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junction in the low-temperature limit
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A nonlocal supercurrent was observed in mesoscopic planar SNS Josephson junctions with additional normal-
metal electrodes, where nonequilibrium quasiparticles were injected from a normal-metal electrode into one
of the superconducting banks of the Josephson junction in the absence of a net transport current through the
junction. We claim that the observed effect is due to a supercurrent counterflow, appearing to compensate for
the quasiparticle flow in the SNS weak link. We have measured the responses of SNS junctions for different
distances between the quasiparticle injector and the SNS junction at temperatures far below the superconducting
transition temperature. The charge-imbalance relaxation length was estimated by using a modified Kadin, Smith,
and Skocpol scheme in the case of a planar geometry. The model developed allows us to describe the interplay
of charge imbalance and Josephson effects in the nanoscale proximity system in detail.
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I. INTRODUCTION

Nonlocal effects in superconducting mesoscopic systems
have attracted a lot of interest in the recent decade in
connection with investigations of novel coherent effects such
as crossed Andreev reflection (CAR) and elastic cotunneling
(EC) [1–5], spin diffusion, injection, and accumulation [6–10]
that could have future practical applications in supercon-
ducting spintronics. Modern superconducting electronic nan-
odevices often operate under out-of-equilibrium conditions
because their sizes are comparable with relaxation lengths.
Complex biased circuits can contain Josephson junctions in
the resistive state, as well as normal-metal or ferromagnetic
elements that are sources of nonequilibrium quasiparticles.
One of the first nonlocal nonequilibrium effects was observed
in a quite macroscopic Josephson SNS sandwich-type junction
many years ago [11,12]. The SNS structure used had a thin
S electrode with a thickness comparable with the charge-
imbalance length λQ∗ and was excited to the nonequilibrium
state by quasiparticle injection. Charge imbalance in super-
conductors was investigated in detail and attracted a lot of
interest both in experimental and theoretical studies in the
1970s and 1980s. However, it was investigated mostly at tem-
peratures close to the superconducting transition temperature
Tc, both experimentally [13–18] and theoretically [19–21].
The low-temperature range has been studied experimentally
only recently [5,22–25] and still has no appropriate theoretical
description. While experiments with tunnel injection report
on relaxation lengths of a few μm, in agreement with older
results close to Tc, results for Ohmic injection [5] poorly
correlate with previous results at high temperatures, where
λQ∗ is determined only by the inelastic electron-phonon time
[16,17]. To measure the charge-imbalance length, authors of
Refs. [5,23] used normal-metal probes contacted to super-
conducting films directly or via a tunnel junction following
the first works [13,14,16] and recent spin injection experi-
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ments [6,7]. Another nonlocal detection method, proposed in
[11,12], uses a Josephson junction as a sensor of the injected
nonequilibrium quasiparticles. This first “nonlocal Josephson
effect” was observed in sandwich-type SNS structures also at
temperatures very close to Tc. An advantage of this method,
which we also use in this work, is given by the possibility
to measure directly the quasiparticle flow. Moreover, this
phenomenon furnishes the clue to a nonlocal control of
Josephson junctions in modern superconducting electronic
nanodevices.

In this paper, we present the detection of a “nonlocal critical
current” in mesoscopic SNS (Al-Cu-Al) Josephson junctions
with several spatially separated normal-metal injectors (Cu)
connected to one of the superconducting Al banks (Fig. 1).
To measure the nonlocal voltage at low temperatures T �
Tc, we use superconducting leads just near the junction.
Besides, in order to describe the interplay of charge im-
balance and Josephson effect in the realized mesoscopic
system in the low-temperature range, we have elaborated
a two-channel charge-imbalance model proposed previously
in [12,26].

II. EXPERIMENT

Figure 1 shows a scanning electron microscopy (SEM)
image of one of our samples, together with a scheme of
the measurement setup. The submicron-scale multiterminal
planar structures were fabricated by means of electron beam
lithography and in situ shadow evaporation. First, a copper
layer with a thickness of dN = 30 nm was deposited onto
an oxidized silicon substrate to create the weak link of the
Josephson Al-Cu-Al junction as well as the two Cu injectors.
Without breaking the vacuum, a thick aluminum layer with
a thickness of around 100 nm was evaporated at a second
angle in order to form all superconducting leads, so that
all SN interfaces are assumed to be highly transparent. The
injectors were realized as sloped narrow strips of a width
of around 100 nm in order to avoid a Josephson coupling
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FIG. 1. SEM image of an Al-Cu-Al multiterminal Josephson
junction with two Cu strips (injectors) connected to the left junction
bank together with the local (solid line) and nonlocal (dashed line)
measurement schemes.

between the left superconducting bank of the SNS junction
and the aluminum shadow parallel to the injectors (see
Fig. 1). The investigated structures had nominally identical
SNS Josephson junctions, characterized by the same distance
L = 250 nm between superconducting electrodes, but had
different distances d between the injectors and the SNS
junction. Type-I samples (Fig. 1) had two injectors with d

equal to approximately 1.5 and 0.5 μm, while for type-II
samples, these distances were 1.5 and 1.0 μm. Such a choice
of the distance scale allows us to exclude coherent CAR
and EC effects [2] as well as the inverse proximity effect
because the distances were much larger than the Al coherence
length ξS ≈ 130 nm [27]. On the other hand, nonequilibrium
phenomena, characterized by the charge-imbalance length
(λQ∗ ∼ 1 μm [5]), remain to be investigated with this choice of
distances d.

All transport measurements in local and nonlocal configu-
ration were performed using a standard four-terminal method
in a shielded cryostat at temperatures down to 0.37 K. Two
stages of resistor-capacitor (RC) filters were incorporated into
the measurement dc lines to eliminate electrical noise: a warm
RC-filter stage was located at the top of the cryostat, while
a cold RC-filter stage was mounted directly at the sample
holder.

Figure 2 represents the current-voltage characteristics
at T = 0.4 K for one of our samples measured in local
and nonlocal configurations shown in Fig. 1. In the local
configuration, the transport current is fed to the Josephson
SNS junction directly through its horizontal superconducting
aluminum leads. The voltage across the Josephson junction is
measured via two additional superconducting leads outside the
current path in a four-terminal configuration. In this case, we
observe the conventional IV curve which is typical for such
submicron SNS Josephson junctions [27,28] with the critical
current Ic � 4 μA (Fig. 2). At currents slightly exceeding
the critical current Ic, a sharp voltage increase is observed,
but the characteristic is still not hysteretic. In the nonlocal
configuration, the current is passed from one of the normal

FIG. 2. (Color online) Current-voltage characteristics of an Al-
Cu-Al Josephson junction (sample A1) at T = 0.4 K. Curve 1,
conventional local measurement; curve 2, nonlocal measurement,
current is injected from the nearest (R) Cu strip; curve 3, nonlocal
measurement, current is injected from the farther (L) Cu strip.

metal injectors to the left side of the horizontal aluminum lead
bypassing the Josephson junction (Fig. 1), while the voltage
is measured across the Josephson junction, as in the case of
the local configuration. Curves 2 and 3 represent the nonlocal
current-voltage characteristics for injection from the nearest,
“right” (R), and the farther, “left” (L), injectors with d = 0.5
and 1.5 μm, correspondingly. In the nonlocal case, registered
critical currents were larger than for the local configuration:
I

inj

cR = 19.7 μA and I
inj

cL = 23.6 μA (for sample A1) and the
voltage had opposite sign. A detailed model of the nonlocal
effect and its discussion will be presented in the subsequent
section. We give only a short description here. A significant
part of the quasiparticles injected from normal metal to the
superconductor has an energy larger than the superconduct-
ing gap � and hence penetrates into the superconductor.
The charge imbalance and appropriate decrease of the pair
chemical potential μs result in a longitudinal electric field
E = ∇μs /e (where e is the charge of the electron). The
charge-imbalance length λQ∗ is a characteristic length of the
conversion of the nonequilibrium quasiparticles to pairs, i.e.,
the penetration length of quasiparticle flow in both directions
from the normal injector. The quasiparticles penetrate also
through the Josephson junction into the right superconducting
bank if the distance d between the injector and the Josephson
junction is less than λQ∗ . The total current through the
Josephson junction is zero, so a counterflow of Cooper pairs
has to arise. It compensates for the quasiparticle flow until
it reaches the critical current. Besides, the nonlocal voltage
V , equal to a drop of the pair electrochemical potential, has
opposite sign as compared with the local experiment for the
current directions shown in Fig. 1. The observed “injection
critical current” I

inj
c is much larger than Ic since only a small

part of the current from the injector reaches the Josephson
junction due to Andreev reflection at the NS interface and
the quasiparticle conversion between the injector and the
Josephson junction. For the same reason, the injection critical
current I

inj

cL from the farther injector is larger than the I
inj

cR

value from the nearest one.
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III. MODEL OF A JOSEPHSON SNS JUNCTION IN THE
CASE OF QUASIPARTICLE INJECTION

Nonequilibrium processes in a superconductor including
the conversion of a quasiparticle flow into a pair current can
be described reasonably by means of an equivalent circuit
introduced by Kadin, Smith, and Skocpol (KSS) [26] for the
explanation of phase-slip-center behavior. The KSS approach
was simplified for the case of low-frequency processes and
extended to study the effect of nonequilibrium quasiparticle
flow on Josephson SNS junctions by Kaplunenko, Ryazanov,
and Schmidt [12]. A similar model modified for the geometry
of our planar Josephson structures and low-temperature range
is developed in this section.

The longitudinal electric field E originating from the
quasiparticle charge imbalance Q∗ arises in nonequilibrium
regions of a superconductor where the quasiparticle current In

converts into the current of Cooper pairs Is :

divIn = −divIs ∝ U, ∇U = −E. (1)

The gauge-invariant potential U is related to the deviation
of the pair chemical potential δμs from its equilibrium value
(U = −δμs/e ∝ Q∗) and can be detected directly by normal
and superconducting probes placed in the nonequilibrium
region [14,29]. Relaxation of Q∗, U , and In is characterized
by the charge-imbalance length λQ∗ [21]:

λ2
Q∗∇2Q∗ = Q∗, λ2

Q∗∇2U = U, λ2
Q∗∇2In = In. (2)

For the discussed experiment (Fig. 1), a one-dimensional
model can be used. An equivalent circuit shown in Fig. 3 rep-
resents a two-fluid approach taking into account two distinct
electrochemical potentials for the normal (quasiparticle) and
superconducting components. We choose the junction center
as the origin of coordinates in our one-dimensional problem
and the direction of the x axis parallel to the horizontal Al
leads of the junction. The resistive line (N line) represents
a channel for the quasiparticle current In and the potential
of this line corresponds to the electrochemical potential of
the quasiparticles. Here, R is the normal-state resistance of
the aluminum lead per unit length and R0 is the resistance
of the Cu bridge of the Josephson junction. In turn, the
superconducting line (S line) is a channel for the supercurrent
Is , and the potential of this line is the electrochemical potential
of the Cooper pairs. The cross in the scheme marks the region

FIG. 3. (Color online) Scheme of the equivalent circuit used in
calculations. Central part is a Josephson SNS junction (the cross), R0

is the resistance of Cu-weak link, d is a distance between N injector
and Josephson junction.

of the junction phase slipping and the pair electrochemical
potential drop is measured by the voltmeter connected by
two superconducting leads. The “conductances” G describe
channels of the quasiparticle conversion into the condensate.
Kirchhoff’s circuit laws give the following equations for the
equivalent circuit element (Fig. 3):

dIn

dx
+ GU = 0,

dU

dx
+ RIn = 0,

d2In

dx2
= GRIn. (3)

A comparison of Eqs. (2) and (3) shows that the conversion
of the quasiparticles into the condensate per unit length is
determined by the “conductance” G = (Rλ2

Q∗)−1. We assume
the lengths of the horizontal aluminum arms to be infinite
in our model. De facto in our experiment, the lengths of the
left and right arms were approximately 8 μm, i.e., essentially
larger than λQ∗ and all distances d between injectors and
Josephson junction. Because of Andreev reflection at the SN
interface, the current Iinj passing through the normal injector is
divided into normal and superconducting parts upon entering
the superconductor. We introduce a coefficient β = In,inj /Iinj

to take into account the fraction of injected quasiparticles
that do not convert to pairs due to Andreev reflection at the
injector/superconductor interface.

The equation for the normal current In [see Eqs. (2) and
(3)]

d2In

dx2
− λ−2

Q∗In = 0 (4)

should be solved under the appropriate boundary conditions
at the injector point (x = −d) and at the Josephson junction
x = 0 of the equivalent circuit shown in Fig. 3:

In(x = −0) = In(x = +0),

In(x = −d + 0) + Is(x = −d + 0) = 0,

Is(x = −d − 0) + In(x = −d − 0) = −Iinj ,
(5)

Is(x = −d − 0) = Is(x = −d + 0) − (1 − β)Iinj ,

U (x = −d − 0) = U (x = −d + 0),

U (x = +0) − U (x = −0) − V + In(x = 0)R0 = 0.

Here, the first equation is just the continuity of the current
flowing via the N line at the Josephson junction, the second
and the third equations represent the conservation of the
total current, and the fourth equation is the continuity of
the current at the injector (x = −d). U (x) = − 1

G

dIn

dx
[see

Eq. (3)] is the difference between the chemical potentials
of the normal and superconducting components, that is, the
potential difference between the N line and the S line. In the
last equation, V is the electrochemical pair potential difference
at the Josephson junction. Solving Eq. (4) supplemented
by boundary conditions (5), one can obtain the following
Josephson equation:

�ϕ̇

2eR̃
+ Icsinϕ = −RλQ∗βIinj e

−d/λQ∗

R̃
, (6)

where R̃ = R0 + 2RλQ∗ , V ≡ �ϕ̇

2e
, and ϕ is the phase differ-

ence across the Josephson junction. From Eq. (6) we get the
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value of the injection critical current I
inj
c :

Ic

I
inj
c

= RβλQ∗e−d/λQ∗

R̃
. (7)

This equation has a clear physical meaning. The right part is
the fraction of the current from the injector which reaches
the SNS junction. This fraction is proportional to β, an
exponential factor, and the ratio RλQ∗ /R̃. The coefficient
β is a kind of quasiparticle transmission coefficient at the
injector/superconductor interface since (1 − β)I inj is the part
of the current from the injector that converts to pairs due
to Andreev reflection at the NS interface. The ratio RλQ∗/R̃

plays the role of a geometrical factor and determines the
fraction of quasiparticles which go to the right side because
this right arm has the larger resistance R0 + RλQ∗ as compared
with the left-side resistance RλQ∗ . This fraction undergoes
an exponential decay between the injector and the SNS
junction due to charge-imbalance relaxation. In the discussed
experiment, the main quantitative contribution to Eq. (7) is
given by the geometrical factor. If the coefficient β is known
for the particular conditions at the interface between the
normal injector and the superconductor, one can, in principle,
estimate the value of λQ∗ from Eq. (7). However, in order to
calculate β, one should know a number of parameters which
are not known exactly from the experiment (see discussion
below). Therefore, we use another method to obtain λQ∗

from the experimental data. Assuming that the NS interface
parameters corresponding to the left and the right injectors are
approximately the same, one can find from Eq. (7)

λQ∗ = dL − dR

ln
(
I

inj

cL /I
inj

cR

) . (8)

We believe that this method gives quite reliable values of λQ∗

because it does not contain an uncertainty connected to the
factor β (Andreev reflection at the injector/superconductor in-
terface) as well as to the unknown factor related with Andreev
reflection processes for quasiparticles at the Josephson SNS
junction [12]. The only assumption, which is really used in
Eq. (8), is the exponential decay of the normal quasiparticle
flow in the superconductor. Strictly speaking, the equivalent
scheme described above is only valid close to the critical
temperature. Nevertheless, it is obtained theoretically by us
[30] that at low temperatures, the spatial behavior of the
charge-imbalance relaxation can be approximately considered
as exponential. An exponential decay of charge imbalance at
low temperatures was also found experimentally [23]. There-
fore, it is quite reliable to extract λQ∗ from the experimental
data according to Eq. (8) even at low temperatures.

IV. RESULTS AND DISCUSSION

In Table I, results for λQ∗ obtained by means of Eq. (8) are
presented along with the necessary parameters extracted from
the experiment. All values were measured at a temperature of
0.4 K. The estimated values of λQ∗ � 5 μm are in reasonable
agreement with the values for aluminum obtained before
at T � Tc [23]. Furthermore, the quasiparticle transmission
coefficient β at the injector/superconductor interface was
estimated using the values of λQ∗ for each sample and Eq. (7).

TABLE I. Characteristic parameters of three samples (A–C) and
the results of estimations of λQ∗ and β at T = 0.4 K. Subindex L

corresponds to the farther injector and R corresponds to the nearest
one.

dL dR R R0 Ic I
inj

cL I
inj

cR λQ∗ β

(μm) (μm) (�/μm) (�) (μA) (μA) (μA) (μm)

A 1.47 0.56 0.65 5.5 4.4 24 20 4.99 ± 0.31 0.91
B 1.53 0.59 0.69 5.6 4.4 23.6 19.7 5.20 ± 0.31 0.89
C 1.48 1.02 1.07 6.0 3.7 24.2 22.4 5.95 ± 0.71 0.58

The magnitude of β shows that the largest part of the current
is injected in the superconductor as quasiparticle flow and
the dominant process described by Eq. (7) is related to the
conversion in the superconductor. For all measured samples,
the charge-imbalance relaxation length was essentially larger
than the distances dL and dR between injectors and Josephson
junctions. Therefore, in accordance with our model, injected
quasiparticles can not be converted entirely into pairs before
the Josephson junction. As a result, the normal current and
the longitudinal electric field penetrate into the region of the
weak link and to the right-side bank of the junction where
they eventually decay completely. The counterflow of Cooper
pairs arises to compensate for the flow of quasiparticles,
such that the total current on the right side of the injectors
has to be zero. The critical injection current I

inj

cL from the
farther injector is higher than the value I

inj

cR from the nearest
one because the quasiparticles have to overcome a longer
distance and create the same counterflow to reach the junction
critical value of Ic. It is not very obvious for the moment
that the proposed method of the λQ∗ measurement has clear
advantages over the technique used in Refs. [5,23] because
it may well be that it also requires corrections related to a
difference between coefficients βL and βR due to different
voltages at the left and right N/S interfaces. Nevertheless, our
experiment and model calculation give a description for real
modern submicron Josephson circuits where nonequilibrium
effects are undesirable or, on the contrary, can be used to tune
Josephson junction characteristics.

To clarify the charge-imbalance mechanism and the
nonequilibrium quasiparticle distribution, we have studied the
temperature dependencies of the critical currents and λQ∗ .
Temperature dependencies of the critical current Ic and critical
injection currents I

inj

cL and I
inj

cR for samples B and C are shown
in Fig. 4(a). The temperature dependence of the conventional
(local) critical current Ic shown in Fig. 4(b) is typical for
this type of Al-Cu-Al junctions [27,28]. The estimation
of the Thouless energy for our samples gives the value
ET h = �Dn/L

2 = 80 μeV, where the copper-layer diffusion
coefficient Dn of about 80 cm2/s was determined from resistive
measurements in our previous work [27]. In comparison with
the superconducting gap of the aluminum layer � = 180 μeV,
ET h is smaller in our case, but not small enough to satisfy the
long-junction limit [28,31]. In order to make a theoretical fit
of the product eIcR0 versus temperature for the local case, an
approximation proposed for low temperatures in Ref. [31] was
used: eIcR0/ET h = a(1 − be−aET h/3.2kBT ), where a = 10.87
and b = 1.3 were obtained in the long-junction limit
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(a)

(b)

FIG. 4. (Color online) (a) Temperature dependencies of the crit-
ical currents Ic and the critical injection currents I inj

c for the samples
B (open symbols) and C (closed symbols). Curves 1, 2, 3 are local,
nonlocal R (nearest injector), nonlocal L (farther injector) cases for
the sample B, correspondingly; and 1′, 2′, 3′ are the same for the
sample C. (b) Temperature dependence of the measured eIcR0 product
for sample B (open symbols) and the corresponding theoretical fit
(solid line).

(� � ET h) and for highly transparent SN interfaces. The
best fit, presented in Fig. 4(b) by a solid line, gives a = 0.87,
b = 1.25 for ET h = 80 μeV in our case.

So, aET h = eIcR0(T = 0) = 70 μeV instead of about
866 μeV [see Eq. (2) in Ref. [31] for the long-junction
limit]. Such a divergence is fully explicable. The use of the
approximation by Dubos et al. is quite popular, not only in
the long-junction limit and for transparent SN interfaces. A
similar discrepancy for the ratio aET h = eIcR0(T = 0) was
discussed in several works [32–34] and was associated with
nonideal interfaces and the intermediate length of the junction
L ∼ √

�Dn/�. A sharp change of the eIcR0 product with
the increase of ET h/� is presented in Fig. 1, Ref. [31]. The
interface barrier is taken into account by using a reduced
effective Thouless energy as one more fitting parameter
[32]. Our SNS junction parameters yield ET h/� � 0.4 and
r = Rb/RN � 0.2, where Rb and RN are the interface and the
copper strip resistance, correspondingly. (It should be noted
that RN = R0 − 2Rb.) Estimates have shown that with these
two factors one can obtain a decrease of eIcR0 by more than
an order of magnitude. The critical current Ic is identical for

FIG. 5. (Color online) Temperature dependence of λQ∗ for sam-
ple B data (red points) and sample C data (blue points) calculated
using Eq. (8). The solid curve is the result of theoretical calculations.

the two samples, while the farther the injectors are from the
junction, the larger the nonlocal critical current I

inj
c is in the

whole investigated temperature range from 0.37 up to 0.8 K.
The temperature dependence of the charge-imbalance

length, calculated from the experimental data using Eq. (8),
is represented in Fig. 5. In contrast to a sharp in-
crease of λQ∗(T ) ∝ (1 − T/Tc)−1/4 observed close to Tc

[12,17,20,21,29], the obtained temperature dependence is
much weaker. Qualitatively, the observed weak decrease
of λQ∗ with temperature increase can be explained as fol-
lows. In the diffusive case λQ∗ = √

DsτQ, where Ds is the
electron-diffusion constant and τQ is the charge-imbalance
relaxation time. Near the critical temperature we have τQ ∝
τεkBT /�(T ), where τε is the energy relaxation time and
�(T )/kBT represents a rough estimate for the fraction
of quasiparticles which take part in the charge-imbalance
relaxation. Taking into account that the energy relaxation time
can be considered as temperature independent near Tc, it is seen
that the temperature dependence of λQ∗ is only determined by
the temperature dependence of �−1/2 ∝ (1 − T/Tc)−1/4. This
result is well known [13,19,20].

In the intermediate temperature range, corresponding to our
experimental data, the temperature dependence of � does not
play the main part anymore. The fraction of the quasiparticles
contributing to the charge-imbalance relaxation is of order
unity. We assume that the charge-imbalance relaxation is only
due to the inelastic electron-phonon scattering. Then, the main
contribution to the temperature dependence of τQ is given
by the temperature dependence of τε. It is well known that
τε ∝ T −3 at ε < T [35]. Roughly speaking, this temperature
behavior of τε is responsible for the observed weak decrease
of λQ∗ (T ) for the presented temperature range. However,
to obtain the quantitative dependence, one should consider
the temperature dependence of the energy gap �(T ), the
temperature and energy dependence of the inelastic electron-
phonon time τε, and the energy dependence of the effective
diffusion constant Ds in a superconductor on an equal footing.
In order to take into account all these factors properly, we have
solved the kinetic equation derived in the framework of the
quasiclassical Usadel equation [36]. In contrast to the earlier
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consideration [20], we do not restrict ourselves to temperatures
close to Tc in the particular calculation of λQ∗ (T ) and take into
account the explicit temperature dependence of τε. It allows
us to explain the observed weak decrease of λQ∗ (T ) taking
place for intermediate temperatures. The detailed calculation
will be published elsewhere [30]. The obtained theoretical
dependence of λQ∗(T ) is plotted in Fig. 5 together with the
experimental data. The only fitting parameter we use is the
strength of the electron-phonon interaction. The particular
value, which we take to fit the experimental data, corresponds
to τε(T = Tc) = 3.6 ns. This value agrees fairly well with
the earlier experiments [16,37]. It is seen that our theoretical
results are in reasonable agreement with the experimental
data. Nevertheless, we can not exclude contributions of other
mechanisms to the charge-imbalance relaxation due to the
elastic impurity scattering in the presence of gap anisotropy
(nonuniformity) [38] and supercurrent [39].

V. CONCLUSION

To conclude, we have observed experimentally a nonlocal
supercurrent in planar multiterminal SN structures appearing

due to quasiparticle injection to one of the superconducting
leads of a Josephson SNS junction. The observed effect opens
a new way to provide a nonlocal control of the Josephson
current at the nanoscale. To describe the interplay of charge
imbalance and the Josephson effect in the nanoscale Josephson
system with normal-metal injectors, we have elaborated a
two-fluid model appropriate for the nonequilibrium situation.
In particular, the model was used to extract the charge-
imbalance length λQ∗ and obtain its temperature dependence at
low temperatures. Peculiarities of nonequilibrium phenomena
in mesoscopic planar SN structures at low temperature are
discussed. The experiment and model realized can be extended
to more complicated nonequilibrium cases with superposition
of charge and spin imbalances in SF nanostructures with
superconductors and ferromagnets.
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Löhneysen, Phys. Rev. B 81, 024515 (2010).
[4] S. Russo, M. Kroug, T. M. Klapwijk, and A. F. Morpurgo, Phys.

Rev. Lett. 95, 027002 (2005).
[5] P. Cadden-Zimansky and V. Chandrasekhar, Phys. Rev. Lett. 97,

237003 (2006).
[6] F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans,

and B. J. van Wees, Nature (London) 416, 713 (2002).
[7] F. J. Jedema, M. S. Nijboer, A. T. Filip, and B. J. van Wees,

Phys. Rev. B 67, 085319 (2003).
[8] M. Johnson, Appl. Phys. Lett. 65, 1460 (1994).
[9] M. Urech, J. Johansson, N. Poli, V. Korenivski, and D. B.

Haviland, J. Appl. Phys. 99, 08M513 (2006).
[10] N. Poli, J. P. Morten, M. Urech, A. Brataas, D. B. Haviland, and

V. Korenivski, Phys. Rev. Lett. 100, 136601 (2008).
[11] V. K. Kaplunenko and V. V. Ryazanov, Phys. Lett. A 110, 145

(1985).
[12] V. K. Kaplunenko, V. V. Ryazanov, and V. V. Shmidt, Zh. Eksp.

Teor. Fiz. 89, 1389 (1985) ,[Sov. Phys.–JETP 62, 804 (1985)].
[13] J. Clarke, Phys. Rev. Lett. 28, 1363 (1972).
[14] M. L. Yu and J. E. Mercereau, Phys. Rev. B 12, 4909 (1975).
[15] V. V. Ryazanov, V. V. Schmidt, and L. A. Ermolaeva, J. Low

Temp. Phys. 45, 507 (1981).
[16] H. J. Mamin, J. Clarke, and D. J. Van Harlingen, Phys. Rev. B

29, 3881 (1984).
[17] Yu. I. Latyshev and F. Ya. Nad’, Pis’ma Zh. Eksp. Teor. Fiz. 29,

610 (1979) ,[JETP Lett. 29, 557 (1979)].
[18] P. Santhanam, C. C. Chi, S. J. Wind, M. J. Brady, and J. J.

Bucchignano, Phys. Rev. Lett. 66, 2254 (1991).
[19] M. Tinkham and J. Clarke, Phys. Rev. Lett. 28, 1366 (1972).
[20] A. Schmid and G. Schön, J. Low Temp. Phys. 20, 207 (1975).
[21] S. N. Artemenko and A. F. Volkov, Uspekhi Fiz. Nauk 128, 3

(1979) ,[Sov. Phys.–Usp. 22, 295 (1979)].

[22] R. Yagi, Phys. Rev. B 73, 134507 (2006).
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