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We present an exact solution for a class of one-dimensional compass models which stand for interacting
orbital degrees of freedom in a Mott insulator. By employing the Jordan-Wigner transformation we map these
models on noninteracting fermions and discuss how spin correlations, high degeneracy of the ground state, and
Z2 symmetry in the quantum compass model are visible in the fermionic language. Considering a zigzag chain
of ions with singly occupied eg orbitals (eg orbital model) we demonstrate that the orbital excitations change
qualitatively with increasing transverse field, and that the excitation gap closes at the quantum phase transition
to a polarized state. This phase transition disappears in the quantum compass model with maximally frustrated
orbital interactions which resembles the Kitaev model. Here we find that the finite transverse field destabilizes
the orbital-liquid ground state with macroscopic degeneracy, and leads to peculiar behavior of the specific heat
and orbital susceptibility at finite temperature. We show that the entropy and the cooling rate at finite temperature
exhibit quite different behavior near the critical point for these two models.

DOI: 10.1103/PhysRevB.89.104425 PACS number(s): 75.10.Jm, 05.30.Rt, 75.25.Dk, 75.40.Cx

I. INTRODUCTION

In recent years the growing interest in orbital degrees
of freedom for strongly correlated electrons in transition-
metal oxides (TMOs) [1–4], was amplified by complex
phenomena uncovered in theory and experiment, such as
the interplay between spin and orbital degrees of freedom
[5–7], consequences of orbital degeneracy in the perovskite
vanadates [8], phase transitions to magnetic and orbital order
[9], dimerization in ferromagnetic spin-orbital chains [10],
entanglement entropy spectra in one-dimensional (1D) models
[11], and exotic types of spin order triggered by spin-orbital
entanglement in the Kugel-Khomskii models [12]. Electrons
are strongly correlated and localize due to large on-site
Coulomb interaction U—then they interact by superexchange.
Spin and orbital degrees of freedom are generally entangled
and influence each other on superexchange bonds [7,11,13],
or due to local spin-orbit coupling [14,15]. In spin-orbital
systems an electron can break into a spinon and an orbiton
[16], as observed recently in Sr2CuO3 [17]. This motivates a
more careful study of orbital models in low dimension. Such
models for Mott insulators depend on the type of partly filled
3d orbitals, with either eg symmetry [18–21], or t2g symmetry
[22–25].

In TMOs with the perovskite structure active orbitals are
selected by the octahedral crystal field due to the oxygen ions
which splits the 3d quintet at a transition-metal ion into a
t2g triplet and an eg doublet at higher energy. Well-known
examples of eg systems with partly filled eg orbitals by one spin
flavor which are of interest here are (i) d4 ions (in LaMnO3,
Rb2CrCl4, or KCrF3) [26], (ii) d7 ions in LiNiO2 [27], or
(iii) d9 ions [1] in KCuF3, K3Cu2F7, or K2CuF4 [12]. In all
these systems the t2g orbitals are either completely filled (in
the d7 and d9 configurations), or contain one electron each
(in the d4 configuration)—in the latter case their spins are
aligned with the spin of an eg electron due to Hund’s exchange.
The two eg orbitals represent then the dynamical degrees of
freedom.

Here we focus on ferromagnetic states with spins fully
polarized with only the orbital degrees of freedom being
active. Orbitals are interacting via generically anisotropic
superexchange interactions ∝Jγ depending on the bond
direction γ = a,b. Thus a typical orbital superexchange model
has the following anisotropic form:

HJ =
∑

〈ij〉‖γ
Jγ T

γ

i T
γ

j . (1.1)

This model stands for intrinsically frustrated directional orbital
interactions on the square lattice, and may represent both
eg [18] and t2g orbital interactions [22]. In the latter case
the operators include just one of the orthogonal pseudospin
components at each bond and are Ising-like. This form of
interaction is found as well in the compass models [28–39],
and in the Kitaev model on the honeycomb lattice [40–42].

The interactions that are considered here are defined by
the pseudospin operators T

γ

i for two active orbitals (for T =
1/2), and we define them as linear combinations of the Pauli
matrices {σx

i ,σ
y

i } representing the two pseudospin components
on odd/even bonds [43],

σ̃i(±θ ) ≡ cos(±θ/2) σx
i + sin(±θ/2) σ

y

i . (1.2)

These operators define the generalized compass model (GCM)
considered in this paper. In the 1D GCM the interactions
depend on the xth and yth orbital component in Eq. (1.2), but
the exchange interactions are bond dependent as in Eq. (1.1)
and alternate between even (Je) and odd (Jo) exchange bonds
along the 1D chain of N sites (we consider periodic boundary
conditions, and even values of N ),

HJ (θ ) =
N/2∑
i=1

{Joσ̃2i−1(θ )σ̃2i(θ ) + Jeσ̃2i(−θ )σ̃2i+1(−θ )} ,

(1.3)

where we sum over unit cells. For a representative pseudospin
σ̃i the interaction involves the quantization axis with direction
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θ for one bond and the one with −θ for the other, so each
pseudospin has to find some compromise. This frustration
increases gradually with increasing angle θ when the model
Eq. (1.3) interpolates between the Ising model at θ = 0 to the
quantum compass model (QCM) at θ = π/2 [35]. The latter is
also called the 1D Kitaev model by some authors [42]. In the
intermediate case, θ = π/3, one finds orbital superexchange
(1.1) for the eg orbital model (EOM) or 60◦ compass model
(for the angle θ = π/3).

The EOM (at θ = 60◦) was first introduced as an effective
model for perovskite eg orbital systems [18], and next
considered in two-dimensional (2D) and three-dimensional
(3D) ferromagnetic TMOs with active eg orbitals [5,18,44,45].
The equivalent planar model describes the insulating phase
of p-band fermions in triangular, honeycomb, and kagome
optical lattices [46,47].

The QCM arises from the GCM Eq. (1.3) with frustrated
Ising-like interactions tuned by an angle θ on a square lattice
[35] at θ = 90◦. While 2D Ising models with frustrated inter-
actions have long-range order at finite temperature [48], one
might expect that disordered states emerge when interacting
spin components depend on the bond direction, as in Eq. (1.1).
This is indeed the case of the Kitaev model on a hexagonal lat-
tice with a spin-liquid ground state that is exactly solvable [40].
Instead, the infinite degeneracy in the ground state for the clas-
sical compass model on 2D or 3D cubic lattices is lifted via the
order-out-of-disorder mechanism and a directional ordering of
fluctuations appears at low temperature [49]. For the quantum
version, it has been rigorously proven in terms of the reflection
positivity method [50] that the alternating orbital order is stable
in the 2D planar 60◦ compass model at zero temperature.
Indeed, this result is confirmed by numerical simulations [33].

The QCM is characterized by an exotic property of the
dimensional reduction which implies that a d-dimensional
system has long-range order in (d − 1) dimension [28,51].
For example, the global ground states of the 2D QCM
have a ferro-orbital nematic long-range order in a highly
degenerate ground state [36,52,53]. It has been shown that
this directional long-range order survives in a manifold of
low energy excited states when the compass interactions are
perturbed by the Heisenberg ones [37]—this property opens its
potential application in quantum computation. It is remarkable
that the 2D QCM is dual to the toric code model in transverse
magnetic field [54] and to the Xu-Moore model (Josephson
arrays) [55].

Quantum phase transitions (QPTs) between different types
of order were established in the 1D QCM [38], in a quantum
compass ladder [39], and in the 2D QCM [29–37], when
anisotropic interactions are varied through the isotropic point
and the ground state switches between two different types
of Ising nematic order dictated by either interaction. At the
transition point itself, i.e., when the competing interactions are
balanced, the ground state is highly degenerate and contains
states which correspond to both relevant kinds of nematic
order. The correlations along the perpendicular direction to
that of the nematic order are restricted to nearest neighbor
(NN) sites [56], and certain NN spin correlations change
discontinuously at the critical point. Studies of the 1D QCM
using entanglement measures and quantum discord in the
ground state show that the correlations between two orbitals

on some bonds are essentially classical [57]. The QPT driven
by the transverse field emerges only at zero field and is of the
second order [58].

The purpose of this paper is to present an exact solution
of the GCMs (with orbitals of eg or t2g symmetry), and to
investigate their properties at finite temperature. We propose
a possible scenario provided by a 1D zigzag lattice which can
be prepared in layered structures of TMOs [59], or are realized
in optical lattices by fermions occupying px and py orbitals
[60,61]. Our motivation is twofold: On one hand, recently
artificial heterostructures of TMOs are becoming available,
and the modern technologies allow one to devise artificial 1D
quantum systems, such as quantum wires or rings. In terms of
interface engineering, some models can be designed, such as a
2D design for manmade honeycomb lattice [59]. On the other
hand, the zigzag chain of S = 1/2 spins, with active xy and yz

orbitals in d1 states at Ti3+ ions, is found in pyroxene titanium
oxides ATiSi2O6 (A = Na,Li) [62,63]. The alternation of the
Ti-Ti distance is a direct consequence of orbital dimerization.
We also solve exactly the GCM at arbitrary angle θ and
compare its properties with those of the EOM. We find that the
EOM and the 1D QCM are both characterized by a QPT, but
we uncover an important difference between these transitions
which is found for the anisotropic interactions.

The paper is organized as follows: We introduce the EOM
in Sec. II A and present its exact solution in Sec. II B obtained
using the Jordan-Wigner transformation. We show that a gap
found in the excitation spectrum persists also in the entire range
of angle θ in the GCM (see Sec. III A). Properties of the GCM,
including the dependence of transverse orbital polarization
and intersite pseudospin correlations on the angle θ and on
the polarizing field are investigated in Sec. III B. This field is
responsible for the switch of the pseudospin order at the QPT.
Next we present exact results at finite temperature obtained
for the entropy and for the orbital cooling rate in Sec. IV A,
and for the specific heat in Sec. IV B. The orbital polarization
induced by finite field and orbital susceptibility are analyzed in
Sec. IV C. The paper is concluded with a final discussion and
summary in Sec. V. Here we also highlight the interpretation
of the results in terms of fermionic bands as equivalent to
the spin correlations. These correlations follow from the Z2

symmetry, as explained in the Appendix.

II. ORBITAL COMPASS MODEL

A. One-dimensional zigzag eg orbital model

We consider first the exact solution for the 1D EOM
(60◦ compass model) of Fig. 1, with the Hamiltonian HJ given
by Eq. (3.1) at θ = π/3. This example serves as a general
guideline for the analytic solution and for the thermodynamics
presented below in Secs. III and IV. The interactions in
Eq. (1.1) are given by operators,

T
a(b)
i = −1

2
σ

y

i ±
√

3

2
σx

i , (2.1)

which depend on Pauli matrices, {σα
i } (α = x,y) for eg orbital

states [43]. In the case of a 3D cubic system Eq. (2.1) would
be augmented by T c

i = σ
y

i for the bonds along the c axis. The
interactions follow from the Kugel-Khomskii superexchange
[1,2], as well as from Jahn-Teller distortions [64]. Typically
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FIG. 1. (Color online) Zigzag chain in an (a,b) plane with one
hole (or electron) per site in eg states of a Mott insulator. The
directional orbitals, 3x2 − r2 and 3y2 − r2, are the most convenient
choice to calculate the orbital superexchange interactions along the
a and b cubic axes, respectively. In the usual eg orthogonal orbital
basis {3z2 − r2,x2 − y2} such interactions may cause orbital flips
as the orbital flavor is not conserved in intersite hopping processes
(charge excitations) [18]. If two t2g orbitals, zx and yz, are considered
instead, only diagonal hopping between pairs of these orbitals occurs
along the bonds parallel to the a or b axis [22], and one finds the 1D
quantum compass model [38].

both these terms contribute jointly to the orbital exchange
interactions Jγ in Eq. (1.1), as in LaMnO3 [26]. Another
example is the phonon-mediated orbital exchange in spinels
[65] which has the form of interaction with an effective
exchange Jγ = g2/kF1g

, where g is a Jahn-Teller coupling
constant and kF1g

is the elastic constant of F1g phonons.
For the zigzag chain of N sites (assumed here to be even,

and N ′ = N/2 is the number of two-site unit cells) shown
in Fig. 1, the interactions with exchange constants Je and Jo

alternate between even and odd bonds, as in Eq. (1.3),

Heg
= HJ + Hh

=
N/2∑
i=1

{
Jo

(√
3

2
σx

2i−1 + 1

2
σ

y

2i−1

)(√
3

2
σx

2i + 1

2
σ

y

2i

)

+ Je

(√
3

2
σx

2i − 1

2
σ

y

2i

)(√
3

2
σx

2i+1 − 1

2
σ

y

2i+1

)}

+ h

2

∑
i

(
σ z

2i−1 + σ z
2i

)
. (2.2)

The model Eq. (2.2) includes a crystal field term,

Hh = h

2

∑
i

(
σ z

2i−1 + σ z
2i

)
, (2.3)

which is the source of the orbital polarization field h along
the zth pseudospin component. It follows from the uniform
expansion or compression of the lattice along the c axis, i.e.,
orthogonal to the ab plane of the chain. Although we consider
for clarity Jo > 0 and Je > 0 below, the model is invariant with
respect to the gauge transformation changing signs of both

couplings {Jo,Je} simultaneously, as alternating orbital and
ferro-orbital systems are related to one another. This can be
realized explicitly by introducing the operator U = �iσ

z
2i−1.

The Hamiltonian (2.2) can be exactly diagonalized follow-
ing the standard procedure for 1D systems. The Jordan-Wigner
transformation maps explicitly between pseudospin operators
and spinless fermion operators by

σ+
j = exp

[
iπ

j−1∑
i=1

c
†
i ci

]
cj =

j−1∏
i=1

σ z
i cj , (2.4)

σ−
j = exp

[
−iπ

j−1∑
i=1

c
†
i ci

]
c
†
j =

j−1∏
i=1

σ z
i c

†
j , (2.5)

σ z
j = 1 − 2c

†
j cj . (2.6)

Next discrete Fourier transformation for odd/even spin sites is
introduced as follows (j = 1, . . . ,N ′),

c2j−1 = 1√
N ′

∑
k

e−ikj ak, (2.7)

c2j = 1√
N ′

∑
k

e−ikj bk, (2.8)

with the discrete momenta k which correspond to the reduced
Brillouin zone and are given by

k = nπ

N ′ , n = −(N ′ − 1), − (N ′ − 3), . . . ,(N ′ − 1).

(2.9)
The Hamiltonian (2.2) in the momentum representation

becomes a quadratic form, with mixed k and −k fermionic
states,

Heg
=

∑
k

[Bka
†
kb

†
−k + Aka

†
kbk + A∗

kb
†
kak + B∗

k b−kak]

+h
∑

k

(a†
kak + b

†
kbk) − hN ′, (2.10)

where

Ak = Jo + Jee
ik, (2.11)

Bk = Joe
iπ/3 − Jee

i(k−π/3). (2.12)

The present Hamiltonian may be easily diagonalized by a
Bogoliubov transformation, as shown below.

B. Exact solution and energy spectrum

To diagonalize the Hamiltonian Eq. (2.10), we first rewrite
it in the symmetrized matrix form with respect to the k ↔ −k

transformation,

Heg
= 1

2

∑
k

(a†
k,a−k,b

†
k,b−k)

⎛
⎜⎜⎜⎝

h 0 Ak −(Pk + Qk)

0 −h −(Pk − Qk) −Ak

A∗
k −(P ∗

k − Q∗
k) h 0

−(P ∗
k + Q∗

k) −A∗
k 0 −h

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ak

a
†
−k

bk

b
†
−k

⎞
⎟⎟⎟⎠ , (2.13)
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where we have introduced

Pk ≡ cos
π

3
(Jee

ik − Jo), (2.14)

Qk ≡ −i sin
π

3
(Jee

ik + Jo). (2.15)

Equation (2.13) is now diagonalized by a (4 × 4) Bogoli-
ubov transformation which connects original {a†

k,a
†
−k,b

†
k,b

†
−k}

fermions with new {α†
k,α

†
−k,β

†
k ,β

†
−k} quasiparticle (QP) oper-

ators, ⎛
⎜⎜⎜⎝

α
†
k

α−k

β
†
k

β−k

⎞
⎟⎟⎟⎠ = Ûk

⎛
⎜⎜⎜⎝

a
†
k

a−k

b
†
k

b−k

⎞
⎟⎟⎟⎠ , (2.16)

where the rows of the 4 × 4 matrix Ûk are eigenvectors
following from [

Heg
,α

†
k

] = εk,1α
†
k, (2.17)[

Heg
,β

†
k

] = εk,2β
†
k . (2.18)

Here εk,1 and εk,2 are positive energies of elementary excita-
tions. After diagonalization one finds a symmetric spectrum
with respect to energy ω = 0, with the energies {±εk,n}
(n = 1,2), given by the following expressions:

εk,1 =
√

Ck −
√

Dk, (2.19)

εk,2 =
√

Ck +
√

Dk. (2.20)

This compact notation is obtained after introducing the
following definitions:

Ck = |Ak|2 + |Pk|2 + |Qk|2 + h2, (2.21)

Dk = (A∗
kPk + AkP

∗
k )2 − (A∗

kQk − AkQ
∗
k)2

+ (P ∗
k Qk + PkQ

∗
k)2 + 4|Ak|2h2. (2.22)

The obtained energies εk,1 (2.19) and εk,2 (2.20) are a typical
result for a chain with a unit cell consisting of two atoms. The
diagonalized Hamiltonian describes the full energy spectrum
in terms of these excitations,

Heg
=

∑
k

{
εk,1

(
α
†
kαk − 1

2

)
+ εk,2

(
β
†
kβk − 1

2

)}
. (2.23)

The QP energies {εk,1,εk,2} define the excited states and give
the ground-state energy when QPs are absent, similar to the
1D QCM [38],

E0 = −1

2

∑
k

(εk,1 + εk,2). (2.24)

In our case the chemical potential μ = 0 and the two bands,
{−εk,n} (n = 1,2), with negative energies are occupied. In
general there is an excitation gap,

� = min
k

εk,1, (2.25)

and the lowest energy excitation has the energy �. It is found
at k = 0 and vanishes for C2

0 = D0, i.e., the gap opens at the

critical field,

hc = ±
√

|A0|2 − |P0|2 − |Q0|2 = ±
√

JoJe. (2.26)

Finite hc indicates that the interactions align orbitals perpen-
dicular to the field in the ordered phase when h → 0 and
they gradually turn at h → hc. The orbitals are aligned by the
external field in the ground state of the 60◦ compass model
when h > hc, which is oriented along the z direction [see
Eq. (2.2)]. We note that the ordered phase found here at h = 0
is in contrast to the 1D 90◦ compass model with alternating
XX and YY interactions along the zigzag chain, where the
ground state is disordered [38,57] (see also Sec. IV).

III. GENERALIZED COMPASS MODEL

A. The model and exact solution

In the EOM Eq. (2.2) the interactions are fixed by the orbital
shape. For t2g orbitals other interactions would arise as then the
orbital flavor is conserved and the superexchange is Ising-like
[22,23]. Such interactions resemble those in the compass
models [28,35], and we investigate this case below taking the
superexchange given by Eq. (1.3). The maximally frustrated
interactions (obtained at θ = π/2) give the QCM and are
isomorphic with the t2g orbital interactions between {yz,zx}
orbitals along the zigzag chain [22,23]. Similar interactions are
also realized between p orbitals in optical lattices [46,47,61],
or in hyperoxides [67].

The 1D GCM with xth and yth orbital component interac-
tions that alternate on even/odd exchange bonds obtained in
this way is strongly frustrated, and we study it again in the
finite polarization field h which corresponds to a transverse
magnetic field in spin systems,

HGCM =
∑

i

{Joσ̃2i−1(θ )σ̃2i(θ ) + Jeσ̃2i(−θ )σ̃2i+1(−θ )}

− h

2

∑
i

(
σ z

2i−1 + σ z
2i

)
. (3.1)

At angle θ = π/3 the EOM Eq. (2.2) analyzed in Sec. II is
reproduced. Below we address a question whether the 60◦
difference between interactions along odd and even bonds
in the (σx,σy) plane in the EOM diminishes the short-range
order induced by stronger interactions ∝σx

i σ x
i+1 along the

chain. For the numerical analysis we take Jo ≡ 1 as the energy
unit.

The model Eq. (3.1) reduces to the 1D Ising model in the
transverse field for θ = 0, and may describe the ferromagnet
CoNb2O6, where magnetic Co2+ ions are arranged into near-
isolated zigzag chains along the c axis with strong easy axis
anisotropy due to transverse field effects which stem from the
distorted CoO6 local environment [66]. At θ = 90◦ the 1D
GCM Eq. (3.1) gives a competition between two pseudospin
components, {σx

i ,σ
y

i } as in the 2D QCM. This case has the
highest possible frustration of interactions and the mixed
terms ∝σx

i σ
y

i+1, familiar from the EOM, are absent. One can
also write this model in the form of the QCM with rotated
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pseudospin components,

HQCM =
∑

i

{
Joσ̃

x
2i−1σ̃

x
2i + Jeσ̃

y

2i σ̃
y

2i+1

}

− h

2

∑
i

(
σ̃ z

2i−1 + σ̃ z
2i

)
, (3.2)

where the rotation by angle θ = ±π/2 with respect to the z

axis in the pseudospin space is made on even/odd bonds [35].
In two dimensions the Ising-like order is determined by

the strongest interaction ∝σx
mσ x

n as long as θ < θc [35], and
the mixed interactions ∝σx

mσ z
n play no role in this regime.

Existence of a second-order QPT from the Ising order to the
compasslike nematic order was established at θc = 84.8◦ using
the multiscale entanglement renormalization ansatz (MERA)
[35]. Here we explore ground states of the 1D QCM Eq. (3.1) in
the entire parameter space and investigate whether signatures
of a similar transition may be recognized in the thermodynamic
quantities, the susceptibility and the specific heat.

The GCM Eq. (3.1) can be solved exactly following the
same steps as described in Sec. II, and this solution is
equivalent at angle θ = 90◦ to that given in Ref. [38]. We
introduce Ak defined by Eq. (2.11), and

P ′
k ≡ (Jee

ik − Jo) cos θ , (3.3)

Q′
k ≡ −i(Jee

ik + Jo) sin θ , (3.4)

which reproduce Eqs. (2.14) and (2.15) at θ = π/3. The
algebraic structure of the exact solution is now the same as
in Sec. II A, and the excitation energies εk,1 and εk,2 are given
by Eqs. (2.19) and (2.20), with

C ′
k = |Ak|2 + |P ′

k|2 + |Qk|2 + h2,

= 2J 2
o + 2J 2

e + 4 sin2 θJoJe cos k + h2, (3.5)

D′
k = [A∗

kP
′
k + Ak(P ′

k)∗]2 − [A∗
kQ

′
k − Ak(Q′

k)∗]2

+ [(P ′
k)∗Q′

k + P ′
k(Q′

k)∗]2 + 4|Ak|2h2, (3.6)

which replace now Ck and Dk given by Eqs. (2.21) and (2.22)
for the EOM. We note that the negative QP energies, −εk,n

for n = 1,2, correspond to the filled bands in the fermionic
representation. They serve to evaluate the ground-state energy
for the GCM, and one may use again Eq. (2.24). Actually, the
convention used here sets this energy at the energy origin, and
therefore the free energy considered in Sec. IV starts from zero
at T = 0.

The case of angle θ = π/2 in the 1D GCM is special
and will be considered in more detail below. The structure
of the Hilbert space gives here a macroscopic degeneracy
of 2N/2−1 away from the isotropic point, and the enhanced
degeneracy of 2N/2 when the orbital interactions are isotropic,
i.e., Je = Jo. We recall that we use here odd numbers of k

values included in the chosen set given by Eq. (2.9), and
only in the thermodynamic limit we recover the degeneracy
of 2 × 2N/2 for isotropic interactions [38]. Using fermions
after the Jordan-Wigner transformation, this degeneracy is
due to the acoustic branch which has no dispersion and is
found at zero energy, εk,1 = 0 (see Fig. 2). Then this branch
is half-filled by fermions as it becomes degenerate with the

−2

0

2

−2

0

2

ε k

−1 −0.5 0 0.5 1
−4

0

4

k/π

(b)

(a)

(c)

FIG. 2. (Color online) The electronic QP energies ±εk,n/2
(n = 1,2) as obtained for the QCM Eq. (3.2) with increasing values of
Je: (a) Je = 1, (b) Je = 2, and (c) Je = 4. Except for the isotropic case
(a) of Je = Jo, the spectra are characterized by a finite gap between
εk,n and εk,2. Parameters are as follows: Jo = 1, h = 0, and θ = π/2.

one of negative energy −εk,1. Therefore, using the fermionic
language one recovers here a macroscopic 2N/2 degeneracy of
the ground state in the thermodynamic limit, independently of
the mutual values of exchange parameters, and one finds for
Je = Jo that ∀k: εk,1 < εk,2 [see Figs. 2(b) and 2(c)]. The gap at
k = π is given by the anisotropy of the pseudospin exchange,
� = |Je − Jo|. The situation changes, however, when Je = Jo

and the gap between επ,2 and επ,1 closes [see Fig. 2(a)]. This
implies that the degeneracy increases by an additional factor
of 2 due to the band-edge points.

High degeneracy of the ground state is removed by finite
field h > 0. For θ = π/2, Eq. (2.26) reduces to

hc = ±2 cos θ
√

JoJe. (3.7)

It defines the critical field at which the gap closes (see Fig. 3).
As h approaches hc, the gap vanishes as � ∼ (h − hc)νz,

where ν and z are the correlation-length and dynamic

0

0.5

1

0
2

4
6
0

1

2

3

θ/πh

Δ

FIG. 3. (Color online) The gap � as a function of θ and h. The
dotted line is the critical line given by Eq. (3.7). Parameters are as
follows: Jo = 1, Je = 4.
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FIG. 4. (Color online) The electronic QP energies ±εk,n/2
(n = 1,2) as obtained for the QCM Eq. (3.2) at the finite polarization
field (2.3): (a) h = 1 and (b) h = 2. In both cases the lower two bands
are filled by fermions and a finite gap separates occupied from empty
bands. Parameters are as follows: Jo = 1, Je = 4, and θ = π/2.

exponent, respectively. The gap near criticality is

� � h2 − h2
c

2(Jo + Je)
, (3.8)

and one finds the critical exponent νz = 1. In this sense, the
1D QCM has Ising-type long-range order for finite θ < π/2
and h < hc. This is in analogy to the Ising model in transverse
magnetic field, where a similar transition was reported [68].
We emphasize that the phase space of the orbital liquid consists
thus of a plane in the parameter space, spanned by {Je,Jo}.

The critical lines intersect at θc = π/2 and hc = 0, forming
a multicritical point, where the model is gapless irrespective
of the values of Je and Jo (see Fig. 3). It has been proven
that the 90◦ quantum compass model is critical for arbitrary
ratio Je/Jo and the point Je = Jo corresponds to a multicritical
point [69]. Finite field h polarizes orbitals and removes high
degeneracy of the ground state. For the fermionic QP bands
this means that a gap at the Fermi energy opens exponentially
between the bands εk,1 and −εk,1, and the system turns into
an insulator (see Fig. 4). The gap is much smaller than the
field h and therefore the thermal excitations through the gap
contribute to the thermodynamic properties at relatively low
temperature as we show below in Sec. IV.

B. Orbital order and correlation functions at finite field

Frustrated interactions in Eq. (3.1) result in a disordered
state and the longitudinal polarization vanishes at T = 0, i.e.,
〈σx

i 〉 = 〈σy

i 〉 = 0. The transverse polarization,

P = N
〈
σ z

i

〉
, (3.9)

is induced by finite field h at T = 0; it is found with the help
of the Hellmann-Feynman theorem,

P = −∂E0

∂h
. (3.10)

A similar thermodynamic relation which involves the total
spectrum via the free energy F is used to determine 〈σ z

i 〉 at
finite T > 0 in Sec. IV. The order parameter 〈σ z

i 〉 is induced

0

0.5

1

0

2

4
0

0.4

0.8

θ/πh

〈 σ
z

〉

FIG. 5. (Color online) Orbital polarization 〈σ z〉 obtained for the
GCM with increasing field h in the ground state for different values
of θ . Parameters are as follows: Jo = 1, Je = 4.

by the transverse field h, as shown in Fig. 5. By investigating
the behavior of 〈σ z

i 〉 with increasing field h, we establish that
the field-induced QPT is here second order for any angle θ

[58]. It is also accompanied by a scaling behavior since the
correlation length diverges and there is no characteristic length
scale in the system at the critical point.

However, one finds a qualitatively different behavior at
finite field h for the GCM with interactions at θ < π/2 (which
includes the EOM) from that at θ = π/2 for the QCM. The
disordered phase in the QCM may easily be polarized by the
field, while the ground state is more robust away from this
point. In this regime the model has Néel order induced by
the xth pseudospin components (Ising order for the strongest
interaction) and is harder to be destroyed by the transverse
field. The results shown in Fig. 5 are confirmed by the
exact diagonalization that we performed on finite clusters in
addition. Increasing transverse field induces finite 〈σ z

i 〉 and
drives the system into a saturated polarized phase found above
the critical field, i.e., for h > hc.

Two-point correlation functions which correspond to the
dominating interaction decay algebraically with distance r

[38]. They are given by [70]

〈
σx

0 σx
r

〉 =

∣∣∣∣∣∣∣∣∣∣

G−1 G−2 · G−r

G0 G−1 · G−r+1

...
...

. . .
...

Gr−2 Gr−3 · G−1

∣∣∣∣∣∣∣∣∣∣
, (3.11)

〈
σ

y

0 σy
r

〉 =

∣∣∣∣∣∣∣∣∣∣

G1 G0 · G−r+2

G2 G1 · G−r+3

...
...

. . .
...

Gr Gr−1 · G1

∣∣∣∣∣∣∣∣∣∣
, (3.12)

〈
σ z

0 σ z
r

〉 = 4〈σ z〉2 − GrG−r , (3.13)

where we have introduced the short-hand notation for the
mixed correlation function,

Gr = 〈
σ

y

0 σx
r

〉
. (3.14)
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FIG. 6. (Color online) The 3D panorama of the NN orbital
correlations, shown as functions of angle θ and the transverse field h

on odd bonds: (a) −〈σ x
2i−1σ

x
2i〉 and (b) −〈σ y

2i−1σ
y

2i〉. Parameters are as
follows: Jo = 1 and Je = 4.

The numerical analysis shows two distinct phases at h = 0,
with large either −〈σx

2i−1σ
x
2i〉 or −〈σy

2i−1σ
y

2i〉, depending on
whether θ < π/2 or θ > π/2. Note that NN orbital correla-
tions are almost classical in a broad range of θ at h = 0 as the
model is Ising-like. The correlations decrease, however, when
the quantum critical point (QCP) at θ = π/2 is approached
[38]. At this point one finds the disordered orbital state and the
role of XX and YY correlations is interchanged (see Fig. 6).
In both phases at θ = π/2 there is a gap in the excitation
spectrum which vanishes at the critical field (h = hc), together
with a jump in transverse magnetization shown in Fig. 5 and
in the NN orbital correlation functions in Fig. 6 at hc(θ ).

We remark that the vanishing of the intersite correlators
between uncoupled orbitals in the 1D QCM follows indeed
from the local Z2 symmetry (see the Appendix), and may also
be seen as a consequence of Elitzur’s theorem—similar to the
case of the 2D Kitaev model on a hexagonal lattice [41]. One
may also employ the general approach of “bond algebra” [71]
which leads to the same conclusion.

IV. FINITE TEMPERATURE PROPERTIES

A. The entropy and the cooling rate

Having the exact solution of the GCM (3.1), it is straight-
forward to obtain its full thermodynamic properties at finite

0 1 2 3 4
0.00

0.05

0.10

0.15

h

S

(a)

0 0.05 0.1
0.0

0.1

0.2

T

S

h=2
h=1

0 1 2
0.0

0.2

0.4

0.6

h
S

(b)

0.00 0.05 0.10
0.0

0.4

0.8

T

S

h=0
h=1

FIG. 7. (Color online) The entropy S per unit cell for increasing
field h at different temperature T = 0.01,0.02, . . . 0.10 (from bottom
to top) for two values of θ : (a) the EOM (θ = π/3) and (b) the
QCM (θ = π/2), corresponding to the critical field hc = 2 and 0,
respectively. Insets show the temperature scaling of entropy for the
critical field (top lines) and for the noncritical case (bottom lines).
Parameters are as follows: Jo = 1, Je = 4.

temperatures. For the particle-hole excitation spectrum (2.23),
we determined the free energy of the quantum spin chain per
site (here and below we take the Boltzmann constant kB ≡ 1),

F = −T
∑

k

2∑
j=1

ln

(
2 cosh

εk,j

2T

)
. (4.1)

Entropy S provides information about the evolution of spectra
with increasing transverse field h. It has been determined from
the free energy F (4.1) via the usual thermodynamic relation,

S= −
(

∂F
∂T

)
V

=
∑

k

2∑
j=1

ln

(
2 cosh

εk,j

2T

)
−

∑
k

2∑
j=1

(
εk,j

2T
tanh

εk,j

2T

)
.

(4.2)

For the EOM, the entropy vanishes at h = 0 and at T = 0.
It grows with increasing T when thermal excitations gradually
include more and more of excited states and this increase is
faster at finite field, for instance, finite entropy is found already
at T > 0.05 if h = 1 [see inset in Fig. 7(a)]. The entropy
displays a distinct maximum for increasing transverse field
at h � hc, where the gap closes [see Fig. 7(a)], implying the
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FIG. 8. (Color online) Lines of constant entropy S per unit cell,
i.e., adiabatic demagnetization curves of the extended QCM in a
transverse field, as obtained for (a) the EOM (θ = π/3), and (b) the
QCM (θ = π/2). The QCP at T = 0 gives a very distinct behavior
in both cases near the critical field, being hc = 2 for the EOM (a),
and hc = 0 for the QCM (b). In case (b) the field h corresponding to
a constant entropy exhibits a logarithmic increase with temperature
below T ∗. Parameters are as follows: Jo = 1, Je = 4.

QCP. This accumulation of entropy close to the QCP indicates
that the states which characterize competing phases are almost
degenerate and the system is “maximally undecided” which
ground state to choose [72]. The landscape of S defines the
quantum critical regime, where T � � and the role played
by quantum and thermal fluctuations is equally important for
the dynamics [73]. Especially, the system is gapless along the
critical line and the entropy is linear in T , i.e., S ∝ T for
low temperatures, while in the gapped phases an exponential
behavior, i.e., S ∝ exp(−�/T ) is observed.

In the 1D QCM one finds a different behavior [see Fig. 7(b)].
The entropy S approaches here ln 2 which follows from the
high degeneracy 2N/2−1 of the disordered ground state. At
h = 0 one finds here a macroscopic entropy S � ln 2 per unit
cell that does not change with increasing temperature T over
a temperature range below the crossover temperature T ∗ (see
below).

The qualitative difference between the EOM and the 1D
QCM is best illustrated by the lines of constant entropy. The
entropy S vanishes for the EOM at T = 0 [see Fig. 8(a)],
where the strongest interactions impose the quasiorder in the
ground state. This follows the third law of thermodynamics
which states that for pure and uniform phases the entropy

falls to zero at T → 0. However, in the vicinity of hc = 2 it
increases fast with increasing T .

In contrast, the entropy for the QCM is maximal,
Smax = ln 2, at the QCP at hc = 0, and finite hreduces S
rapidly. In the vicinity of the QCP the field corresponding
to a constant entropy exhibits a logarithmic increase with tem-
perature, h ∝ ln T [see Fig. 8(b)]. This behavior demonstrates
that the high degeneracy of the ground state is reduced by
the external field which selects only certain states with their
symmetry adapted to the field. A similar reduction of the
ground-state degeneracy is found in the 2D QCM when the
added Heisenberg spin couplings induce magnetic long-range
order [37].

The entropy in the QCM is almost insensitive to increasing
temperature, but the field quenches the spin disorder leading
to a crossover to the classical state. These features could be the
subject of future experimental studies. Recently, the complete
entropic landscape was quantitatively measured for Sr3Ru2O7

under transverse field in the vicinity of quantum criticality
[74]. More interestingly, the low-entropy state has been a grand
concern in realizing some exotic phases in optical lattice such
as d-wave superconductivity [75,76].

The field-induced QPT leads to universal responses when
the applied field is varied adiabatically, and the magnetocaloric
effect (MCE) can be used to study their quantum criticality.
The adiabatic demagnetization curves of extended quantum
models, S(h,T ) = const, are shown in Fig. 8. The MCE
is closely related to the generalized cooling rate defined as
follows,

�h = − 1

T

(∂S/∂h)T
(∂S/∂T )h

= 1

T

(
∂T

∂h

)
S

. (4.3)

Generally, the variation of entropy S with external field
h is more singular than that of the specific heat considered in
Sec. IV B, so one expects that the MCE Eq. (4.3) is particularly
large in the vicinity of the QCP. Near a field-tuned QCP, the
critical part of the free energy takes usually the hyperscaling
form in d dimensions [77], F = F0T

d/z+1f (x/T 1/νz), where
x = h − hc. The universal function f (x) has diverse asymp-
totic behaviors in the x → 0 and x → ±∞ limits, respectively,
corresponding to the quantum critical and quantum disor-
dered/renormalized classical regimes. This divergent behavior
at the QCP obeys a universal scaling law [77],

�h(T → 0,h) = −Gh

1

h − hc

, (4.4)

where a universal amplitude Gh = 1 is found. This value is
expected for a Z2 symmetry in one dimension. In the opposite
limit, �h ∼ 1/T 1/νz for x � T . The 1/x divergence in the low-
temperature limit amounts to a sign change of �h as entropy
accumulates near a QCP, as shown in Fig. 9(a). Therefore,
the critical fields are pinpointed by sign changes of �h from
negative to positive values upon increasing field. As the
temperature is raised, the discontinuity at hc is rapidly reduced
and all the distinct features seen at T = 0 gradually disappear.

The dependence of the cooling rate on h, found for
the disordered ground state of the QCM (at θ = π/2), is
qualitatively different [see Fig. 9(b)]. One finds here sharp
and pronounced positive and negative peaks which occur at
the transition point hc = 0, and this structure is robust, i.e.,
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FIG. 9. (Color online) The cooling rate �h Eq. (4.3) as obtained
for increasing field h and temperature T at (a) θ = π/3 and
(b) θ = π/2. Parameters are as follows: Jo = 1, Je = 4.

the strength of these peaks does not vary upon increasing
temperature until a critical value is reached. The strong
enhancement of the MCE arising from quantum fluctuations
near an h-induced QCP can be used for finding an efficient
and flexible high performance field cooling over an extended
temperature range.

B. Specific heat for the 1D compass models

Next we analyze the low temperature behavior of the heat
capacity,

CV = T

(
∂S
∂T

)
h

=
∑

k

2∑
j=1

ε2
k,j

4T 2 cosh2(εk,j /2T )
. (4.5)

We recall that the entropy exhibits fast changes when the
field h is close to its critical value, h ≈ hc (but h = hc) (see
Fig. 7). Here we concentrate on the qualitative differences
between the EOM and the QCM. The specific heat for both
models is presented in 3D plots, for increasing temperature
and transverse field (see Fig. 10). We have found that the
low temperature behavior exhibits striking differences between
these models discussed below.

Consider first the EOM of Sec. II A [with angle θ = π/3
in Eq. (3.1)]. The specific heat contains here a broad peak
around hc = 2 which corresponds to the QCP, and grows with
increasing temperature. This demonstrates that more entropy
is released here, as the spectrum of excited states is dense
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FIG. 10. (Color online) The 3D plot of the specific heat CV

normalized per unit cell for the (a) EOM at θ = π/3 and (b) QCM
at θ = π/2. Note that the specific heat reaches its local minima at
QCPs only for extremely low temperatures. Parameters are as follows:
Jo = 1, Je = 4.

near h � hc. Furthermore, CV develops a local minimum
which splits the peak at h � hc into two separate maxima for
extremely low temperatures [see Fig. 10(a)]. The maxima seen
at h < hc and h > hc are of different heights which reflects
the different spectra and increase of entropy with increasing
temperature in the vicinity of the QCP at hc = 2. The shallow
trough in heat capacity can be linked with orbital susceptibility
discussed in Sec. IV C by the Maxwell relation [78].

In contrast, increasing temperature at the QCP of the QCM
(h = hc = 0) does not result in any increase of the specific
heat and one finds CV = 0 in a broad range of temperature
[see Fig. 10(b)]. This somewhat surprising behavior is a
consequence of the gap between the excited states and the
ground state. Here the ground state has high macroscopic
degeneracy, being d = 2N/2−1—this degenerate state is a
robust feature of the QCM, responsible for its rather unusual
properties (see also Sec. IV C). Finite transverse field h,
however, splits the ground-state multiplet, and the entropy
at low temperature decreases [see Fig. 7(b)]. Increasing
temperature for a constant but finite field h results then in
a fast increase of entropy which is responsible for a large
maximum in CV for the QCM, as observed in Fig. 10(b).
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C. Orbital polarization and susceptibility

In this section we analyze the orbital properties at finite
polarizing field h of both the EOM and QCM at finite
temperature near the QPT. From the free energy F we
determined the orbital polarizationP along the transverse field,

P = −
(

∂F
∂h

)
T

=
∑

k

2∑
j=1

∂εk,j

∂h
tanh

(
εk,j

2T

)
, (4.6)

which vanishes as h → 0. Thus, there is no polarization at any
finite temperature in one dimension and no nontrivial critical
point, in accordance with the Mermin-Wagner theorem. Also,
there are no peculiarities of the order parameter 〈σ z〉 at any
finite temperature and finite transverse field h.

The orbital susceptibility is the derivative of the polarization
P (3.9) over the field h, and we define it here per one site,

χ = 1

N

(
∂P
∂h

)
T

=
(

∂
〈
σ z

i

〉
∂h

)
T

. (4.7)

After using the Jordan-Wigner fermions one finds it in the
fermionic representation,

χ = 1

2N

∑
k

2∑
j=1

{
∂2εk,j

∂h2
tanh

(
εk,j

2T

)

+
(

∂εk,j

∂h

)2 [
2T cosh2

(
εk,j

2T

)]−1}
. (4.8)

We emphasize that the orbital properties (similar to magnetic
properties in spin models) are intimately related to the field
dependence of the entropy via the Maxwell identity,(

∂S
∂h

)
T

=
(

∂P
∂T

)
h

, (4.9)

which allows one to rewrite the cooling rate as

�h = 1

CV

(
∂P
∂T

)
h

. (4.10)

Therefore, we discuss below the orbital properties from the
perspective of the peculiarities of the entropy at finite field and
finite temperature, presented in Sec. IV A.

The polarization 〈σ z〉 of the EOM increases with field h

and this increase is almost independent of temperature except
in the vicinity of the phase transition [see Fig. 11(a)]. At
the critical field hc = 2 the derivative of the polarization
diverges at T = 0, and in the low temperature regime one
finds a sharp maximum in the susceptibility χ at h = hc [see
Fig. 11(b)]. This behavior represents a generic QPT with h as
the control parameter. We note that the associated peak in the
entropy leading to the phase transition is described here by the
vanishing of the gap � Eq. (2.25) that occurs in the fermionic
spectrum at h = hc.

The 1D QCM shows a remarkably different orbital re-
sponse. Here the polarization increase with h depends strongly
on temperature [see Fig. 12(a)]. A clearer presentation of this
peculiar behavior is possible in terms of the susceptibility χ

[Fig. 12(b)]. Here χ (T ,h) vanishes at h = 0 and acquires a
peak at a finite field hm(T ) which increases with temperature.
This is another manifestation of the macroscopic entropy at
zero temperature, shown in Fig. 7(b), that stems from the
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FIG. 11. (Color online) Orbital response in a transverse field h

for the EOM at different temperatures: (a) the orbital polarization 〈σ z〉
per site, and (b) the orbital susceptibility χ per site (4.7). The QPT is
found at hc = 2. Different curves from top to bottom correspond to
increasing temperature and are normalized per one site. Parameters
are as follows: Jo = 1, Je = 4, θ = π/3.

highly degenerate ground state. In the fermionic language the
vanishing of χ at h = 0 is connected with the high degeneracy
of the subspace described by two dispersionless half-filled
fermionic bands, ±εk,1 = 0. When the degeneracy is lifted
by a finite transverse field, the entropy changes dramatically
and causes a rapid increase of the susceptibility shown in
Fig. 12(b). Below we shall discuss a different picture for the
origin of this degeneracy in the QCM.

Finally, we compare the orbital susceptibility χ (4.8)
obtained for both 1D compass models (the EOM and the QCM)
in a broad range of temperature in Fig. 13. In the gapped phase
of the EOM at h = 0, the low temperature orbital susceptibility
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FIG. 12. (Color online) Orbital response in a transverse field h

for the QCM at different temperature: (a) polarization 〈σ z〉 per site,
and (b) the orbital susceptibility χ per site (4.7). Different curves from
the center to the left or right correspond to increasing temperature
and are normalized per one site. Parameters are as follows: Jo = 1,
Je = 4, θ = π/2.
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FIG. 13. (Color online) The 3D plot of the orbital susceptibility
χ (4.7) versus temperature and field for (a) EOM at θ = π/3 and
(b) QCM at θ = π/2. Parameters are as follows: Jo = 1, Je = 4.
The EOM (a) shows a QPT at finite field hc = 2. The QCM (b) is
characterized by the macroscopic degeneracy of the low energy sector
and vanishing χ at zero field, while finite h lifts the degeneracy and
leads to a peak in χ .

is finite and decreases with increasing T for the unpolarized
system [see Fig. 13(a)]. In contrast, one finds a vanishing
orbital susceptibility at the critical point of the QCM h = 0 in
a broad range of temperature. A distinct maximum develops
close to h = 0 at low temperature—this maximum moves to
higher field and loses intensity when temperature increases
further [see Fig. 13(b)]. All these distinct features emphasize
once again radical difference between the nature of the QPTs
found in both compass models.

V. DISCUSSION AND SUMMARY

In this paper we explored the ground state and the
thermodynamic properties of the 1D generalized compass
model with exchange interactions given by Eq. (1.3), and tuned
by an angle θ . They vary from Ising interactions at θ = 0
to maximally frustrated ones with two different pseudospin
components coupled on even/odd bonds at θ = π/2 in the
quantum compass model. In between (at θ = 60◦) one finds the
eg orbital model. In this way, we investigated the consequences
of increasing frustration of spin interactions in one dimension.
The model was solved exactly and we presented its exact
characteristics in the thermodynamic limit: the entropy, the
specific heat, the orbital susceptibility, and the adiabatic
demagnetization curves. By investigating the dependence of all
these quantities on the angle θ , we have shown that the ground
state is ordered along the easy axis as long as θ = π/2, whereas
it becomes disordered and highly degenerate at θ = π/2, i.e.,
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FIG. 14. (Color online) Nearest neighbor pseudospin correla-
tions in the anisotropic quantum compass model [the model Eq. (3.1)
with angle θ = π/2 and stronger coupling of {σy

i } components on
the even bonds] for increasing temperature T . Only the intersite
correlation corresponding to the interacting pseudospin components
are finite. Parameters are as follows: Jo = 1, Je = 4.

when the interacting pseudospin components along even/odd
bonds are orthogonal.

Pseudospin excitations are separated by a gap from the
ground state everywhere except for the quantum compass
model, where the gap closes and one finds a highly disordered
spin-liquid ground state. This demonstrates an important
difference between the eg orbital model with favored type
of short-range order and the quantum compass model in
one dimension. While the above order for the eg orbitals is
analogous to the 2D case [35], the 1D compass model fails to
develop the nematic order known from its 2D analog.

The generic temperature dependence of pseudospin corre-
lations on the bonds in the 1D quantum compass model is
summarized in Fig. 14. Only these pseudospin correlations
take finite values which are coupled by finite interaction
parameters, similar as in the isotropic case [38]. As expected, at
T = 0 the value of pseudospin correlation |〈σy

2iσ
y

2i+1〉| is larger
than |〈σx

2i−1σ
x
2i〉| as the first one corresponds to a stronger

interaction. On the other hand, the complementary orbital
correlations for pairs that are not coupled by any interaction,
i.e., 〈σx

2iσ
x
2i+1〉 and 〈σy

2i−1σ
y

2i〉, vanish and this follows from the
Z2 symmetry [41], as discussed also in the Appendix. Note
that a finite value of 〈σx

2i−1σ
x
2i〉 in Fig. 14 is a manifestation of

the quantum nature of the compass model, as in the classical
case one finds instead only finite pseudospin correlations on
stronger bonds, i.e., 〈σy

2iσ
y

2i+1〉 = −1 and 〈σx
2i−1σ

x
2i〉 = 0.

Furthermore, we have shown that the external transverse
field has also quite different consequences, depending on
the underlying interactions. In the eg orbital model intersite
pseudospin correlations are robust and follow the strongest
interactions. Therefore, a significant value of the transverse
field is required here to modify the short-range correlations,
dictated by the σx

i σ x
i+1 interactions, and to induce the polarized

state. A qualitatively different situation is encountered in the
quantum compass model. Here the highly disordered ground
state is fragile and already an infinitesimal transverse field
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destabilizes it and induces a quantum phase transition which
we recognized as being of second order by investigating
the adiabatic demagnetization at finite temperature. The
observed behavior corresponds to entropy maximization at
the quantum critical point in the low-temperature limit. The
high degeneracy revealed by finite entropy at low temperature
suggests that the 90◦ compass model may have potential
application in quantum computation [79]. In addition, the
cooling rate in the quantum compass model could be testified
in the state-of-the-art experiments at optical lattice [76].

We would like to emphasize that some quantum integrable
1D models were developed in the past to provide valuable
insights into the nature of quantum correlations in the ground
state, as well as into the structure of excited states. Such
models (i) help to understand the nature of many-body states in
such models, and (ii) provide a possibility to test approximate
theoretical methods used for more realistic physical models of
frustrated spin interactions, in two and three dimensions. The
present study should serve the same purpose.

Summarizing, we have demonstrated that robust pseu-
dospin correlations arise on the bonds in the eg orbital
model—these correlations get destroyed only at the quantum
phase transition which occurs at rather strong transverse
field. On the contrary, the disordered spin-liquid state in
the isotropic quantum compass model is fragile and gets
destroyed by the infinitesimal field. A qualitative difference
is found for anisotropic interactions—the spin-liquid state is
more robust here and survives up to temperature T ∗ which
appears to be a new energy scale and increases with increasing
anisotropy of interactions. This feature follows from the
weak logarithmic decrease of spin entropy with increasing
temperature, and persisting high degeneracy of the ground
state in this temperature range.

Note added in proof. The models considered here are
related to the earlier work on the anisotropic alternating
XY model [80], relevant also in the context of the 1D
Ising model in transverse field [81]. More recently, strongly
frustrated interactions were considered in one dimension in the
anisotropic Heisenberg-Ising two-leg ladder which has very
interesting and rich phase diagrams [82].
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APPENDIX: CONSEQUENCES OF THE Z2 SYMMETRY

In this Appendix we shall show that the macroscopic
degeneracy of the 1D QCM, which was manifested in two
fermionic bands at zero energy, ±εk = 0, is due to local Z2

symmetries of the model in the absence of the transverse field
term. For this discussion we write the QCM Eq. (3.2) in an
equivalent form with simplified notation,

HQCM = −
∑

i

(
Jxσ

x
2i−1σ

x
2i + Jzσ

z
2iσ

z
2i+1

)
, (A1)

and introduce operators which act on bonds [83]:

Xi = σx
2iσ

x
2i+1, (A2)

Zi = σ z
2i−1σ

z
2i , (A3)

where each set of operators, i = 1,2,.....,N/2, commutes with
the Hamiltonian. Thus we can use the tuple,

�Z ≡ (Z1,...,Zi,....,ZN/2), (A4)

to classify the eigenstates of HQCM, for instance,

HQCM|�0〉 = ε0|�0〉, (A5)

�Z|�0〉 = (λ1,...,λi,....,λN )|�0〉, (A6)

where the eigenvalues λi = ±1 follow from Z2
i = 1. It is im-

portant to recognize that the operators Zi and Xj anticommute
for special cases:

{Zi,Xi} = 0, (A7)

{Zi,Xi−1} = {Zi+1,Xi} = 0, (A8)

while they commute otherwise. We note here that the key
difference to the 2D QCM [30,31,37] lies in the different form
of these anticommutation relations. Using the commutation
relation [HQCM,Xi] = 0, one finds that

HQCMXi |�0〉 = ε0Xi |�0〉, (A9)

that is, also |�1〉 = Xi |�0〉 is an eigenvector to the same
eigenvalue ε0, and by analyzing the corresponding eigenvalue
tupel (λ1,...,λi,....,λN/2) one can convince oneself that this
state is in fact distinct from |�0〉. One can now proceed
by applying the same arguments to |�2〉 = Xi−1|�0〉 and so
on, until one exhausts all the 2N/2 states of the degenerate
multiplet.

[1] K. I. Kugel and D. I. Khomskii, JETP 37, 725 (1973); ,Sov. Phys.
Usp. 25, 231 (1982).
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(EPL) 96, 27001 (2011).

[68] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[69] E. Eriksson and H. Johannesson, Phys. Rev. B 79, 224424

(2009).
[70] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110

(2002).
[71] Z. Nussinov and G. Ortiz, Phys. Rev. B 79, 214440 (2009).
[72] J. Wu, L. Zhu, and Q. Si, J. Phys.: Conf. Series 273, 012019

(2011).

[73] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 2000).

[74] A. W. Rost, R. S. Perry, J.-F. Mercure, A. P. Mackenzie, and
S. A. Grigera, Science 325, 1360 (2009).

[75] T.-L. Ho and Qi Zhou, PNAS 106, 6916 (2009).
[76] D. McKay and B. DeMarco, Rep. Prog. Phys. 74, 054401 (2011).
[77] L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett. 91,

066404 (2003).
[78] R. Jafari, Eur. Phys. J. B 85, 167 (2012).
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