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Phase diagram of the frustrated quantum-XY model on the honeycomb lattice studied by series
expansions: Evidence for proximity to a bicritical point
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We study the nearest-neighbor exchange (J;) and second-nearest-neighbor exchange (J,) XY antiferromagnet
on the honeycomb lattice using ground state series expansions around Néel, columnar, and dimer phases. The
conventional two-sublattice XY Néel order at small J, vanishes at J,/J; = 0.22 £ 0.01 in agreement with
results from density matrix renormalization group (DMRG) studies. Near the transition, we find evidence for
an approximate emergent symmetry between XY and Ising degrees of freedom, namely the nearest-neighbor
Ising and XY spin correlations become nearly equal. This suggests that the system is close to a bicritical point
separating XY and Ising orders. At still larger J,/J; the columnar and dimer energies are found to be nearly
degenerate. At even larger J, the columnar phase is obtained. The ground state energies in all three phases are in
good agreement with the values found in the DMRG studies.
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Frustrated quantum spin models continue to interest and
surprise us [1,2]. While the physics of unfrustrated models is
dominated by a single classical order, frustrated models can
have a variety of magnetic and nonmagnetic order parameters,
as well as quantum spin-liquid phases with topological order
or no order whatsoever [3]. In many cases, phases ordered
in vastly different ways compete with each other with very
small energy differences [4]. While much of the studies in
recent years have focused on Heisenberg models with full
SU(2) symmetry, frustrated quantum XY models provide
a slightly different variety, opening an avenue to explore
new physics, an example being order by disorder in the
pyrochlore antiferromagnets [5]. Long-range order is usually
more robust in XY models than in Heisenberg models as
quantum fluctuations are weaker, but they also allow for
emergent phenomena that may be unique to XY models such
as Bose metals [6].

We consider here the antiferromagnetic spin-1/2 XY model
on the honeycomb lattice, a subject of much recent interest
[7-9], with Hamiltonian

H=J) (558 +r85'5))
(i.j)

+ LY (SESE+ASSY), (1
((i.k))

where the first sum runs over nearest neighbors and the
second over the second nearest neighbors of the honeycomb
lattice. The exchange constants J; and J, are both positive,
providing a frustrated antiferromagnetic model. This model,
with XY symmetry (A = 1) was recently studied by exact
diagonalization [7], and variational wave functions [8] by
Varney et al., and by density matrix renormalization group
(DMRG) [9] methods by Zhu et al. The two groups have
proposed very different phases at intermediate J,/J;, once the
conventional XY Néel order is lost. Varney et al. proposed
a quantum spin-liquid or Bose-metal phase with a “clearly
identifiable Bose surface” [7], a phase with no long-range order
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but a surface of low energy excitations in momentum space [6].
In contrast, the DMRG study [9] found an emergent Ising
antiferromagnetic phase, with spins weakly ordered along the
Z axis. The latter is a surprising result as there are no Sij
interaction terms in the bare Hamiltonian. Thus the entire
stabilization energy for this phase must come from higher
order quantum fluctuations. At still larger J/J;, columnar
and dimer phases were found to have very close energies. At
even larger J,/J; the columnar XY phase is stabilized. At still
larger J,/J; noncollinear phases may be realized [7], but we
will not study them in this paper.

The purpose of this paper is to study the phase diagram of
this model using series expansion methods [10,11]. Our work
confirms various findings of the DMRG study. We find that
the XY Néel phase is stable until a critical value of J,/J; =
0.22 4+ 0.01. Near this point there is an approximate emergent
Heisenberg symmetry in the system, where nearest-neighbor
XY and Ising correlations become equal. This suggests that
the system is close to a point where XY and Ising orders
interchange dominance [12]. However, we are not able to study
the Ising ordered phase by series expansion methods due to
lack of convergence. On the other hand, we can investigate the
columnar and dimer phases, such as calculating their respective
energies (see fig. 1) using series expansions at still larger J,/J;
values. In all three phases, X Y -Néel, dimer, and columnar, our
ground state energies are in very good agreement with the
values from the DMRG calculations. In the region just beyond
the XY Néel phase the DMRG study finds an Ising ordered
antiferromagnet, whose energy is clearly lower than the dimer
and columnar state energies we calculate. This lends further
support to this emergent phase in the model [9].

To study the XY Néel phase (or the XY columnar phase),
we consider the model in Eq. (1) as a function of A. At A = 0,
it has simple classical ground states. Properties such as ground
state energy, on-site magnetization, and nearest-neighbor X X,
YY, and ZZ correlations are calculated as power-series
expansions in the variable A [10,11]. Note that choosing X
as the ordering direction breaks the symmetry of rotation in
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FIG. 1. Four possible ground state phases of the model are (a)
XY-Néel, (b) Ising-(Z Z)-Néel, (c) dimer, and (d) XY -columnar.

the XY plane and hence the X X and Y'Y correlations need not
be equal.

To carry out the dimer series expansions, we consider all
the nearest-neighbor exchanges that point along one axis of the
honeycomb lattice (as shown in the dimer phase of Fig. 1) to
have a strength of unity and all other exchanges are multiplied
by a factor of «. Then series expansions can be calculated for
ground state properties in powers of o [10,11].

Series for ground state energies and nearest-neighbor
correlation functions are analyzed using simple Padé ap-
proximants. However, to analyze the order-parameter series,
we first apply a transformation of variables that removes
the strong square-root singularity known to arise for the
order parameter due to long wavelength spin waves [13,14],
and then carry out the Padé approximants. Details of se-
ries generation and analysis methods can be found in the
literature [10,11].

For all the calculations, we set the exchange constant
J1 = 1. Ground state energies obtained from the various series
expansions are shown in Fig. 2. DMRG energies are shown by
symbols and have error bars much smaller than the symbols.
Given the closeness of various energies, a list of selected
energies and comparison with other studies is shown in Table 1.
Series for the XY-Néel and XY -columnar phases converge
well, and these are clearly the ground states at small J,
and at J, = 1, respectively. The intermediate region is more
interesting and discussed below. The order parameters for the
Néel and columnar XY phases are shown in Fig. 3 . The error
bars reflect the spread in Padé approximant values [10,11].
While the Néel order parameter at small J, goes smoothly to
zeroat J, = 0.22 % 0.01, the order parameter for the columnar
phase remains nearly constant from large values of J, down
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FIG. 2. (Color online) Ground state energy as a function of J,.
Series expansion results are presented for Néel, columnar, and
dimer expansions. Results from density matrix renormalization group
(DMRG) in Néel, Ising, Dimer, and columnar phases from Ref. [9],
and variational energies from Ref. [8] are also presented. The inset
shows the same data on a more magnified scale in the region
0.25 < J, <0.5.

to about J, ~ 0.4, and only for J, around 0.35 it begins to go
down to zero.

At intermediate J,, there is a range of parameter values
where XY-columnar and dimer state energies are nearly
degenerate and are also in agreement with the DMRG energies.
The DMRG study finds [9] that the model has a phase
transition from the columnar phase to a dimer phase around
J>» =~ 0.5 and then another transition to an Ising ordered
antiferromagnet around J, = 0.35 [9]. Looking closely at the
data in Table I, we also find supporting evidence for this.
At J, = 0.6, we find the energy of the columnar phase to
be —0.3425 4 0.0004, which is clearly lower than the dimer
phase energy —0.3393 £0.0.0011. At J, = 0.5, the energy
of the columnar phase is —0.3171 & 0.0008. It is marginally
lower than the energy of the dimer phase —0.3157 £ 0.0005
and is consistent with the DMRG energy —0.318. On the
other hand, at J, = 0.4 the energy of the dimer phase is
—0.2971 £ 0.0002. It is marginally lower than the energy of
the columnar phase —0.2958 £ 0.0014 and is consistent with
the DMRG energy —0.297.

The only parameter region, where series expansions do not
give accurate ground state energies compared to DMRG is in
the region immediately next to the XY-Néel phase boundary
at Jo/J; = 0.22. This is where the exotic emergent Ising phase
was found in DMRG and a Bose-metal phase [6] was proposed

TABLE 1. Ground state energies (with J; = 1) for different values of J, calculated by series expansions for Néel (N), Dimer (D) and
Columnar (C) phases. Results from DMRG [9] and Variational (VAR) [8] studies are also shown.

J 0.1 0.2 0.3 0.4 0.5 0.6

Series N —0.3624 £ 0.0004 —0.314 +0.001

Series D —0.2880 £ 0.0003  —0.2971 £ 0.0002 0.3157 £ 0.0005 —0.3393 +0.0011
Series C —0.2860 £ 0.002 —0.2958 £0.0014  —0.3171 £ 0.0008 —0.3425 £+ 0.0004
DMRG —0.3634 —0.3135 —0.2945 —-0.297 —0.318

VAR —0.361 88 —0.31107 —0.28154 —0.29347
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FIG. 3. (Color online) Local XY magnetization in the Néel (solid
circles) and columnar (solid squares) phases obtained by series
expansions.

in the exact diagonalization study [7]. From Table I, one can see
that at J, = 0.3, the DMRG energy —0.2945 is clearly lower
than either dimer (—0.2880 = 0.0003) or the columnar energy
(—0.2860 £ 0.002) well beyond the estimated uncertainties.
In Figs. 4 and 5 we show the nearest-neighbor correlation
functions in the XY Néel phase. All correlations are anti-
ferromagnetic. Only the absolute values of the correlation
functions are plotted. When J, is small, the XY order is
very robust, and the correlation along the ordering direction
(X from our choice) is completely dominant. As the transition
point J, &~ 0.22 is approached, the X X correlation strongly
decreases, while the correlations along the Y and Z directions
grow. As one would approach the transition away from that
phase, the symmetry in the XY plane would be restored.
Hence, it makes sense to average the X X and Y'Y correlations
to obtain the average XY correlations between neighboring
spins for a comparison at the transition point. In Fig. 5,
the averaged XY correlations are compared with the ZZ
correlations. Data from DMRG are also shown. It is clear
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FIG. 4. (Color online) Components of nearest neighbor correla-
tions in the Néel phase obtained by series expansions. Absolute values
for the correlation functions are shown. Also, the correlation functions
are for the o-variables, which are four times the usual spin-spin
correlation functions.
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FIG. 5. (Color online) Averaged nearest-neighbor correlations in
the XY plane versus nearest-neighbor correlations along the Z axis
from Fig. 4. Absolute values for the correlations are shown. Results
from DMRG calculations from Ref. [9] are also shown.

that the average correlation in the XY plane approaches the
ZZ correlation near the transition. Note that the DMRG
data show a somewhat slower growth in ZZ correlations,
implying that the two would cross at a slightly larger J,
value. This near crossing, at the transition, is evidence that the
system is close to a bicritical point, separating XY and Ising
ordered phases [12]. On general grounds, one expects either
a first-order transition between the two ordered phases, or an
intermediate phase where neither order survives. Only when
the system is fine tuned with a second parameter, one should
be able to realize a continuous bicritical transition between
the phases [12]. In the present case, an additional coupling
that may allow one to tune the system to the bicritical point
is a nearest-neighbor Ising coupling. An antiferromagnetic
Ising coupling would favor the Ising ordered phase, whereas a
ferromagnetic Ising coupling would disfavor such a phase. Our
study suggests that the J;-J, honeycomb-lattice XY model,
with zero Ising coupling, is close to such a bicritical point.
In principle, this bicritical point can be studied in the future
by DMRG.

However, we have been unable to carry out a convergent
ground state series expansion for the Ising phase, which sug-
gests that this phase is quite fragile. The way one approaches
such a problem in series expansions [10,11] is by considering
a different Hamiltonian, which is a sum of the original XY
Hamiltonian multiplied by 1 plus a nearest-neighbor Ising
Hamiltonian multiplied by (1 — #). Thus, at n = 0 the model
has ground states with complete Ising order, whereas atn — 1,
the original Hamiltonian is recovered. One then carries out
a series expansion for ground state properties in powers of
n to study the possibility of Ising order remaining in the
system even as the Ising interactions are turned off and the
XY Hamiltonian is realized. Unfortunately, in our case, such
a series expansion shows very poor convergence as n — 1,
and we are unable to get any useful information about this
phase. A comparison of the energy of this Ising phase found
in DMRG with dimer and columnar state energies, calculated
in our study, shows that it is indeed stabilized by very small
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energy differences relative to these other phases. It should be
noted that just based on series expansions alone, we cannot
rule out an even more exotic phase such as the Bose liquid
proposed in the study of Varney et al. in this intermediate
J»/Jy region [7].

In conclusion, in this paper we have studied the frustrated
quantum XY model by series expansion methods. Our main
goal was to shed further light on the remarkable finding in the
recent DMRG study of an emergent Ising phase in the model
with the ordered spins pointing along the Z axis. Although
we have not directly been able to study this phase, our study
provides indirect support for its existence. Firstly, we find
that the XY Néel order vanishes at J,/J; = 0.22 £ 0.01 in
agreement with the DMRG study. Secondly, we find that
as this transition is approached from the XY-Néel side,

PHYSICAL REVIEW B 89, 104423 (2014)

the nearest-neighbor ZZ correlations rise to become equal
to the nearest-neighbor XY correlations consistent with the
development of stronger ZZ correlations or Ising order along
the Z axis at larger J,. Ground state energies for the X Y-Néel,
XY-columnar, and dimer phases are in excellent agreement
with the DMRG calculations. In the region of the emergent
Ising phase, the energy of other competing phases are clearly
higher, further supporting such a phase.
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