

a + ϕ(2)
a , while ϕb = 0.

Then, the interaction reads as

E(int),Neutral
aa = −2π

|ψ1|2|ψ2|2

2

ln
∣∣x(2)

a − x(1)
a

∣∣. (A21)

To summarize, the interaction of vortices in different
condensates is then

E
(int)
12

2π
= |ψ1|2|ψ2|2


2

[
ln

r

R
+ wK0

(
r

λ

)]
, (A22)

while interactions of vortices of similar condensates are

E(int)
aa

2π
= −|ψ1|2|ψ2|2


2
ln

r

R
+ w|ψa|4


2
K0

(
r

λ

)
, (A23)

with r ≡ |xa − xb| and R the sample size. Equations (A22)
and (A23) give the different interactions between frac-
tional vortices. Finally, choosing the energy scale to be
2π |ψ1|2|ψ2|2/
2 and defining the parameters m and w as

w = 1 + ν
2 = 1 + ν(|ψ1|2 + |ψ2|2), m = |ψ1|2
|ψ2|2 . (A24)

The interaction between fractional vortices in the various
condensates reads as

E11 = ln
R

r
+ wmK0

(
r

λ

)
,

E22 = ln
R

r
+ w

m
K0

(
r

λ

)
, (A25)

E12 = − ln
R

r
+ wK0

(
r

λ

)
.

Thus, vortex matter in the London limit of a two-component
superconductor with intercomponent drag interaction is de-
scribed by a three-parameter family (m,w,R).

3. Mapping to an easy-plane nonlinear σ model

The bound state of well-separated fractional vortices is
a skyrmion. This follows from mapping the two-component
model (A1a)–(A1d) to an easy-plane nonlinear σ model

[11,26]. There, the pseudospin unit vector n is the projection
of superconducting condensates on spin- 1

2 Pauli matrices σ :

n ≡ (nx,ny,nz) = �†σ�

�†�
, where �† = (ψ∗

1 ,ψ∗
2 ).

(A26)

The following identity is useful to rewrite the free energy
(A1a)–(A1d) in terms of the pseudospin n, total density 
, and
gauge-invariant current J :


2

4
∂kna∂kna + (∇
)2 = |ψ1|2|ψ2|2


2
(∇ϕ12)2 +

∑
a

(∇|ψa|)2,

(A27)

where summation on repeated indices is implied. Using the
definition of the current (A7) and noting that

4εijk∂i

(∑
a

|ψa|2

2

∂jϕa

)
= εijkεabcna∂inb∂jnc, (A28)

where ε is the Levi-Civita symbol, the magnetic field reads as

Bk = 1

e
εijk

[
∂i

(
Jj

ew
2

)
− 1

4
εabcna∂inb∂jnc

]
, (A29)

and the free energy (A5a)–(A5d) can be written as

F = 1

2
(∇
)2 + 
2

8
∂kna∂kna + J2

2e2w
2
+ V (
,nz)

+ 1

2e2

{
εijk

[
∂i

(
Jj

ew
2

)
− 1

4
εabcna∂inb∂jnc

]}2

,

(A30)

where V (
,nz) stands for the potential terms (A1b) and (A1c).
The easy-plane potential explicitly reads as

V (
,nz) = 
2

2
(a1 + a2nz) + 
4

4

(
b1 + 2b2nz + b3n

2
z

)
,

(A31)

with the coefficients

b1 = β1 + β2 + γ

2
, b2 = β1 − β2

2
, b3 = β1 + β2 − γ

2
,

a1 = α1 + α2, a2 = α1 − α2. (A32)

The pseudospin configuration defines a map from the one-point
compactification of the plane (R2 
 S2) to the two-sphere
target space spanned by n. That is, n : S2 → S2, classified
by the homotopy class π2(S2) ∈ Z, thus defining the integer-
valued topological (skyrmionic) charge

Q(n) = 1

4π

∫
R2

n · ∂xn × ∂yn dx dy. (A33)

Ordinary (composite) vortices with a single core � = 0 have
Q = 0. Core split vortices, on the other hand, have nontrivial
skyrmionic charge Q = N (N coincides with the number of
carried flux quanta). The calculated pseudospin texture of
n is shown on the rightmost panel in Fig. 6. Numerically
calculated topological charge was found to be an integer (with
a negligible error of order 10−5). It is worth emphasizing that
the topological charge (A33) is an integer, when integrated
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FIG. 6. (Color online) Octagonlike structure carrying Q = 16 flux quanta. The elementary cell here is a Q = 4 skyrmion. The parameters
are (αa,βa) = (−5.0,1.0) with e = 0.6 and Andreev-Bashkin coupling is ν = 2.0, while biquadratic coupling vanish es γ = 0. Displayed
quantities are, respectively, the magnetic field B, |ψ1|2, |ψ2|2 and the phase difference ϕ12 ≡ ϕ2 − ϕ1, on the first line. On the second line, J ,
J1, J2, and z × ∇ϕ12. The rightmost panel shows the normalized projection of n onto the plane, while colors give the magnitude of nz. Blue
corresponds to the south pole (−1) while red is the north pole (+1) of the target sphere S2.

over the infinite plane R2, or at least a large enough domain
� ⊂ R2. By large enough, we understand that the fields should
have recovered their ground-state values at the boundary.
Then, the skyrmions shall not interact with the boundary.
When the skyrmion’s size is comparable with the size of the
integration domain, truncation errors appear and Q is no more
an integer. Moreover, when simulating a finite sample in an
applied field, in general the skyrmionic topological charge Q
will not be an integer. This is because in general there are
states where only a part of the skyrmion texture enters the
sample.

APPENDIX B: ADDITIONAL MATERIAL

The biquadratic density interaction (A1c) also induces core
splitting of the fractional vortices, for positive couplings γ .
Unlike the drag term which induces splitting by energetically
penalizing coflowing currents, biquadratic density coupling
(with γ > 0) penalizes core overlap directly. Indeed, it is en-
ergetically preferable to have singularities in each component

sitting in different positions. Such a term is in general possible
in multicomponent systems. Note that when the coupling is
strong, it is no more favorable to have coexisting condensates
and the superfluid density of a given condensate is completely
suppressed (i.e., phase separation).

Unlike the current drag interactions, the physics of the core
splitting induced by biquadratic densities can not be captured
within the London limit (since it involves only densities). In
general, combining both dissipationless drag and biquadratic
density interaction widely enriches the spectrum of various
skyrmionic structures which can be obtained. Figures 7–12
show detail of multiskyrmion solutions from the main body of
the paper.

APPENDIX C: NUMERICAL METHODS

1. Finite-element energy minimization

We consider the two-dimensional problem (A1a)–(A1d)
defined on the bounded domain � ⊂ R2 with ∂� its boundary.
In practice, we choose � to be a disk. The problem is

FIG. 7. (Color online) 8-vortex configuration. Parameters are (α1,β1) = (−3.6,1.0) and (α2,β2) = (−3.0,1.0) and γ = 0.6 with e = 0.6.
There is no Andreev-Bashkin coupling ν = 0.0 but fractional vortices are split by biquadratic density coupling only. Displayed quantities are,
respectively, the magnetic field B, |ψ1|2, |ψ2|2, and the phase difference ϕ12 ≡ ϕ2 − ϕ1, on the first line. On the second line, J , J1, J2, and
z × ∇ϕ12.
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FIG. 8. (Color online) Multiskyrmion carrying Q = 8 flux quanta, for identical components (αa,βa) = (−3.0,1.0) and γ = 0.6 with
e = 0.8. The Andreev-Bashkin coupling is ν = 1.0. Displayed quantities are the same as in Fig. 7.

supplemented by the boundary condition n · Dψa = 0 with
n the normal vector to ∂�. Physically, this condition implies
there is no current flowing through the boundary. Since this
boundary condition is gauge invariant, an additional constraint
can be chosen on the boundary to fix the gauge. Our choice is
to impose the radial gauge on the boundary eρ · A = 0 (note
that with our choice of domain, this is equivalent to n · A = 0).
With this choice, (most of) the gauge degrees of freedom are
eliminated and the “no current flow” condition separates in
two parts

n · ∇ψa = 0 and n · A = 0. (C1)

Note that these boundary conditions allow a topological defect
to escape from the domain. To prevent this in simulations
of individual skyrmions or skyrmion groups without applied
field, the numerical grid is chosen to be large enough so that
the attractive interaction with the boundaries is negligible for a
given numerical accuracy. Thus, in this method one has to use
large numerical grids, which is computationally demanding.
The advantage is that it is guaranteed that obtained solutions
are not boundary pressure artifacts.

The variational problem is defined for numerical com-
putation using a finite-element formulation provided by the

FREEFEM++ library [24]. Discretization within finite-element
formulation is done via a (homogeneous) triangulation over
�, based on Delaunay-Voronoi algorithm. Functions are
decomposed on a continuous piecewise quadratic basis on each
triangle. The accuracy of such method is controlled through
the number of triangles (we typically used 3 ∼ 6 × 104),
the order of expansion of the basis on each triangle (second-
order polynomial basis on each triangle), and also the order of
the quadrature formula for the integral on the triangles.

Once the problem is mathematically well defined, a nu-
merical optimization algorithm is used to solve the variational
nonlinear problem (i.e., to find the minima of F). We used
here a nonlinear conjugate gradient method. The algorithm is
iterated until relative variation of the norm of the gradient of
the functional F with respect to all degrees of freedom is less
than 10−6.

Initial guess

The initial field configuration carrying N flux quanta is
prepared by using an ansatz which imposes phase wind-
ings around spatially separated N vortex cores in each

FIG. 9. (Color online) An 8-flux quanta configuration. Displayed quantities and the parameters are the same as in Fig. 7 except for the
coupling ν = 1.
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FIG. 10. (Color online) A checkerboard cluster with Q = 10. Parameters are the same as in Fig. 8 except the gauge coupling e = 0.6.

condensate:

ψa = |ψa|ei�a ,
(C2)

|ψa| = ua

Nv∏
k=1

√
1

2

[
1 + tanh

(
4

ξa

[
Ra

k (x,y) − ξa

])]
,

where a = 1,2 and ua is the ground-state value of each
condensate density. The parameters ξa parametrize the core
size while

�a(x,y) =
N∑

k=1

tan−1

(
y − ya

k

x − xa
k

)
,

(C3)

Ra
k (x,y) =

√(
x − xa

k

)2 + (
y − ya

k

)2
.

(xa
k ,ya

k ) determines the position of the core of kth vortex of
the a condensate. The starting configuration of the vector
potential is determined by solving Ampère’s law equation on
the background of the superconducting condensates specified
by (C2) and (C3). Being a linear equation in A, this is an easy
operation.

Once the initial configuration is defined, all degrees of
freedom are relaxed simultaneously, within the “no current
flow” boundary conditions discussed previously, to obtain
highly accurate solutions of the Ginzburg-Landau equations.

2. Finite-difference simulations

In our simulations using finite differences, the energy
functional (A1a)–(A1d) is discretized in a gauge-invariance
preserving manner using forward differences. For details of
the discretization scheme, see [52]. The constant applied
external magnetic field H = H ez is fixed by taking advantage
of Stokes’ theorem and specifying that A on the boundary
satisfies

∇ × A = H . (C4)

Stokes’ theorem then ensures the flux through the system
is equal to

∫
�⊂R2 H · dS, but allowing A and hence B to

vary arbitrarily inside the system. Note that this leaves gauge
degrees of freedom in the system. However, in an energy
minimization problem, the algorithm only considers the energy
which is a gauge-invariant quantity. Thus, the possibility

FIG. 11. (Color online) Q = 16 skyrmions. The system compromises between the optimal compact packing and the number of vortices by
creating a small loop at one of the corners. Parameters are the same as in Fig. 10.
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FIG. 12. (Color online) A 4-quanta Q = 4 configuration. Parameters are (α1,β1) = (−3.6,1.0), (α2,β2) = (−3.0,1.0) with e = 0.3, and
Andreev-Bashkin coupling is ν = 5.0. Biquadratic coupling vanishes γ = 0. Displayed quantities are the same as in Fig. 6.

of evolving simply by a gauge transformation is eliminated
since it does not lower the energy. The boundary condition
is the discrete equivalent of n · Dψa = 0 and ensures that
no supercurrent escapes the sample. This boundary is located
several lattice points inside the computational lattice. This
is the boundary of the sample and outside it, ψi are not
solved for.

The lattice parameters hi control the accuracy of the lattice
approximation, and the minimization algorithm is considered
to be converged whenever the largest discrete gradient in the
system is below 10−5�ihi or the sup-norm of the discrete
gradients is below 10−7. Some control calculations with a
more restrictive convergence criterion were made but with no
appreciable change to the solutions.

We typically used domains of 401 × 403 lattices points
with lattice spacing of hi = 0.1. As an initial configuration,
we set ψa = 0 outside the superconductor (these values are
not part of the minimization process), A = 0 everywhere,

and ψa =
√

αa

βa
exp iϕa(x,y), where phases ϕa(x,y) ∈ [−π,π )

are randomly chosen. At the beginning, therefore, we have
B = 0 and this corresponds to a zero-field-cooled sample.
When we have found a solution at a given external field,
the boundary condition for A is updated to reflect the new
field and the old solution is used as an initial guess for
the next solution. A quasi-Newton algorithm with BFGS
Hessian updates is used to simultaneously solve for all
degrees of freedom subject to the boundary conditions at
the two different boundaries (one for A and one for �).
The program itself is an extension of the one used in [42]
(for further details, see [42] and the relevant references
therein).

3. Monte Carlo simulations

In the Monte Carlo simulations, vortices are treated as a
system of N point particles of two different colors, interacting
with potentials (A25). The point particles live in a two-
dimensional box L × L so that the number of particles
per surface area is N/L2. Periodic boundary conditions are
imposed and the interaction is cut at half the box width.
Tests with open boundary conditions without a cutoff have
been performed and no structural differences are noted as
compared to low-density simulations with periodic boundary
conditions. Data are acquired during at least 104 sweeps (a
sweep constitutes a number of trial moves equal to the number
of particles in the box), after an equilibration from a random
initial configuration. The Monte Carlo trial moves consist of
a single-particle displacement, a pairwise displacement of a
nearest-neighbors bound pair, or rotation of such a pair. The
number of particles remains unchanged during the simulation.
Furthermore, the maximal step length of a displacement is
controlled such that approximately 10% of the displacement
trial moves are accepted. Parallel tempering is used in order
for the low-temperature simulations to quickly converge into
ordered low-energy states, as a low-temperature simulation of
these systems can easily be trapped in a metastable state.

The square lattice order parameter is defined as

�4 = 1

4N

∣∣∣∣∣∣
N∑

i=1

4∑
j=1

exp(4iφij )

∣∣∣∣∣∣ , (C5)

where the sum in j runs over the four nearest neighbors of
particle i, and φij is the angle of the line joining particles i,j

with some arbitrary axis.
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[25] E. Babaev, J. Jäykkä, and M. Speight, Phys. Rev. Lett. 103,

237002 (2009).
[26] E. Babaev, L. D. Faddeev, and A. J. Niemi, Phys. Rev. B 65,

100512 (2002).
[27] A. Knigavko and B. Rosenstein, Phys. Rev. Lett. 82, 1261

(1999).
[28] Q. Li, J. Toner, and D. Belitz, Phys. Rev. Lett. 98, 187002 (2007).
[29] A. Knigavko, B. Rosenstein, and Y. F. Chen, Phys. Rev. B 60,

550 (1999).
[30] Q. Li, J. Toner, and D. Belitz, Phys. Rev. B 79, 014517

(2009).
[31] B. Rosenstein, I. Shapiro, B. Ya. Shapiro, and G. Bel, Phys. Rev.

B 67, 224507 (2003).
[32] J. Garaud and E. Babaev, Phys. Rev. B 86, 060514 (2012).
[33] J. Garaud, J. Carlström, E. Babaev, and M. Speight, Phys. Rev.

B 87, 014507 (2013); Phys. Rev. Lett. 107, 197001 (2011).

[34] M. Kobayashi and M. Nitta, Phys. Rev. D 87, 085003 (2013).
[35] T. A. Tokuyasu, D. W. Hess, and J. A. Sauls, Phys. Rev. B 41,

8891 (1990).
[36] J. Carlström, J. Garaud, and E. Babaev, Phys. Rev. B 84, 134515

(2011).
[37] J. Carlström, J. Garaud, and E. Babaev, Phys. Rev. B 84, 134518

(2011).
[38] J. Garaud, D. F. Agterberg, and E. Babaev, Phys. Rev. B 86,

060513 (2012).
[39] D. F. Agterberg, Phys. Rev. B 58, 14484 (1998).
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