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Interplay between localized and itinerant magnetism in Co-substituted FeGa3
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The evolution of the electronic structure and magnetic properties with Co substitution for Fe in the solid solution
Fe1−xCoxGa3 was studied by means of ab initio band-structure calculations and nuclear spin-lattice relaxation
1/T1 of the 69,71Ga nuclei. The 69,71(1/T1) was studied as a function of temperature in a wide temperature range
of 2–300 K for the concentrations x = 0.0, 0.5, and 1.0. In the parent semiconducting compound FeGa3, the
temperature dependence of the 69(1/T1) exhibits a huge maximum at about T ∼ 6 K indicating the existence of
in-gap states. The opposite binary compound, CoGa3, demonstrates a metallic Korringa behavior with 1/T1 ∝ T .
In Fe0.5Co0.5Ga3, the relaxation is strongly enhanced due to spin fluctuations and follows 1/T1 ∝ T 1/2, which is a
unique feature of weakly and nearly antiferromagnetic metals. This itinerant antiferromagnetic behavior contrasts
with ab initio band-structure calculations, where a ferromagnetic state with an ordered moment of 0.5 μB/f.u.
is predicted. The results are discussed in terms of the interplay between the localized and itinerant magnetism
including in-gap states and spin fluctuations.
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I. INTRODUCTION

Solid solutions based on FeGa3 attracted much interest
because of prospective thermoelectric applications and an
intriguing low-temperature magnetic behavior. The parent bi-
nary compound FeGa3 is a rare representative of nonmagnetic
and semiconducting Fe-based intermetallic compounds [1]
akin to the small-gap semiconductors FeSi [2,3] and FeSb2

[4,5]. Because of the small value of the energy gap (Eg)
and narrow energy bands, these compounds are considered
as potential thermoelectric materials demonstrating extremely
high Seebeck coefficient values of |S| ≈ 500 mV/K at 50 K
and |S| ≈ 45 mV/K at 10 K for FeSi [6] and FeSb2 [7],
respectively. The value of Eg in FeGa3 was determined by
various theoretical and experimental techniques, including ab
initio band-structure calculations (Eg = 0.4–0.5 eV) [8,9],
high-temperature magnetometry (Eg = 0.3–0.5 eV) [10], pho-
toelectron spectroscopy (Eg � 0.8 eV) [10], and resistivity
measurements (Eg = 0.14 eV) [11]. As discussed in Ref. [9],
the dominant contribution to the density of states (DOS) near
the Fermi level in FeGa3 comes from the Ga 4p states and
from predominantly nonbonding Fe 3d states at the top of
the valence band. The band gap originates from a strong
hybridization of the Fe d and Ga p atomic orbitals. The
formation of the energy gap in FeGa3 is reminiscent of that
in strongly correlated 3d and 4f Kondo insulators including
FeSi and FeSb2, which are likewise characterized by a small
hybridization gap at the Fermi level [12,13].

*Corresponding author: gippius@mail.ru

It has been reported [14] that already a few percent cobalt
doping in FeGa3 drastically changes the properties of the par-
ent compound. Namely, the 5% Co-doped Fe0.95Co0.05Ga3 ex-
hibits properties of a bad metal and a Curie-Weiss paramagnet,
in contrast to semiconducting and nonmagnetic FeGa3. Our
ab initio band-structure calculations have shown that the Co
doping shifts the Fermi level position towards the conduction
band formed by the 3d (Fe/Co) and 4p (Ga) orbitals, thus
leading to metallic properties and enabling precise tuning of
the power factor PF = S2σ (Ref. [9]), where σ is the electrical
conductivity. According to the resistivity data, the metallic
state for the Fe1−xCoxGa3 solid solution is achieved when
x = 0.125 [9]. The end member of the solid solution, CoGa3,
exhibits good metallic properties with residual resistivity ratio
at the order of 100 and a temperature-independent paramag-
netic susceptibility of conduction electrons, which is, however,
outweighed by the core diamagnetic contribution [1,14].

Remarkably, the Ge doping on the Ga site has an even
more dramatic effect on the magnetism [15]. The FeGa3−yGey

solid solution reveals ferromagnetic ordering and an associated
quantum critical behavior close to the critical concentration of
yc = 0.13, where the ferromagnetism emerges. In contrast, the
Fe1−xCoxGa3 solid solution remains paramagnetic or nearly
paramagnetic for all Co concentration studied so far [15].

The Fe1−xCoxGa3 solid solution exists for any Co concen-
tration (x) and demonstrates a noticeable deviation from the
Vegard behavior, even though the crystal structure and lattice
symmetry remain the same for all Co concentrations [9]. This
crystal structure should be considered as a three-dimensional
framework constructed by polyhedra [Fig. 1(a)]. The main
building unit is a pair of face-shared bicapped trigonal prisms
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FIG. 1. (Color online) Polyhedral representation of the (a) crystal
structure of the Fe1−xCoxGa3 solid solution, and (b) its building unit—
a pair of bicapped trigonal prisms centered by the T –T dumbbell.

centered by a T –T dumbbell, where T = Fe, Co [Fig. 1(b)].
The assembly of the building units is arranged in compliance
with the four-fold screw axis, which is parallel to the c

direction, such that face-shared filled prisms and empty spaces
alternate in a staggered order. Thus the assembly of polyhedra
constructs the entire, almost isotropic crystal structure. In
support of this, the isostructural compounds FeGa3 [16] and
RuIn3 [17] show no significant anisotropy in their transport
properties. On the other hand, electronic properties and their
evolution upon doping may critically depend on the local
structure, i.e., whether the Fe–Fe, Fe–Co, or Co–Co dumbbells
are formed [9]. While no ordering of the Fe and Co atoms was
observed on the macroscopic level, the 69Ga NQR local probe
revealed the primary formation of homo-atomic pairs Fe–Fe
and Co–Co, although the Fe–Co dumbbells are also present in
a significant amount [9].

In this paper, we report the results of the systematic study
of the evolution of the electronic structure and magnetic
properties with Co substitution for Fe in the solid solution
Fe1−xCoxGa3, including ab initio band-structure calculations
(0�x �1), 69,71Ga and 59Co NMR, and nuclear spin-lattice
relaxation 1/T1 of the 69,71Ga nuclei (x = 0.0, 0.5, and 1.0) in
the temperature range 2–300 K.

II. EXPERIMENTAL

Single-phase powder samples of the Fe1−xCoxGa3 solid so-
lution for various x were prepared by mixing the elements (Fe:
powder, Acros Organics 99%; Co: powder, Alfa Aesar 99.8%;
Ga: bar, Aldrich 99.9999%) with the Fe:Co:Ga molar ratio of

(1 − x) : x : 15 using Ga both as a reactant and flux medium.
Mixtures of the elements were sealed in precarbonized quartz
ampoules under vacuum (less than 10−2 torr) and annealed in
a programmable furnace at 900 ◦C for 55 hours to obtain a
homogeneous melt. After this, a furnace was slowly cooled to
400 ◦C for 125 hours and further to ambient temperature for
5 hours. Excess Ga was separated at 40 ◦C using an Eppendorf
5804 R centrifuge, yielding needlelike silvery-gray crystals
with a length up to several millimeters. The obtained crystals
were purged from the remainder of Ga with diluted 0.5 M HCl
and washed consecutively with distilled water and acetone.
In our previous study of the solid solution Fe1−xCoxGa3 [9],
we found perfect agreement between the nominal and actual
chemical composition of the obtained crystals using the EDX
spectroscopy and established the composition dependence of
the Fe1−xCoxGa3 unit cell parameters. Thus, in the present
study, we used x-ray powder diffraction technique (Bruker D8
Advance diffractometer, Cu-Kα1 radiation, Lynxeye detector)
to confirm both phase purity of the obtained crystals and their
chemical composition using the calculated values of the cell
parameters.

The 69,71Ga NMR/NQR measurements were performed in
the temperature range 2–300 K utilizing a home-built phase
coherent pulsed NMR/NQR spectrometer. The 69,71Ga NQR
spectra were measured using a frequency step point-by-point
spin-echo technique. At each frequency point, the area under
the spin-echo magnitude was integrated in the time domain
and averaged by a number of accumulations, which depends
on the sample and temperature. Nuclear spin-lattice relaxation
rates were measured using the so-called “saturation recovery”
method. Nuclear magnetization recovery curves M(t) were
obtained from the recovery of the spin-echo magnitude as a
function of the time interval τ between the saturation pulse
comb and the π

2 − π spin-echo sequence.

III. RESULTS AND DISCUSSION

A. Ab initio calculations

The FPLO (full potential local orbitals) code was used
for the electronic structure calculations [18]. FPLO performs
density-functional (DFT) calculations within the local density
approximation (LDA) for the exchange-correlation potential
[19]. The integrations in the k space were performed by an
improved tetrahedron method [20] on a grid of 12 × 12 × 12 k

points evenly spread in the first Brillouin zone. The calculation
of the spin-polarized state of the Fe1−xCoxGa3 solid solution
was done in the following steps. Firstly, an optimization of
atomic coordinates was performed for different x within the
virtual crystal approximation (VCA) using the experimental
values of lattice parameters [9]. Secondly, self-consistent
spin-polarized calculations were performed for the relaxed
structure. In addition to the VCA calculations, two types
of ordering of the T atoms (T = Fe, Co) for x = 0.5 were
investigated. Using the results of the crystal structure deter-
mination for x = 0.5 [9], we constructed two models, the first
one with homonuclear Fe–Fe and Co–Co dumbbells (space
group Cmmm, a = b = 8.8298 Å, c = 6.4654 Å) and the
second one with heteronuclear Fe–Co dumbbells (space group
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FIG. 2. (Color online) Total magnetic moment per T atom as a
function of x in Fe1−xCoxGa3 as obtained within the virtual crystal
approximation.

Pmn21, a = 6.4654 Å, b = c = 6.2436 Å). Spin-polarized
states were calculated for these two models.

We considered both ferromagnetic and antiferromagnetic
spin configurations. However, only the ferromagnetic config-
uration could be stabilized. A variety of antiferromagnetic
spin patterns constructed within the unit cell of Fe1−xCoxGa3

and within doubled unit cells all converged to a nonmagnetic
solution lying higher in energy than the ferromagnetic solution.
Therefore DFT calculations on the LDA level put forward
the ferromagnetic behavior of Fe1−xCoxGa3. The variation
of the total magnetic moment M with x, as obtained within
the virtual crystal approximation, is illustrated in Fig. 2. It
shows that the maximal magnetic moment is achieved for
x = 0.5. A similar result was obtained by Singh [21] for
the same number of injected electrons upon the substitution
of Ge for Ga in FeGa3−yGey . Indeed, on the VCA level,
the electronic structure of doped FeGa3 evolves in a nearly
rigid-band manner. Therefore no difference between the Fe/Co
and Ga/Ge doping should be expected.

The results of our calculations suggest that the half-metallic
ferromagnetic state (Fig. 3, left) develops for 0 < x � 0.5.
It turns to a metallic ferromagnetic state at 0.5 < x < 0.75
and eventually becomes nonmagnetic at 0.75 � x � 1. This
scenario is rather insensitive to the local order. The ordered
supercells at x = 0.5 also yield a ferromagnetic state with
the local moment of 0.48 μB for the heteronuclear (Fe–Co)
dumbbells and 0.41 μB for the homonuclear (Fe–Fe, Co–Co)
dumbbells (Fig. 3, right). Fe0.5Co0.5Ga3 has the density of
states (DOS) 0.59, 1.53, and 0.65 st./(eV f.u.) at the Fermi
energy for the sum of spin directions for the calculation within
the VCA, homodumbbells and heterodumbbells approach,
respectively. For comparison, for pure CoGa3, we found that
the value of DOS at the Fermi energy is 0.93 st./(eV f.u.).
Using this DOS value at the Fermi level N (EF ), we calculated
the value of the Sommerfeld coefficient γ = (1/3)π2N (EF )k2

B= 2.19 mJ/(mol K2) for CoGa3, which is in a good agreement
with the experimental value of 2.6 mJ/(mol K2) obtained in
Ref. [14] from the specific heat data.

FIG. 3. Density of states plots for x = 0.5 calculated within the
virtual crystal approximation (left) and for the ordered supercell with
the homodumbbells Fe–Fe and Co–Co (right). Note that the DOS is
for different spin channels here, whereas the values quoted in the text
are for the total DOS at the Fermi level, N (EF ) = N (EF )spin-up +
N (EF )spin-down.

The ferromagnetic ground state is indeed observed
in FeGa3−yGey . The experimental ordered moment of
0.27 μB/f.u. at y = 0.41 is somewhat lower than the calculated
one (μLDA ∼ 0.4 μB/f.u. at y = 0.4), as typical for itinerant
magnets, where spin fluctuations, which are missing in LDA,
lead to a substantial reduction in the ordered moment. In the
case of Fe1−xCoxGa3, the lack of magnetic ordering prevents
us from a direct comparison of μLDA to the experiment.
Moreover, we found a qualitative difference between the
ferromagnetic behavior, as predicted by LDA, and the antifer-
romagnetic behavior in Fe0.5Co0.5Ga3, which is evidenced by
the negative θCW observed in Fe1−xCoxGa3 for 0.1 < x < 0.72
[15] and additionally supported by the spin-lattice relaxation
presented below.

B. NMR in Fe1−xCoxGa3

There are three NMR active and naturally abundant isotopes
in Fe1−xCoxGa3 compounds suitable for NMR investigation:
69Ga, 71Ga, and 59Co. Our previous 69,71Ga NQR investigations
[9] revealed high values of the quadrupole frequencies for both
Ga positions in the Fe1−xCoxGa3 solid solution series. Two
inequivalent positions of Ga lead to very broad 69,71Ga NMR
spectra with overlapping singularities of the powder pattern.
Thus, for the parent semiconductor compound FeGa3 exhibit-
ing the strongest quadrupole splitting, we have measured only
the central transition line of the field-sweep NMR spectrum
of the 71Ga isotope, which has a lower quadrupole frequency
(Fig. 4). This spectrum is a textbook example of the NMR
central transition powder pattern in the presence of quadrupole
interactions in the second order of perturbation theory. It
consists of two contributions: the characteristic double horn
line with a step in the middle originating from the Ga1 position
with a low asymmetry parameter η = 0.1 (green line) and the
single peak with typical shoulders at the edges, which stems
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FIG. 4. (Color online) FeGa3: field-sweep NMR spectrum of the
central (− 1

2 ↔ + 1
2 ) transition of the 71Ga nuclei measured at T =

6.7 K at 72.0 MHz. Thin lines (blue dashed and green solid) are the
numerical simulation for the Ga1 site (η = 0.1, νQ = 26.0 MHz) and
Ga2 site (η = 0.9, νQ = 21.8 MHz). The thick red line is the resulting
simulation spectrum.

from the Ga2 site with the high asymmetry parameter η = 0.9
(blue dashed line). One can see that the observed 71Ga NMR
spectrum coincides very well with our NQR results reported
in Ref. [9].

With the Co substitution for Fe in Fe1−xCoxGa3, the 71Ga
NMR central transition line broadens and loses its sharp
singularities, reflecting the increasing inhomogeneity of the
electric field gradient (EFG) distribution, in perfect agreement
with the broadening of Ga NQR lines. This is demonstrated
in Fig. 5, where the field-sweep spectrum of Fe0.75Co0.25Ga3

is shown. Interestingly, a strong line appears in the field range
of 7.0–7.5 T. This line can be assigned to a 59Co NMR signal
with some broad background from the 69Ga isotope.

For the opposite side binary compound CoGa3, the NMR
spectrum is completely dominated by an extremely narrow
59Co line observed very close to the Larmor field position of
the 59Co nuclei at 72.0 MHz (inset of Fig. 5). To measure
such a narrow line properly, we had to reduce our spin-echo
pulse sequence to one pulse and use the fast Fourier transform
(FFT) technique at a fixed magnetic field of 7.157 T. The FFT
59Co spectra measured for CoGa3 at various temperatures are
presented in the inset of Fig. 5. The striking narrowness of
the 59Co NMR line shows that the Co atom is in a completely
nonmagnetic state, donating all nine valence electrons to the
conduction band, which results in good metallic properties of
CoGa3 [14].

The central transition line of the 59Co NMR spectra
in CoGa3 exhibit relatively low second-order quadrupole
splitting of about 50 kHz. The reason for this effect might
be an effective dynamic screening of the lattice contribution
to the electric field gradient (EFG) by conduction electrons,
while the on-site contribution to the EFG is almost zero due
to an absence of electrons localized on the valence 3d and 4s

shells.

FIG. 5. (Color online) Field-sweep NMR spectrum of
Fe0.75Co0.25Ga3 measured at 72.0 MHz at 19 K (red spheres).
Vertical dashed lines indicate the position of the Larmor fields for
71Ga and 69Ga. The arrow shows the position of the Larmor field
for 59Co. Blue solid line shows 59Co one pulse FT NMR spectrum
measured at 22.6 K at H = 7.157 T in CoGa3 recalculated to the
field domain. Also the position of the ghost 27Al line is shown. (Inset)
59Co one pulse NMR FFT spectra measured at a fixed magnetic field
of 7.157 T and a reference frequency of 72.0 MHz.

C. Nuclear spin-lattice relaxation (NSLR)

The nuclear spin-lattice relaxation rate (NSLR) 1/T1 was
measured using the 69Ga nuclei for the Ga1 NQR line (see the
bottom inset in Fig. 6) in a wide temperature range of 3–300 K
for three Fe1−xCoxGa3 samples with the Co concentrations
x = 0, 0.5, and 1.0. For the edge binary compounds, the
magnetization recovery curves were single exponential, while
for Fe0.5Co0.5Ga3 the stretched exponent function provides
better fitting results. The temperature dependence of 69(1/T1)

FIG. 6. (Color online) Temperature dependence of the 69Ga
NSLR at the Ga1 site in FeGa3. (Bottom inset) The 69Ga NQR
spectrum in FeGa3 measured at 77 K. (Top inset) Modified “narrow
band-small energy gap” model at T = 0 (see text).
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FIG. 7. (Color online) Comparison of the 69Ga spin-lattice relax-
ation rate in FeGa3 (open squares) and the 123Sb relaxation rate in
FeSb2 (closed circles, adopted from Ref. [5]). Solid lines are best fits
using the model described in the text.

in FeGa3 is presented in Fig. 6. Surprisingly, it demonstrates
a huge unexpected maximum at T ≈ 6 K with almost a one
order of magnitude difference between the 1/T1 values at 6
and at 50 K. As will be shown below, this maximum indicates
the existence of the in-gap states just below the conduction
band. A very similar behavior was observed earlier for the
123Sb NSLR in FeSb2 [5]. The comparison of these NSLR
data for FeGa3 and FeSb2 is presented in Fig. 7.

For a quantitative description of our 69(1/T1) data in FeGa3,
we used the modified “narrow band–small energy gap” model
[22]. It contains two rectangular bands of width W separated by
a main gap of 2
 with a narrow peak of in-gap states of width
w with a density of states ρi(ε)∼ρ0 exp(−T/T0) separated
by a small gap of 2δ from the bottom of the conduction
band (see Fig. 6, top inset). There are two main temperature
regimes in this model. In the low-temperature (LT) regime,
the NSLR mechanism is caused by the activation of the
localized in-gap electrons over a small gap 2δ into the empty
conduction band. This leads to the gradual increase of Ga
1/T1(T ) with increasing temperature from the lowest T ∼ 3 K
to the temperature of the NSLR maximum around 6 K. The
narrow in-gap peak ρi(ε) disappears at higher temperatures
due to its broadening and overlap with the conduction band,
resulting in the decreasing NSLR and in the appearance of a
clearly pronounced minimum on 1/T1(T ) at 50–60 K. Then,
in the high-temperature (HT) regime, 1/T1 starts increasing
again due to the electron activation across the main energy
gap 2
.

In general, the NSLR can be expressed as

1

T1
= �kBT

ω

∑
q

A2F (q)χ ′′
q,w, (1)

where χ ′′
q,w ≈ π

kBT

∫
dεf (ε)[1 − f (ε)]ρ2(ε) is the imaginary

part of the dynamical susceptibility; f (ε) = [exp(ε/T ) +
1]−1 is the Fermi distribution function, A is the hyper-
fine interaction constant, F (q) is the form-factor depend-

ing on the geometry. Assuming a weak q and ω depen-
dence of A and F (q) and using the equation −T δf/δε =
f (ε)[1 − f (ε)], one obtains after integration of Eq. (1)
over the rectangular bands:

1

T1
∝ T

{
ρ2

d [f (
) − f (
 + W )] + ρ2
i [f (δ) − f (δ + ω)]

}
.

(2)

Here, the first term is responsible for the activationlike
relaxation behavior in the HT regime, while the second
one causes the pronounced maximum in the LT regime.
To complete the relaxation scenario, one should add to
Eq. (2) the phonon-induced quadrupole relaxation involving
two-phonon (Raman) scattering, which is active already at
moderate temperatures. Indeed, the EFG at the Ga site is
strongly affected by thermal fluctuations. The interaction of the
fluctuating EFG with the quadrupole moments of the Ga nuclei
causes the quadrupole relaxation, for which the relaxation rate
increases with temperature as T 2 (see Refs. [23,24]):

1

T1
∝ 9k2

B

8π3�3

e2γQ

R3
T 2, (3)

where γ is the gyromagnetic ratio, Q the quadrupole moment,
and R the interatomic distance. Adding Eq. (3) in a more
general power form 1/T1 = AT n to the expression (2), one
arrives for FeGa3 at

1

T1
∝ T

{
ρ2

d [f (
) − f (
 + W )]

+ ρ2
i [f (δ) − f (δ + ω)]

} + AT n. (4)

Using Eq. (4), we succeeded to fit the experimental 69Ga
1/T1 data in the entire investigated temperature range 3–300 K.
The best fit of the experimental 1/T1 data to Eq. (4) (blue solid
line in Fig. 7) gives the power factor n ≈ 2 confirming the T 2

behavior characteristic for the phonon relaxation mechanism
driven by the two-phonon (Raman) scattering.

For comparison, we used Eq. (4) to fit the experimental
123Sb 1/T1(T ) data for FeSb2 between T = 2.5–150 K adapted
from Ref. [5]. The best fitting curve for FeSb2 is shown in
Fig. 7 by the red solid line. The resulting fitting parameters
for FeSb2 and FeGa3 are presented in Table I. As seen from
these values, the in-gap states in both compounds indeed form
a very narrow layer with a width of w = 1 K (26 K) separated
from the bottom of the conduction band only by 2δ = 13 K
(8 K) for FeGa3 (FeSb2).

It is worth comparing the relative capacity of the in-gap state
level in FeGa3 and FeSb2 estimated as n0 = (ρ0w)/(ρWW ),
where ρW = 1 is the normalized height of the main rectangular
bands. As seen from Table I, this value is about 16 times
higher in FeGa3 than in FeSb2. This explains the much stronger
and more pronounced 1/T1(T ) maximum at low temperatures
observed in FeGa3 in comparison to that in FeSb2 (Fig. 7).
The obtained main gap Eg = 2
 value in FeGa3 is in perfect
agreement with our ab initio calculations 2
ab initio ≈ 0.4
eV (≈4700 K) [9]. From this result, one can expect different
scenarios for 1/T1(T ) in the HT regime for FeGa3 and FeSb2.
Actually, the energy gap value of 2
 for FeGa3 is nearly
seven times larger than that for FeSb2: 5500 K versus 800 K,
respectively. This means that in the investigated HT regime
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TABLE I. Best fit parameters according to the modified “narrow band-small energy gap” model [22] (see text and upper inset of Fig. 6).
Accuracy of the in-gap states fitting parameters (ω,δ,ρ0,T0) is about 10–20%.

Parameter FeGa3 FeSb2

In-gap layer separation from the conduction band, 2δ 13 K 8 K
Main gap, 2
 5500 K 800 K
In-gap layer width, w 1 K 26 K
Main band width, W 75 K 1100 K
Zero T height of the in-gap layer, normalized to the main rectangle Band height, ρ0 1.73 K−1 0.06 K−1

Characteristic temperature scale for in-gap state density of states T0 11.5 K 10.6 K
Relative zero T capacity of the in-gap layer, n0 = (ρ0w)/(ρWW ) 2.3 × 10−2 1.4 × 10−3

40–300 K the thermal activation of electrons across the main
gap is rather inefficient for FeGa3 yet.

Summarizing the above consideration, the spin-lattice
relaxation in FeGa3 and FeSb2 can be decomposed into three
parts: (

1

T1

)
�

=
(

1

T1

)
in-gap

+
(

1

T1

)
act

+
(

1

T1

)
ph

, (5)

where (T −1
1 )in−gap is the magnetic relaxation caused by

activation from the in-gap states into conduction band; (T −1
1 )act

is the magnetic relaxation due to activation of electrons over
the main energy gap Eg = 2
, and (T −1

1 )ph is the quadrupole
relaxation caused by phonons.

The interplay between these components determines the
observed temperature behavior of the spin-lattice relaxation
in FeGa3 and FeSb2. At low temperatures (T <40 K), the
first term of Eq. (5) gives the main contribution to 1/T1 in
both FeGa3 and FeSb2 providing a pronounced maximum of
1/T1(T ) at Tmax ≈ 6 and 10 K, respectively. With increasing
temperature, other terms in Eq. (5) start to dominate causing
the fast increase in 1/T1. In FeSb2, the energy gap Eg

is relatively small and the main relaxation channel is the
activation with an exponential growth of 1/T1. In contrast,
FeGa3 exhibits a much larger gap value making the activation
process ineffective, which results in a dominance of the phonon
relaxation in the temperature range 40–300 K.

This relaxation scenario in FeGa3 is independently con-
firmed by the isotope effect analysis. In the case of a pure
magnetic relaxation mechanism, the ratio of the relaxation
rates 69(1/T1)/71(1/T1) of the 69Ga and 71Ga isotopes should
be equal to (69γ /71γ )2 = 0.62, where γ is the gyromagnetic
ratio of the corresponding nuclei, while in the opposite case of
a pure quadrupole relaxation mechanism 69(1/T1)/71(1/T1) =
(69Q/71Q)2 = 2.51, where Q is the quadrupole moment of the
nuclei. The experimental 69(1/T1)/71(1/T1) data as a function
of temperature are shown in Fig. 8. As clearly seen from
this figure, in the low-temperature range from 2 to 40 K the
relaxation mechanism is exclusively magnetic, which implies
that the in-gap states in FeGa3 manifest pronounced magnetic
behavior. With further increase in temperature, the quadrupolar
contribution to the total relaxation rate increases rapidly.
Finally, above 100 K, one arrives at the mixed case of both
magnetic and quadrupole channels of nuclear relaxation with
the pronounced domination of the latter. This result is in good
agreement with the analysis described above.

The in-gap states seem to be responsible for the giant
thermopower observed at the verge of magnetism if Fe based

semimetals FeSb2 [7,25], Fe1−xMxSi alloys (M = Co, Ir, Os)
[26] and FeGa3 [9,11]. Just recently, in-gap states earned
an increased attention because the question arises if these
metallic and magnetic states are located at the surface and
therefore have a topological origin. SmB6 can be considered
as a prototype of a topological semimetal [27].

Owing to its good metallic properties, the opposite edge
binary compound CoGa3 exhibits a Korringa-like linear 69Ga
spin-lattice relaxation (Fig. 9) caused by the contact interaction
between the conduction electrons and 69Ga nuclei:(

1

T1

)
K

= π�
3γ 2

e γ 2
n A2

hfN
2(EF )kBT = aKT , (6)

where γe and γn are the gyromagnetic ratios for electron and
nucleus, respectively, Ahf is the contact hyperfine coupling
between conduction electrons and nuclei, N (EF ) is the density
of states at the Fermi level, and aK is the Korringa coefficient.
As seen from Fig. 9, the experimental 69[1/T1(T )] data for
CoGa3 can be perfectly approximated by Eq. (6) in the entire
investigated temperature range of 12–300 K with the best
fit value of aK = 0.15 (here and further T is in K and T1

is in seconds). Using the experimental Korringa constant
value aK = 1/T1T = 0.15K−1s−1 for CoGa3 and Eq. (6), we
estimated the hyperfine constant on the Ga as Ahf (69Ga) =
7.7T/μB .

FIG. 8. (Color online) Ratio of the spin-lattice relaxation rates
for 69Ga and 71Ga as a function of temperature in FeGa3. Dashed
lines indicate the values for pure quadrupolar and pure magnetic
relaxation mechanism.
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FIG. 9. (Color online) Temperature dependence of the spin-
lattice relaxation rate 1/T1 for FeGa3, CoGa3, and Fe0.5Co0.5Ga3.
Solid lines are best fits using the models described in the text.

A very fast relaxation rate is shown by the Fe0.5Co0.5Ga3

compound: more than one order of magnitude faster than in
CoGa3 (Fig. 9). At a first glance, it is quite natural since
according to our band-structure calculations [9] the ratio of the
squared densities of states at the Fermi level for Fe0.5Co0.5Ga3

and CoGa3 N2
EF

(Fe0.5Co0.5Ga3)/N2
EF

(CoGa3) = 7.26. There-
fore the linear Korringa coefficient for Fe0.5Co0.5Ga3 can be
estimated as

aK (Fe0.5Co0.5Ga3) = 7.26 × aK (CoGa3) = 1.09. (7)

The linear Korringa function 1/T1 = 1.09 × T is plotted in
Fig. 9 by the dashed line. It is indeed above the relaxation
data for CoGa3 but still far below the experimental 1/T1

data for the Fe0.5Co0.5Ga3 compound. Moreover, it has a
wrong decline in the double logarithmic scale of Fig. 9. This
result unambiguously shows that the spin-lattice relaxation in
Fe0.5Co0.5Ga3 is dominated by a mechanism other than the
Korringa mechanism. The model that describes our relaxation
data in Fe0.5Co0.5Ga3 is the Moriya’s spin-fluctuation theory
[28]. According to this theory for weak (low TN ) or nearly anti-
ferromagnetic (AF) metals, the nuclear spin-lattice relaxation
is given by the equation

1

T1
= αT

(T − TN )1/2
. (8)

For T � TN ≈ 0, Eq. (8) is reduced to a square root temper-
ature dependence 1/T1 ∝ T 1/2, which is a unique feature of
weakly and nearly AF metals [28]. As shown in Fig. 9, our
experimental 1/T1 data for Fe0.5Co0.5Ga3 can be successfully
fitted by a combination of the linear Korringa term and
spin-fluctuation contribution with dominance of the latter:

1

T1
= 1.09 × T + 20.6 × T 1/2. (9)

This result is very similar to that observed by 55Mn NMR in
β-Mn, which is an AF metal subjected to a strong magnetic
frustration (TN ≈ 0) [29]. The 55Mn relaxation in β-Mn is
mainly due to spin fluctuations, with a minor contribution from
contact Korringa interactions: 1/T1 = 1.7×T + 35.3×T 1/2

(same units for T and T1). Pure spin-fluctuation scenario of
nuclear spin-lattice relaxation with 1/T1 ∝ T 1/2 in the wide
temperature range of 2–300 K was observed by 139La NMR in
filled skutterudites La0.9Fe4Sb12 [30].

IV. SUMMARY AND CONCLUSIONS

Our experimental and computational study puts forward
the complex magnetic behavior of the Fe1−xCoxGa3 solid
solution. According to the NSLR data, the median com-
pound Fe0.5Co0.5Ga3 reveals strong spin fluctuations that
are characteristic of a weakly antiferromagnetic metal. This
observation is consistent with the negative (antiferromag-
netic) θCW obtained in the Curie-Weiss fit of the magnetic
susceptibility reported in literature [14–16]. However, the
Curie-Weiss behavior at high temperatures is generic for
itinerant ferromagnets only [31]. Itinerant antiferromagnets
will typically show a weak temperature dependence of χ

above TN [31]. Although itinerant electrons may accidentally
mimic the Curie-Weiss-type behavior at high temperatures,
it is more plausible to assume that the Fe1−xCoxGa3 solid
solution combines features of the itinerant and localized
antiferromagnets.

In fact, both itinerant and localized magnetism can be
envisaged for this system. Metallic conductivity of the
Fe1−xCoxGa3 solid solutions with x � 0.075 implies the
sizable concentration of itinerant electrons. On the other hand,
the Fe/Co disorder on the transition-metal site may lead to
at least partial localization, because the Fe and Co 3d states
provide dominant contribution at the Fermi level [9,21]. The
latter mechanism is not operative in FeGa3−yGey , where the
disorder is introduced on the Ga site. Indeed, the Ge containing
solid solutions are ferromagnetic [15], as predicted by LDA.
They do not show any signatures of the localized magnetism.
Their Curie-Weiss behavior at high temperatures can be well
ascribed to the itinerant ferromagnetism. The ratio of the
effective and ordered moments in the Rhodes-Wohlfarth plot
follows the trend typical for itinerant ferromagnets (see Fig. 6
in Ref. [15]).

Remarkably, the apparent antiferromagneticlike behavior of
Fe1−xCoxGa3 is not matched by the LDA results that predict
the ferromagnetic nature of electron-doped FeGa3 irrespective
of the doping mechanism. While band-structure calculations
do not fully account for the Fe/Co disorder, our results for
the ordered supercells suggest that the ferromagnetic nature
of Fe1−xCoxGa3 is quite robust within LDA and only weakly
depends on the local order of the Fe and Co atoms. Therefore
the discrepancy between LDA and the experiment can not be
ascribed to a simple mixing of the Fe and Co atoms forming
the Fe–Fe, Fe–Co, and Co–Co dumbbells. It rather pertains
to a more complex interplay of the itinerant and localized
electrons that arise from this mixing. This conjecture is in line
with the computational results by Singh [21], who was able
to stabilize an antiferromagnetic solution in pure FeGa3, but
only by adding the on-site Coulomb repulsion U that creates
local moments on Fe.

We have shown that in the parent compound FeGa3,
the 69,71Ga spin-lattice relaxation rate 1/T1(T ) reveals an
unexpected huge maximum at low temperatures with an
essentially magnetic relaxation mechanism indicating the
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presence of an enhanced density of in-gap states placed
near the Fermi energy. These states frequently are assigned
being responsible for the giant thermopower in Fe based
semimetals at low temperatures [7,11,25,26]. Only above
∼70 K, when the in-gap level is completely empty, the
nuclear spin-lattice relaxation exhibits a crossover to a
phonon mechanism characteristic of quadrupolar nuclei in
nonmagnetic systems. The other end member, CoGa3, is a
band metal. It demonstrates the metallic Korringa behavior
of the spin-lattice relaxation with 1/T1 ∝ T . The mixing of
these well-understood FeGa3 and CoGa3 compounds triggers
strong and unexpected antiferromagnetic spin fluctuations.
Indeed, in the intermediate Fe0.5Co0.5Ga3 compound, 1/T1(T )
is strongly (by nearly two orders of magnitude) enhanced due
to spin fluctuations, with 1/T1 ∝ T 1/2 in perfect agreement
with Moriya’s spin-fluctuation theory for itinerant magnetic
systems. Such a 1/T1(T ) behavior is a unique feature of
weakly and nearly AF metals. The Fe1−xCoxGa3 compounds
with x close to 0.5 seem to be very close to magnetic ordering,
which is prohibited probably by strong spin fluctuations and
the structural disorder between the different T–T dumbbells,

in contrast to the FeGa3−yGey system, which has a regular
arrangement of solely homoatomic Fe–Fe dumbbells and
exhibits a FM order at certain doping values.
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