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Excitations and quasi-one-dimensionality in field-induced nematic and spin density wave states
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We study the excitation spectrum and dynamical response functions for several quasi-one-dimensional spin
systems in magnetic fields without dipolar spin order transverse to the field. This includes both nematic phases,
which harbor “hidden” breaking of spin-rotation symmetry about the field and have been argued to occur in high
fields in certain frustrated chain systems with competing ferromagnetic and antiferromagnetic interactions, and
spin density wave states, in which spin-rotation symmetry is truly unbroken. Using bosonization, field theory,
and exact results on the integrable sine-Gordon model, we establish the collective mode structure of these states,
and show how they can be distinguished experimentally.
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I. INTRODUCTION

Much of the research in frustrated quantum magnets
has focused on the elusive quest for magnetically disor-
dered phases with highly entangled ground states: quantum
spin liquids [1]. Somewhat intermediate between these rare
“beasts” and commonplace antiferromagnets are moderately
exotic phases of antiferromagnets in strong magnetic fields,
which exhibit no dipolar magnetic order transverse to the
field, contrary to typical spin-flop antiferromagnetic states.
One such state, the spin nematic (SN) state, has received a
particularly high degree of theoretical attention [2–4]. Argued
to occur in some quasi-one-dimensional strongly frustrated in-
sulators with competing ferromagnetic and antiferromagnetic
interactions [5], the SN phase has a “hidden” order, which
breaks spin-rotation symmetry about the magnetic field despite
the lack of transverse spontaneous local moments. A less
celebrated but competitive state in such systems is the collinear
spin density wave (SDW) [6,7], which develops magnetic order
but with spontaneous moments, whose magnitude is spatially
modulated, entirely along the magnetic field direction. Both
types of phases are strongly quantum, i.e., cannot occur
in classical models with moments of fixed length at zero
temperature. The absence of transverse moments in both
phases may lead the two to be confused experimentally,
and one of the reasons for the present study is to clearly
define the characteristics that distinguish them in laboratory
measurements.

A spin nematic is usually defined as a state without any
spontaneous dipolar order, i.e., so that in a magnetic field
along z, 〈S+

i 〉 = 0, but with quadrupolar order, 〈S+
i S+

j 〉 �= 0,
for nearby sites i,j . Such a nematic breaks the U (1) spin
rotation symmetry about the field axis, but in a more nontrivial
way than a usual canted antiferromagnet. The spin nematics
relevant to this paper are based on the frustrated Heisenberg
chain with ferromagnetic nearest-neighbor coupling and anti-
ferromagnetic second-neighbor coupling, in a strong magnetic
field. For a region of parameters, the single magnon excitations
with Sz = ±1 of the fully saturated high-field state are bound
into pairs with Sz = ±2. Roughly, these latter excitations
“condense” upon lowering the field, leading to a spin nematic
state [8–10]. Some caution should be exercised, however,
since in one dimension true condensation is not possible, and

spontaneous breaking of rotational symmetry about the field
cannot occur. A sharp characterization of the one-dimensional
(1d) spin nematic is, rather than nematic order, the presence
of a gap to Sz = ±1 excitations. The 1d SN state may
be thought of more properly as a Bose liquid of Sz = ±2
particles, and hence has not only power-law nematic order but
also power-law density fluctuations of those bosons [8] (see
Sec. II B 2). The latter is just power-law SDW correlations.
Interchain couplings can stabilize either long-range nematic
or SDW order. One of our results is that, in fact, SDW order
is typically more stable, and true nematic long-range order
occurs only in a narrow range of applied fields very close to
the fully saturated magnetization.

More generally, SDW order also occurs in frustrated 1d
systems from other mechanisms, unrelated to magnon pairing
and 1d spin nematicity. Thus we will spend considerable time
in this paper discussing the properties of the SDW. At the
level of order parameter, an SDW state is described by the
expectation value〈

Sz
i

〉 = M + Re(�eiksdw·ri ) + · · · , (1)

where the ellipses represent higher-order harmonics that may
be present, or small effects from spin-orbit coupling, etc. SDW
states are relatively common in itinerant systems with Fermi
surface instabilities [11], but much less so at low temperature
in insulating spin systems, which tend to behave classically
and hence possess magnetic moments of fixed length. From
the point of view of symmetry, the SDW breaks no global
symmetries (time reversal symmetry is broken and the z axis
is already selected by a magnetic field), but instead breaks
translational symmetry. Consequently, its only low-energy
mode is expected to be the pseudo-Goldstone mode of these
broken translations, known as a phason. The phason is a
purely longitudinal mode, as it corresponds to the phase
of � above and hence a modultion only of Sz. This is
also unusual in the context of insulating magnets, as the
low-energy collective modes are usually spin waves, which
are transverse excitations, associated with small rotations of
the spins away from their ordered axes. In spin wave theory,
indeed, longitudinal modes are typically expected to be highly
damped, and hence either undefined or hard to observe [12,13].
In SDW states, they can instead control the low-energy spectral

1098-0121/2014/89(10)/104407(19) 104407-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.104407


OLEG A. STARYKH AND LEON BALENTS PHYSICAL REVIEW B 89, 104407 (2014)

FIG. 1. (Color online) Schematic view of the excitation spectrum
in the collinear SDW state (see Sec. III), i.e., the inelastic structure
factor, in momentum (parallel to the chain direction defined by
strong bonds) and energy space. Solid (black) lines show the
results of chain mean-field theory, i.e., excitations on single chains,
and dashed (blue) lines give the two-dimensional results corrected
for collective interchain effects (by the RPA approximation). The
symbols s (soliton), s̄ (antisoliton), and B1 (breather) on top of
solid lines indicate their origin in the excitations of the single
chain sine-Gordon model. The excitations shown here at momenta
kx = π (1 ± 2M) and kx = 0 occur in the longitudinal (Sz) channel,
while those at kx = π and kx = ±2πM occur in the transverse (S±)
one. Note that while all excitations are gapped at the sine-Gordon level
(solid lines), the longitudinal excitations become gapless, reflecting
the phason mode, once two-dimensional effects are included. The
shaded gray area indicates a multi-particle continuum composed of
solitons, antisolitons (s,s̄) and breathers B1. The figure is drawn for
the situation M < 1/4, for which π (1 − 2M) is larger than 2πM .
For M > 1/4, the corresponding features exchange places in the
sketch.

weight in a scattering experiment. The SDW state also has
transverse excitations, as we discuss in Sec. III B 2, but these
exhibit a spectral gap, which is generally nonzero. They can
be distinguished from the phasons by their polarization and
their location in momentum space.

In this paper, we focus primarily on the excitations of SDW
and 2d spin nematic states. We show how to use the tools
of one-dimensional field theory, combined with the random
phase approximation (RPA) and other methods to obtain both
excitations and their contributions to different components of
the dynamical and momentum dependent spin susceptibilities
in a quantitative fashion. This analysis is greatly facilitated
by the use of copious exact results on the excitations and
correlation functions of the one-dimensional sine-Gordon
model [14–16]. The results for the excitations of SDW
states can also be easily extended to describe magnetization
plateaux, which can be viewed as SDW states pinned by the
commensurate lattice potential [6]. Most of the results for
SDW excitations carry over directly to such plateaux, with the
main modification that the phason develops a small gap due to
pinning.

In experiment, inelastic neutron scattering is a powerful
way to study the SDW and 2d spin nematic states, and for
convenience we summarize several distinguishing features
identified from our analysis here. These features are shown
for the SDW and SN states in Figs. 1 and 2, respectively.
Both states have linearly dispersing gapless modes: phasons
in the SDW case and the Goldstone modes (“quadrupolar
waves”) in the nematic case [17–19]. In the structure factor,

FIG. 2. (Color online) Schematic structure factor, analogous to
Fig. 1, for the two-dimensional spin nematic state (see Sec. IV). In
contrast to the SDW case, only qualitative shifts of the excitations
away from kx = 0 occur, so we draw only solid (black) lines there.
Excitations at momenta kx = π (1 ± 2M) and kx = 0 are longitudinal,
and those at kx = π are transverse (a gapped transverse mode at 2πM

is also present, but not shown in the figure). Note the absence of
low-energy transverse excitations. Indeed, as indicated by the break
in vertical scale, excitations at kx = π exhibit a much larger gap in
the spin nematic case, owing to the formation of this gap already
at the decoupled chain level. The gapless Goldstone mode of the
spin nematic, shown as a dashed (blue) line, contributes only in the
vicinity of kx = 0. Vertical axes labels and energy separations refer
to symbols from the treatment in Sec. IV.

the phason appears with greatest weight at the SDW wave
vector, which is in general incommensurate and away from the
zone center and boundary. Here, it gives a pole contribution
whose weight diverges as 1/ω as the energy of the pole
approaches zero. The phason also contributes, although much
more weakly, in the vicinity of the zone center, with a pole
whose weight vanishes as the wave vector approaches zero.
For the nematic, there is no divergent gapless contribution,
and the gapless mode appears only at the zone center. The
weights of the zone center contributions, though they both
vanish on approaching k = 0, differ in the angular dependence
of the weight of the low-energy pole. Another distinction
is in the gapped portion of the spectrum. In the SDW case,
the lowest gapped excitation, which carries a relatively large
spectral weight, occurs usually at kx = π , and occurs in the
transverse (S±) channel (a caveat here is that, in the SDW
arising out of 1d spin nematic chains, this is not the case,
and the transverse excitation at kx = π is pushed to high
energy). In the nematic, the lowest-energy gapped excitations
occur instead at the incommensurate value kx = π (1 ± 2M),
and excitations at kx = π appear only at much larger
energies.

The rest of the paper is structured as follows. In Sec. II,
we introduce bosonization and one-dimensional effective field
theories in a general fashion, which can be applied to both
SDW and spin nematic states, in several different physical
contexts. In Sec. III, we derive the excitations and structure
factor of the SDW phase, and in Sec. IV, we do the same
for the 2d nematic phase. We conclude in Sec. V with a
discussion of other ways to compare SDW and spin nematic
phases, and of existing experiments. Several appendices
contain technical details to support the results in the main
text.
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II. ONE-DIMENSIONAL EFFECTIVE THEORY

In this section, we introduce the standard bosonization
description, which applies to many critical one-dimensional
systems, and establish notations to be used in the rest of
the paper. A unified formalism of this type applies to several
distinct physical situations, which we delineate below.

To justify the bosonization treatment, we will consider a
quasi-one-dimensional geometry, composed of spin chains
or ladders, coupled together by somewhat weaker exchange
interactions between these one-dimensional units. Each unit
is characterized by some exchange scale J , presumed the
largest in the problem, which sets a temperature scale
T1d ∼ J , such that a low-energy effective description of
the one-dimensional units applies for T � T1d. Interactions
amongst the one-dimensional units can then be described in
terms of the low-energy field theory, i.e., bosonization. These
interactions, J ′ � T1d, induce ordering with a temperature
Torder ∼ J (J ′/J )b � T1d, where the exponent b > 1 is, in
general, dependent upon more details of the interactions
between and within the one-dimensional subsystems. Specific
cases will be discussed below.

A. Bosonization for 1d Bose liquids

The low-energy physics of a great variety of one-
dimensional spin systems can be described by bosonization
in terms of free scalar bosonic field theory. We introduce one
such field theory per one-dimensional unit or chain, indexing
these units by a discrete variable y. We presume U (1) spin
rotational symmetry about the z axis, which allows but does
not require a magnetic field along this axis.

Due to the U (1) symmetry, we may view a spin-1/2 system
as a Bose liquid, mapping for example the Sz = −1/2 state
to the vacuum, the Sz = +1/2 state to a (hard core) boson,
and thereby S± to boson creation/annihilation operators. The
Bose liquid language has an advantage in that it allows for a
unified view of ordinary antiferromagnetic spin chains and the
more exotic one dimensional nematic (see below). Therefore
we present first the bosonized form for the theory of a Bose
liquid, and then give specific applications of this to different
spin systems.

For a 1d Bose liquid, the fundamental operators are the den-
sity field ny(x) and creation/annihilation fields ψ

†
y (x),ψy(x),

which are bosonized according to

ny(x) = n + 1

β
∂xϕy − A1 sin

[
2π

β
ϕy(x) − ksdwx

]
,

ψy(x) = A3e
−iβθy (x) + · · · . (2)

Here, continuous x runs along the chain, and we have intro-
duced the slowly-varying “phase” fields ϕy (x),θy(x), which are
continuous functions of x and time t . The parameter β depends
upon details of the Bose liquid; it is also often convenient to
introduce the “compactification radius” R = β/(2π ). β, or
equivalently R, determines the long-distance behavior of the
1d correlation functions. The modulation wave vector ksdw is
that of an incipient Bose solid at the average Bose density n,
which is ksdw = 2πn. It is sometimes convenient to define the

“charge density wave” order parameter for these bosons,

�y(x) = e
−i 2π

β
ϕy , (3)

so that

ny(x) = n + 1

β
∂xϕy − iA1

2
[�y(x)eiksdwx − H.c.]. (4)

For spin systems, �y becomes the spin density wave order
parameter. To keep the presentation symmetric, we also define
the “superfluid” or XY order parameter 
y = e−iβθy , so that

ψy(x) = A3
y(x). (5)

The conjugate fields ϕ(x),θ (x) obey the commutation
relation

[θy(x),ϕy ′ (x ′)] = −i�(x − x ′)δyy ′ , (6)

where �(x) is the Heavyside step function. Their dynamics is
described by the free field Hamiltonian

H0 =
∑

y

∫
dx

v

2
[(∂xθy)2 + (∂xϕy)2]. (7)

This describes a single bosonic mode for each y: a central
charge c = 1 conformal field theory, also known as a Luther-
Emery liquid or c = 1 Luttinger liquid. The Hamiltonian
contains a single parameter v, which gives the velocity of
excitations which propagate relativistically, and which again
depends upon microscopic details.

Such a Luttinger liquid is characterized by algebraic
correlations, which are simply obtained from the above free
field theory, the most prominent of which are

〈ny(x)ny(0)〉c = 1
2A2

1 cos(ksdwx)|x|−2z, (8)

〈ψy(x)ψ†
y (0)〉 = A2

3|x|−2⊥ . (9)

Their power-law decay is controlled by the scaling dimensions
z = π/β2 = 1/(4πR2) and ⊥ = β2/(4π ) = πR2. Here,
we gave only the leading terms in (8) and (9), omitting
corrections which decay faster with distance.

For the case of many spin chains, including the XXZ chain
in a field along z, we can simply apply the above bosonization
rules taking

Sz
y(x) = 1

2 − ny(x), (10)

S+
y (x) = (−1)xψy(x). (11)

In that case, n = 1/2 − M , where M is the uniform mag-
netization, and hence ksdw = π − 2πM . For the isotropic
Heisenberg chain, 2πR2 monotonically decreases from 1 at
zero magnetization (M = 0) to 1/2 at the full saturation M =
1/2. This shows that in the presence of external magnetic field,
transverse spin fluctuations are more relevant (decay slower)
than the longitudinal ones, ⊥ � z for 0 < M � 1/2. At the
same time, the wave vector of longitudinal spin fluctuations
shifts with magnetization continuously, as ksdw = π (1 − 2M),
toward the Brillouin zone center, while that of the transverse
fluctuations, k⊥ = π , remains fixed at the Brillouin zone
boundary.

As discussed above, two-dimensional order appears as a re-
sult of residual interchain interactions J ′, which are described
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by a perturbing Hamiltonian H ′. To understand under which
conditions SDW can emerge from H ′, it is instructive to start
by considering the simplest case of nonfrustrated interchain
coupling

H ′
nonfr = J ′ ∑

x,y

Sy(x) · Sy+1(x)

→
∑

y

∫
dxγsdw cos[2π (ϕy − ϕy+1)/β]

+ γxy cos[β(θy − θy+1)]. (12)

Here, we rewrote the first line in an appropriate low-energy
form with the help of the representation (10), and we defined
continuum interchain coupling constants γsdw = J ′A2

1 and
γxy = J ′A2

3, which are of the same order. Since the fields
on different chains are not correlated with each other at
leading order (7), the scaling dimension D of the SDW
(cone) term in (12) is simply Dsdw = 2z(Dxy = 2⊥). Since
in the case of isotropic Heisenberg chains ⊥ � z for all
0 < M � 1/2, as argued above, the second term in the above
equation becomes parametrically stronger than the first under
the renormalization group (RG) flow. As a result, the interchain
interaction (12) reduces to the xy term, which implies two-
dimensional order, via spontaneous U (1) symmetry breaking,
in the plane perpendicular to the external magnetic field. This
is a familiar canted antiferromagnet, or spin-flop two sublattice
ordered state. Note that 〈Sz

y(x)〉 is completely uniform in this
phase.

The absence of an SDW phase noted here clearly follows
from the condition Dsdw > Dxy. We observe that this may
break down in three ways. First, for spin chains other than
the simple Heisenberg one, the inequality ⊥ < z may be
violated in favor of the opposite situation. Second, for yet
more exotic spin chains (or ladders), the relation between spin
operators and those of the effective Bose gas may differ from
that in Eqs. (10). Finally, third, the interactions between chains
may differ from those in Eq. (12). We will encounter all these
situations below.

B. Physical realizations

We now consider three different microscopic lattice models
that lead to dominant SDW interactions. These models
represent physically different ways of achieving the inequality
Dsdw � Dxy. In general, the models we consider have, in
their bosonized continuum limits, a Hamiltonian of the form
H = H0 + H ′, with H0 describing decoupled chains as in
Eq. (7), and the interchain coupling of the form

H ′ =
∑

y

∫
dx

[
1

2
γsdw(�†

y�y+1 + �
†
y+1�y)

+ 1
2γxy(
†

y
y+1 + 

†
y+1
y)

+ 1

2
γ ′

xy(
†
yi∂x
y+1 − 


†
y+1i∂x
y)

]
. (13)

The different models are distinguished by the values of the
couplings γsdw,γxy,γ

′
xy (see Table I) and by the value of the

chain interaction parameter β.

TABLE I. Parameters describing three different physical realiza-
tions of the quasi-one-dimensional SDW state.

model γsdw γxy γ ′
xy

Ising chains 1
2 J ′δA2

1 J ′A2
3 0

nematic chains 1
2 J ′A2

1 ∼(J ′)2/J 0

triangular lattice J ′A2
1 sin(πM) 0 J ′A2

3/2

1. Ising anisotropy

The most straightforward route to Dsdw � Dxy is provided
by arranging ⊥ > z. This occurs by keeping the same
unfrustrated rectangular arrangement of spin-1/2 chains dis-
cussed above (see Fig. 3(a)), but replacing the Heisenberg
chains with XXZ ones with Ising anisotropy,

HIsing = J
∑
x,y

(
Sx

x,yS
x
x+1,y + Sy

x,yS
y

x+1,y + δSz
x,yS

z
x+1,y

)
,

+ J ′ ∑
x,y

(
Sx

x,yS
x
x,y+1 + Sy

x,yS
y

x,y+1 + δSz
x,yS

z
x,y+1

)
,

(14)

where δ > 1 parameterizes Ising anisotropy, and for simplicity,
we have taken the same anisotropy in the interchain coupling
J ′, though this is not very important. In zero magnetic field,
even in the absence of interchain coupling, such a chain orders
spontaneously (at zero temperature, T = 0) into one of the two
Néel states, with spins ordered along the easy Ising (z) axis.
The nonfrustrated interchain exchange J ′ then immediately

FIG. 3. (Color online) Lattice geometries considered in the pa-
per. (a) Rectangular geometry, relevant for Ising-like coupled chains,
discussed in Sec. II B 1, and also for nematic chains, considered
in Sec. II B 2. In the latter case, J1 < 0 and J2 > 0. (b) Equivalent
representation of coupled nematic chains as a system of coupled
zigzag ladders. (c) Spatially anisotropic triangular lattice, discussed
in Sec. II B 3.
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selects the staggered arrangement of Néel order of adjacent
chains, further stabilizing the antiferromagnet for low but
nonzero temperature.

However, a sufficiently strong magnetic field, applied along
the z axis, breaks the gap, driving the XXZ chains into gapless
Luttinger liquid state again [20]. For small J ′, the problem
can then be treated by bosonization and has the general form
found above in Eq. (13), with γsdw = J ′δA2

1/2, γxy = J ′A2
3,

and γ ′
xy = 0. More importantly, the Ising anisotropy increases

β relative to the Heisenberg chain. Indeed, it turns out that
the critical indices of this state (parametrized in Ref. [20]
by η instead of our R) do have the desired property that
z < ⊥ for M in the finite range 0 < M � Mc(δ). The
critical magnetization Mc(δ), separating z < ⊥ and z >

⊥ regimes, increases with increasing anisotropy δ > 1.
It is clear that interchain interaction then stabilizes the

two-dimensional SDW state in (approximately) the same
magnetization interval 0 < M � Mc(δ) because here z <

⊥ immediately implies Dsdw < Dcone. The exact value of the
critical magnetization separating the two-dimensional SDW
and cone states (with nonzero J ′) depends on many details and
is not rigorously known. A reasonable estimate can be made by
the chain mean-field theory (CMFT), using the precise forms
of the longitudinal and transverse spin susceptibilities as well
as small (of the order J ′/J � 1) corrections to magnetization
M caused by the interchain exchange J ′. We disregard all these
complications in order not to overload the discussion.

It appears that spin-1/2 antiferromagnet BaCo2V2O8 re-
alizes exactly this situation [21]. Static SDW order has
been observed in several neutron and sound-attenuation
studies [22,23].

2. Spin-nematic chains

A second route to the collinear SDW is to suppress the
leading xy instability altogether, by driving the individual
spin chain into a completely different phase. This occurs
in the model derived from LiVCuO4, in which the one-
dimensional chains are not XXZ-like but (see Fig. 3(a)) instead
incorporate ferromagnetic nearest-neighbor exchange J1 < 0
and antiferromagnetic next-nearest exchange J2 > 0 [24,25].
Such J1-J2 chains (which can also be “folded” into zigzag
ladders – see Fig. 3(b)) have distinct behavior which is not
captured by Eqs. (10) and (11).

Extensive research into this interesting chain geometry,
dating back to 1991 [5], has found that the spectrum of the
fully magnetized chain contains, in addition to usual single
magnon states, tightly bound magnon pairs (in fact, three- and
four-magnon complexes exists in some parameter range as
well [8,9]). Importanly, these two-magnon pairs lie below the
two-magnon continuum. As the magnetic field is reduced to
the critical hsat one, the gap for the two-magnon states vanishes
while the single magnon gap remains nonzero. For h < hsat,
therefore, one obtains not a Bose liquid of single magnons
[which is the physical content of Eqs. (10) and (11)], but
rather a Bose liquid of magnon pairs[8,26]. In such a liquid,
Eqs. (10) and (11) are replaced by

Sz
y(x) ∼ 1

2 − 2ny(x),
(15)

S+
y (x)S+

y (x + 1) ∼ ψy(x),

where now ψy(x) annihilates a magnon pair, and ny(x) counts
the magnon pairs. The appearance of the operator quadratic in
S+

y above indicates the existence of critical “spin nematic”
correlations. Since a gap for single magnons (single spin
flips) remains, the low-energy projection of the single spin-flip
operator vanishes,

S±
y (x) ∼ “0”. (16)

For a single J1 − J2 chain, this is still a Luttinger liquid state,
but simple XY correlations decay exponentially instead of as a
power law. The density correlations in this Bose liquid remain
critical, and hence from Eq. (15) so do those of Sz

y(x).
With this understanding, we see that even simple unfrus-

trated J ′ exchange interactions coupling the J1 − J2 chains
are “projected” onto dominantly Ising Sz

y interactions, which
strongly favor an SDW ground state. Specifically, we have
again the form in Eq. (13), but with γsdw ∼ J ′A2

1 
 γxy ∼
(J ′)2/J and γ ′

xy = 0. The strong suppression of all single
spin-flip operators suggests that, unlike in the previous case,
the SDW state extends up to very close to the saturation value
M ∼ 1/2.

Unusual functional form of γxy ∼ (J ′)2/J is due to the
fact that it describes coupling of the nematic fields ψy(x)
of different chains. Such a coupling, involving four spin
operators, see (15), is simply absent in the lattice model. It is,
however, generated by quantum fluctuations in second order in
the interchain exchange, which explains its peculiar form (the
proportionality constant is nontrivial [26] and not determined
here). We will see that this can stabilize a true 2d SN near
the saturation field—see Sec. IV B. But away from a narrow
region near saturation, the SDW state indeed dominates as
naı̈vely expected.

3. Spatially anisotropic triangular lattice antiferromagnet

In the above two examples, we modified the interactions
on the individual chains from the Heisenberg type. A third
way to stabilize the SDW phase is to retain the simple
nearest-neighbor Heisenberg form for the chain Hamiltonian,
but modify explicitly the interactions between chains in a
manner that frustrates the competing XY order. This occurs
naturally for the situation of a spatially anisotropic triangular
lattice [6,27] shown in Fig. 3(c). In this case, each spin is
coupled symmetrically to two neighbors on adjacent chains,
which frustrates the interchain interactions. Specifically, the
interchain coupling reads

H ′
frust = J ′ ∑

x,y

Sy(x) · [Sy+1(x − 1/2) + Sy+1(x + 1/2)].

(17)

Note that this Hamiltonian is written in a cartesian basis in
which spins on, say, odd chains are located at the integer
positions x while those on the even chains are at the half-integer
locations x + 1/2. Bosonization of (17) gives again the form
of Eq. (13), but with γxy = 0 due to frustration. The other two
interactions are γsdw = J ′A2

1 sin(πM) and γ ′
xy = J ′A2

3/2.
The SDW term retains its form but its coupling constant

reflects frustration as well, γsdw ∼ sin[πM] → 0 for M → 0.
The SDW coupling resists the appearance of the derivative
which occurs for the XY term, as a result of the shift
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of the longitudinal wave vector kz = π (1 − 2M) from its
commensurate value π for finite M �= 0. It is this shift that
makes SDW interaction more relevant than the XY one. While
the SDW scaling dimension remains Dsdw = 2z, that of the
XY interaction increases to Dxy = 1 + 2⊥. The addition of
1 reflects the derivative in the γ ′

xy term of Eq. (13). Since
Dsdw = 2z < Dxy = 1 + 2⊥ in a rather wide range of
magnetization, approximately for 0 < M � 0.3, interchain
frustration stabilizes collinear SDW order [6].

III. EXCITATIONS OF COLLINEAR SDW STATE

In this section, we discuss the excitation spectrum of the
collinear SDW state, and its manifestation in the magnetic
structure factor (or wave-vector dependent spin susceptibility).
The magnetic excitations are collective modes, strongly
influenced by symmetry. In an applied magnetic field, the only
symmetries of the Hamiltonian are U(1) rotation symmetry
about the field, and the space group symmetries of the lattice.
Notably, the collinear SDW state preserves the former U(1)
symmetry, and in the absence of broken continuous symmetry,
lacks a Goldstone mode. Thus there are no acoustic transverse
spin waves. Instead, we expect gapped transverse excitations.
Given the highly quantum nature of the SDW phase in the
quasi-1d, S = 1/2 situation discussed here, there is in fact no
a priori reason these excitations may be treated semiclassically
in the traditional spin wave fashion. Instead, in the following,
we will obtain the gapped excitations from a purely quantum
treatment based on knowledge of the integrable 1d sine-
Gordon model.

The collinear SDW does, however, break translation sym-
metry, and in particular, exhibits incommensurate order [see
Eq. (1)]. Although translational symmetry is discrete, in cases
of incommensurate order it is known to behave in some
respects like a continuous symmetry and consequently the
collinear SDW state supports a phason mode, which is the
“pseudo-Goldstone” mode of broken translation symmetry.
Physically this mode—which is acoustic—appears because
of the vanishing energy cost for uniformly “sliding” the
incommensurate density wave. In the bosonization framework,
the elevation of the discrete lattice translation symmetry to an
effectively continuous one appears in an emergent continuous
symmetry of Eq. (12): invariance under ϕy(x) → ϕy(x) + ϕ(0).
While it is well known in SDW-ordered metals, the phason
excitation is perhaps less familiar in magnetically ordered
insulators. We now turn to the detailed exposition of the
excitation spectrum, including both phason and gapped modes.
For simplicity, we focus here on zero-temperature (T = 0)
properties and apply CMFT to the problem. An alternative
derivation of the phason dispersion, based on the Ginzburg-
Landau (GL) action, is sketched in Appendix B.

A. Single chain excitations

In this subsection, we present the chain mean-field theory
which approximates the problem of the 2d system by a
self-consistent set of independent chains, specifically 1 + 1d
sine-Gordon models. We describe the gapped excitations
occuring within individual such chains. The effects of two-
dimensionality on the spectrum, and especially the emergence

of the low-energy phason mode, is discussed in the following
section.

1. Chain mean-field theory

Focusing on the SDW state, we drop the γxy and γ ′
xy terms

in Eq. (13), and make the mean-field replacement H ′ → H ′
MF

(neglecting a constant), with

H ′
MF → =

∑
y

∫
dx

1

2
γsdw(〈�†

y〉�y+1 + �†
y〈�y+1〉

+ 〈�†
y+1〉�y + �

†
y+1〈�y〉) − const. (18)

With the ansatz

〈�y〉 = �(−1)y, (19)

we then obtain

H ′
MF = −γsdw�

∑
y

∫
dx (−1)y(�y + �†

y), (20)

where we took � real.
The chain mean-field theory (CMFT) has now reduced the

system to a problem of decoupled chains. It can be brought
into a simple standard form by expressing it in terms of
the bosonized fields, and making the shift ϕy → ϕy + βy/2,
which gives finally H0 + H ′

MF = ∑
y HsG[θy,ϕy], where

HsG =
∫

dx
v

2
[(∂xϕ)2 + (∂xθ )2] − 2μ cos

[
2π

β
ϕ

]
. (21)

Here, μ = γsdw� and the self-consistency requirement in
Eq. (19) becomes

� = 〈
e
i 2π

β
ϕ
〉
sG =

〈
cos

2π

β
ϕ

〉
sG

. (22)

Our notation here closely follows Refs. [15,16], which describe
many technical details important for the subsequent analysis.

2. Mass spectrum of the sine-Gordon model

The excitations of the sine-Gordon model in the mas-
sive phase (β2 > π/2) come in two varieties: solitons and
antisolitons, which are domain walls connecting degenerate
vacua (minima of the cosine), and breathers, which are bound
states of solitons and antisolitons. The number of breathers is
determined by the dimensionless parameter ξ = 1/(8πR2 −
1), such that n � [1/ξ ] ([x] denotes closest to x integer such
that [x] � x). The minimum energy of each breather—the
mass in the relativistic sense—is given by the formula

mn = 2ms sin

(
π

2
ξn

)
for n = 1,2, . . . ,

[
1

ξ

]
, (23)

expressed here in terms of the fundamental soliton mass ms .
In the case of the spatially anisotropic triangular lattice, ξ

ranges from 1/3 at M = 0 to 1 at the saturation, M = 1/2. The
breather masses are plotted in Fig. 4 versus M . For 0 < M <

0.125, there are two breather modes. When the magnetization
is increased to this value, the upper breather reaches the energy
of the two-soliton continuum and merges with it. Hence, when
0.125 < M < 0.5, there is only a single breather.
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m1�ms

m2�ms

Ξ

M
0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

2.0

FIG. 4. (Color online) Plot of ξ [solid (magenta) line] and
breather masses m1/ms [dashed (red) line] and m2/ms [dotted (blue)
line] as a function of magnetization M . Horizontal y = 0.5 line is
used to highlight “high magnetization” region with [1/ξ ] = 1: note
that the second breather is absent there.

The soliton mass ms is determined by the coupling constant
μ via the exact relation [28],

μ = v�
(

1
8πR2

)
π�

(
1 − 1

8πR2

)
[

ms

v

√
π�

( 1+ξ

2

)
2�

(
ξ

2

)
]2−1/(4πR2)

∼ v(ms/v)2−1/(4πR2). (24)

The scaling shown in the second line can be understood
by simple renormalization group arguments. The relevant
cosine operator in (21) grows under the RG according to
μ(�) = μ(0) exp{[2 − 1/(4πR2)]�}, where μ(0) ≡ μ is the
initial value of the coupling constant and � is the logarithmic
RG variable, so that the running energy scale is ε ∼ ve−�.
The coefficient μ(�) reaches strong coupling at �0 such
that μ(�0) = v. Solving this for �0, one obtains the energy
ms ∼ ve−�0 , which indeed matches the last line of (24). The
value of the exact solution in the first line of (24) is that it also
provides with exact numerical prefactor.

3. Self-consistency

To determine the overall scale of the excitation spectrum,
we require the soliton mass ms or μ. This is obtained from the
self-consistency condition μ = γsdw�. The expectation value
defining � is readily obtained from the relation

� = = −1

2

∂F (μ)

∂μ
, (25)

where F (μ) is the ground state energy density of HsG.
Equation (25) follows from first-order perturbation theory in
changes of μ.

At the scaling level, as it is an energy density, we expect
F ∼ vm2

s , and using Eq. (24) one obtains

ms ∼ v(γsdw/v)2πR2/(4πR2−1). (26)

This power can be understood from RG arguments, which
indicate it is correct beyond CMFT. Under the RG, the SDW
coupling grows according to γsdw(�) ∼ γsdwe(2−Dsdw)�, with
Dsdw = 2z = 1/(2πR2), which defines a scale �0 by the

M

old ms

new ms

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

FIG. 5. (Color online) Plot of soliton mass ms/v as a function of
magnetization M for J ′ = 0.5J . “Old ms” (blue curve) is obtained
using Fstandard, without correcting for ξ → 1 divergence. “New ms”
(red curve) is the corrected result (28), which is obtained using Fnew

from the Appendix A. For the spatially anisotropic triangular lattice,
the SDW phase, for which ms is calculated here, is the ground state of
the 2d problem in the interval 0 < M � 0.3. At higher M , the SDW
is replaced by the cone phase. Note that, in the limit J ′/J → 0, at
fixed M , the two curves converge to one another (in fact the ratio of
ms calculated in both fashions converges to one).

condition that γsdw(�) reaches strong coupling, i.e., becomes
of order v. Then using ms ∼ ve−�0 , we obtain Eq. (26).

To go beyond scaling and obtain the prefactor and hence
an absolute number for ms , we turn to the exact solution of
the sine-Gordon model. The standard result in the literature is
Fstandard = −m2

s tan(πξ/2)/4. It is, however, insufficient in the
present case due to the obvious (and unphysical) divergence
of Fstandard in the ξ → 1 (4πR2 → 1) limit, i.e., in the limit of
M → 1/2.

This divergence is analyzed and cured, with the help of
nominally less relevant terms, in Appendix A. We present the
result here. To obtain the soliton mass, one first solves for μ

from the equation

(μ

v

)1−ξ

= 1 + ξ

8
tan

(
πξ

2

)
A2

1A
1+ξ

2

(γsdw

v

)

×
[
1 − 1

8
tan

(
π

1 + ξ

)
A

4
(1+ξ )

1 A2
2Q

(1−ξ )
(1+ξ )

(
γsdw

v

)]−1

.

(27)

The soliton mass is then obtained as

ms = vA1

(
μ

v
A2

)(1+ξ )/2

. (28)

This procedure allows us to explicitly determine the soliton
mass ms as a function of M for a given coupling constant γsdw

of the original spin problem. For illustrative purposes, we plot
the result for the case of the spatially anisotropic triangular
lattice, for which γsdw = J ′A2

1 sin(πM), with J ′/J = 0.5
(chosen arbitrarily) in Fig. 5.
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B. Spin susceptibilities

The aim of this subsection is to show how the excitations
described in the prior section, which are excitations already
on a single chain, and the collective modes, which appear
only when the full 2d dynamics are considered, appear in the
physical dynamical susceptibilities, i.e., the components of
the dynamical structure factor measured in inelastic neutron
scattering. Formally, these are defined as the linear response
quantities,

Xμν(k,ω) = δSμ(k,ω)

δhν(k,ω)

∣∣∣∣
h(k,ω)=0

, (29)

where h is an oscillating infinitesimal applied Zeeman field at
wave vector k and frequency ω. By the usual linear response
theory, this is minus the retarded correlation function of spin
operators

Xμν(k,ω) ∼ i

∫ ∞

0
dt e(iω−ε)t 〈[Sμ(k,t),Sν(−k,0)]〉, (30)

where ε = 0+.
We distinguish two types of susceptibilities. The longitu-

dinal susceptibility describes the dynamical correlations of
spin components Sz along the applied field and the SDW
polarization. Using the bosonization rule of Eqs. (4) and (10),
we see that this is related to correlations of the SDW order
parameter �. Hence we define the bosonized equivalent, χ zz,
of the longitudinal susceptibility

Xzz(k = (ksdw + q,π + qy),ω) ∼ χ zz(q,qy,ω), (31)

and hence

χ zz(q,qy,ω) = i

∫ ∞

0
dt

∫
dx

∑
y

eiqx+iqyy+(iω−ε)t

×〈[�y(x,t),�†
0(0,0)]〉. (32)

Note that in χ zz(q,qy,ω), q gives the shift of the momentum
along the chain from the SDW one, i.e., kx = ksdw + q, while
qy is measured from π due to the shift of ϕ field by βy/2
made in deriving (21). Moreover, the continuum formula in
Eq. (32) describes only the contributions to the susceptibility
at low energy near kx = ksdw,ky = π . Other contributions may
apply elsewhere. For example, contribution from the vicinity
of kx = −ksdw,ky = π is described by the Hermitian conjugate
of the expression in Eq. (32), while in that near kx = 0, the
operator ∂xϕy in Eq. (2) or Eq. (4) contributes. We neglect it
here because, since this operator has larger scaling dimension
than �y , it gives a subdominant contribution in the sense of
smaller integrated weight in Xzz (i.e. the weight near kx = 0
is smaller than that near kx = ±ksdw).

The transverse susceptibility describes the spin components
Sx ,Sy normal to the field and the SDW axis. Using the
bosonization rule in Eqs. (2) and (3), we find

Xxx[k = (π + q,ky),ω] = Xyy[k = (π + q,ky),ω]

∼ χxy(q,ky,ω), (33)

with

χxy(q,qy,ω) = i

∫ ∞

0
dt

∫
dx

∑
y

eiqx+ikyy+(iω−ε)t

×〈[
y(x,t),
†
0(0,0)]〉. (34)

As for the longitudinal one, we have defined the continuum
transverse susceptibility χxy(q,qy,ω) in such a way that q gives
a shift in momentum relative to some offset, but with a different
offset from the one used in the longitudinal susceptibility. Here,
qx = π + q, i.e., ksdw → π on passing from the longitudinal
to transverse susceptibility. This difference originates from the
distinct momenta of singular response of a one-dimensional
spin system in the two channels. It must be noted that while
we can study this object, defined by Eq. (34), also for the
case of the SDW formed from SN chains, in that case it is not
the true transverse spin susceptibility. Due to the definition
of 
 for the SN case, it instead represents the nematic
susceptibility.

In the following, we obtain these quantities using the
random-phase approximation (RPA), which expresses these
2d dynamical susceptibilities in terms of the 1d dynamic
susceptibilities of the individual decoupled chains we obtained
in the CMFT approximation.

1. Susceptibilities of the sine-Gordon model

We now obtain the 1d dynamical susceptibilities. These are
by construction independent of qy . According to bosonization,
the longitudinal and transverse susceptibilities are related to
correlations of exponentials of ϕ and θ fields, respectively. The
corresponding correlations of the sine-Gordon model may be
calculated via the form-factor expansion, which is described
in great detail in Ref. [15]. Here, we present key results from
this reference as adapted for our needs.

Longitudinal susceptibility. The longitudinal susceptibility
is obtained from the two-point correlation function of �

in Eq. (32). What excitations are created by this effective
longitudinal spin operator? Since � is local in ϕ [see
Eq. (3)], it cannot generate topological excitations with
nonzero soliton number. Instead, acting on the ground state,
it generates gapped excitations corresponding to breathers,
unbound soliton-antisoliton pairs, and also higher energy states
such as multiple breather states. The largest contribution,
however, comes simply from the first breather B1 (in the
notation of Ref. [15]). In the approximation in which only
this excitation contributes, the longitudinal susceptibility has
a single simple pole,

χ zz
1d (q,ω) = CzZz

m2
1 + v2q2 − ω2 − iε

. (35)

The mass m1 is given by n = 1 in (23). Note that in the whole
magnetization range 0 < M < 1/2, when 1/3 < ξ < 1, the
first breather’s mass exceeds that of the soliton, m1 > ms .
The residue Zz = v(ms/v)1/(2πR2) is determined by the soliton
mass ms , while the factor Cz collects all numerical coefficients
and depends smoothly on the magnetization M . The second
breather B2 does not contribute because it only connects states
of the same parity while Sz(0,0) is odd under parity.

The continuum soliton-antisoliton states become available
for ω � 2ms . In the form factor expansion of Ref. [15], this
contribution was denoted F+−. We consider energies close
to the threshold, s − 2ms � 2ms , where s =

√
ω2 − v2q2.

With some analysis of formula in that reference, we find
that the contribution F+− to the dynamic structure factor of
the single chain starts smoothly as

√
s − 2ms�(s − 2ms).
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This is in accord with the general behavior expected for
the two particle contribution to correlation functions of
one-dimensional systems in the situation where the particles
experience attractive interactions (which must be the case here
since bound states (breathers) form). In general, for s > 2ms ,
all other contributions will occur inside the two soliton
continuum, and we expect that mixing with the continuum
will remove any sharp features at higher energies (though this
mixing may be controlled by deviations from integrability).
The end result is that Eq. (35) should be supplemented by the
continuum contribution for s > 2ms , which extends smoothly
to higher energies.

Transverse susceptibility. The transverse susceptibility is
obtained from correlations of 
 as in Eq. (34). The field 
y =
e−iβθy is not local in the ϕ variables, and indeed θ can be
expressed as an integral of the canonical momentum conjugate
to ϕ. Consequently, it creates soliton and antisoliton defects
in ϕ, and some algebra shows that it changes the topological
charge Qcharge = β−1

∫
dx∂xϕ by ±1. Hence the lowest energy

contribution to the transverse susceptibility is simply that of
single solitons, and again has a pole form. Thus

χ
xy
1d (q,ω) = CxyZxy

m2
s + v2q2 − ω2 − iε

. (36)

Here, Zxy = v(ms/v)2πR2
, while Cxy includes all numerical

coefficients and smooth dependence on β = 2πR and magne-
tization M . Note that ms < m1 so that the first onset of spectral
weight in the chain occurs here in the transverse correlation
function rather than the longitudinal one.

Corrections to this form account for multiparticle con-
tributions to χxy. These can be of soliton-breather (s−B1)
and of soliton-soliton-antisoliton (s − s − s̄) types, as is
schematically shown in Eq. (3.73) of Ref. [15]. They appear
at energy ms + m1 > 2ms and 3ms . Thus the continuum
contribution for the transverse susceptibility occurs above the
one for the longitudinal one. We do not pursue it further here.
The spectral content of Eqs. (35) and (36) is schematically
depicted in Fig. 1.

It is instructive to compare the excitation structure found
here with the “dual” sine-Gordon problem, which has been
frequently discussed in other problems of one-dimensional
magnetism, in which the ordering is transverse, so cos(2πϕ/β)
in (21) is replaced by cos(βθ ). In that case [14], the parameter
ξ ranges from 1/3 at zero magnetization, M = 0, to 1/7 at
M = 1/2, resulting in many more breathers (up to 7) peeling
off of the soliton-antisoliton continuum with an increasing
number with increasing magnetization. In parallel with this, the
spectral composition of different excitations branches changes
accordingly: the breathers contribute near momentum π , while
solitons (antisolitons) contribute near momentum π (1 + 2M)
[π (1 − 2M)]—see, for example, Fig. 1 of Ref. [14].

2. Susceptibility of 2d SDW phase

The single chain approximation is not sufficient for describ-
ing two-dimensional (2d) spin correlations. At the single chain
level, all spin excitations have a gap, there is no dispersion
transverse to the chains (i.e., dependence upon qy), and there
are no Goldstone (spin wave) modes. These deficiencies are

easily fixed, however, with the help of a simple random-phase
approximation (RPA) in the interchain couplings, as suggested
by Schulz [13] and developed in great details by Essler and
Tsvelik [15,29,30].

We apply the RPA directly to the continuum problem of
correlations of � and 
. This gives expressions for the 2d
susceptibilities directly from the single-chain susceptibilities,
χ

zz,xy
1d described above:

χα
2d(q,ky,ω) = χα

1d (q,ω)

1 + 2γα(q,ky)χα
1d (q,ω)

. (37)

Here, α = zz,xy describes the two channels, γα(q,ky) is the
Fourier transform of the interchain interaction in the α channel:

γzz(q,ky) = γsdw cos ky, (38)

γxy(q,ky) = (γxy − qγ ′
xy) cos ky. (39)

The parameters γsdw, γxy, and γ ′
xy are collected for convenience

in Table I. Using them, and Eqs. (35)–(38), one can obtain the
two-dimensional susceptibility for any of the three models
discussed here.

As an example, we discuss this now in some detail for
the case of the spatially anisotropic triangular antiferromag-
net. Applying Eq. (38) and Table I, we obtain γzz(q,ky) =
J ′A2

1 sin(πM) cos ky and γxy(q,ky) = − 1
2J ′qA2

3 cos ky . We
see that γxy � γzz owing to the additional factor of q � 1 in
this term, which ultimately arose from interchain frustration.

Hence in the ordered two-dimensional SDW state

χ zz
2d(q,ky,ω)

= {[
χ zz

1d (q,ω)
]−1 + 2γzz(ky)

}−1

= CzZz{[
m2

1 + 2CzZzJ ′A2
1 sin(πM) cos(ky)

] + v2q2 − ω2
} .

(40)

As written, this expression is characterized by a finite, albeit
renormalized and ky-dependent, gap in the spin excitation
spectrum, m2

sdw = m2
1 + 2CzZzJ

′A2
1 sin(πM) cos(ky) �= 0 and

does not seem to describe a gapless phason mode. This
shortcoming is of course due to the approximate nature of
the RPA expression (37). Since the phason is a Goldstone
mode, which is required by the very existence of the 2d
SDW order, we follow Schulz and simply require that the
gap must close at some appropriate ky . Clearly for Cz > 0
this happens at ky = π . This reflects the preference of SDWs
on adjacent chains to order out of phase due to repulsive
(antiferromagnetic) interactions between them.

To check the consistency of this procedure, we need to make
sure that both terms in the expression for m2

sdw scale in the
same way with J ′/J , and this is exactly what we find. While
m2

1 ∼ (J ′)4πR2/(4πR2−1) in accordance with (26), it is also easy
to see that the interchain term J ′Zz ∼ (J ′)1+1/(4πR2−1) follows
the same power law. Thus the two terms are of the same order
and our requirement m2

1 = 2CzZzJ
′A2

1 simply fixes the overall
numerical coefficient Cz of the longitudinal susceptibility.
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Hence, in the vicinity of ordering momentum k = (ksdw,π ),
we have, with kx = ksdw + q and ky = π + qy ,

χ zz
2d(q,π + qy,ω) ∼ Zzz;2d(

v2q2 + v2
⊥q2

y

) − ω2
, (41)

with Zzz;2d = m2
1/(2J ′A2

1), when q,qy � 1. The phason has
linear dispersion

ω =
√

v2q2 + v2
⊥q2

y (42)

with strongly anisotropic velocity. Its transverse (inter-
chain) velocity v⊥ =

√
m2

1/2 ∼ J (J ′/J )2πR2/(4πR2−1) is much
smaller than v ∼ J .

In the transverse (xy) channel, we have instead

χ
xy
2d (q,ky,ω)

= CxyZxy

m̃2
s (ky) + [

vq − CxyZxyJ ′A2
3 cos(ky)/2v2

]2 − ω2
.

(43)

Here,

m̃2
s (ky) = m2

s − [
CxyZxyJ

′A2
3 cos(ky)/2v

]2
(44)

is the renormalized gap, which depends on the transverse
momentum ky .

Note that the second term in the renormalized gap is
negative, so there is the potential for an instability in this
expression, if the negative correction becomes larger than the
positive m2

s term. Let us examine the relative magnitude of
the two terms. Unlike those considered above for the longi-
tudinal susceptibility, here they scale differently with J ′/J .
The ky-dependent correction, (ZxyJ

′/v)2, scales as (J ′/J )α2

with α2 = 2 + 2(2πR2)2/(4πR2 − 1), while m2
s scales as

(J ′)α1 with α1 = 4πR2/(4πR2 − 1). Importantly, α1 < α2 at
low magnetization where 2πR2 ≈ 1. Hence, when α1 < α2,
m̃s(ky) is parametrically dominated by the first term and is
positive for all ky . As the compactification radius diminishes
with increasing magnetization, the exponent α2 decreases as
well and at some critical point becomes equal to α1. This
happens when 2πR2 = (

√
5 − 1)/2, which takes place at

approximately M = 0.3. This signals an instability of the
SDW phase. Recall, in Sec. II B 3, we derived a condition
on the formation of the SDW phase, Dsdw = 2z < Dxy =
1 + 2⊥. Straightforward algebra shows the two conditions
to be indentical, thus strikingly showing the consistency of the
CMFT + RPA theory with general RG arguments!

It is clear that at this critical point the gap closes, at
ky = 0,π , and the system enters magnetically ordered cone
state where spin components transverse to the external field
acquire a finite expectation value. However, below such
a magnetization the SDW phase is stable and transverse
spin fluctuations are massive (but coherent, i.e., single-
particle-like), as (43) shows. The minimal gap occurs at
momenta ±q ′ = ±CxyZxyA

2
3J

′/2v2, which describes a small
shift away from the commensurate point. In terms of the
full 2d momentum, the minima are at k1 = (π − q ′,π ) and
k2 = (−π + q ′,0).

3. Response near kx = 0

To describe kx ≈ 0 region of the Brillouin zone, we need
to account for the so far neglected less relevant terms of the
mode expansion in Eqs. (2) and (10). For Sz

y(x), this is given
by the derivative term β−1∂xϕy(x) in Eq. (2), while S+

y (x) has
additional contributions at momenta ±2πM , which read

S+
y (x) = iA2

2
e−i2πMxeiβθ e

i 2π
β

ϕ + H.c. (45)

Observe that S+
y (x) can be written, with the help of (3), as

S+
y (x) = −iA2

2
ei2πMx�y(x)eiβθ + H.c. (46)

This form makes it clear that the main effect of the SDW order-
ing, as described by the chain mean-field approximation (18)
and (19), is captured by the replacement �y(x) → 〈�y(x)〉 =
�̄(−1)y . Hence

S+
y (x) → −iA2

2
ei2πMx+iπy�̄eiβθ + H.c., (47)

which makes it proportional to ψy(x) in (2), but located near
kx = ±2πM instead of π .

Thus the transverse spin susceptibility in the vicinity of
momenta k = (±2πM,π ) is given by Eq. (43) with kx =
±2πM + q and ky = π + qy and with the renormalized
residue Zxy → Zxy�̄

2. Observing that the SDW order param-
eter �̄ � 1, we conclude that the total spectral weight of this
contribution is much smaller than that from the momentum
ksdw, Eq. (43). Notice that near saturation, the momentum
2πM is closer to π than to 0, and certainly can be to the right
of the SDW wave vector π (1 − 2M).

Consideration of the longitudinal susceptibility near kx = 0
requires more care. Mean-field Hamiltonian (21) implies that

χ zz
1d (kx ≈ 0,ω) ∼ C̃zk

2
x

m2
1 + v2k2

x − ω2
. (48)

[Similarly to Eq. (35) the second breather, of mass m2, does
not contribute here to do oddness of ∂xϕy(x) under parity
transformation.] Observing that interchain coupling of the
uniform components ∂xϕy of Sz

y is given by 2J ′ cos(ky) (it is not
frustrated), RPA (37) would then suggest that two-dimensional
susceptibility has the form

χ
zz,RPA
2d (kx ≈ 0,ky,ω)

∼ C̃zk
2
x

m2
1 + v2k2

x[1 + aJ ′ cos(ky)/v] − ω2
(wrong!), (49)

where a is numerical coefficient. Thus RPA predicts gapped
excitation with ω ∼ m1, which is not correct. The basic reason
for this is that RPA “does not know” about the gapless phason
mode (42); recall that in going from (40) to (41), we have
imposed the gaplessness condition by hand.

On the other hand, the Ginzburg-Landau action of Ap-
pendix B does capture this crucial property of the SDW ground
state properly; Eq. (B3) shows that ∂xϕy(x) = ∂x�(x,y)
which, in view of the phason action Eq. (B4), leads to the
desired result,

χ zz
2d (kx,ky,ω) = vk2

x

/
β2

v2k2
x + v2

⊥k2
y − ω2

, (50)
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where the transverse phason velocity v⊥/v ∼
(γsdw/v)2πR2/(4πR2−1) � 1, according to (42) and (B8),
and kx,ky � 1. Taking the imaginary part (using the usual
i0+ prescription), we find

Im χ zz
2d (kx,ky,ω) ∼ vk2

x√
v2k2

x + v2
⊥k2

y

δ
(
ω −

√
v2k2

x + v2
⊥k2

y

)
.

(51)

Equation (51) demonstrates that acoustic 2d phason mode can
be observed near k ≈ 0, in addition to the vicinity of ±π (1 −
2M) [Eq. (41)]. It has weight that vanishes linearly as k → 0
but is also anisotropic: it vanishes on the line k = (0,ky).

We now summarize the results for the spatially anisotropic
triangular lattice. The above discussion shows that the onset of
spectral weight in the two-dimensional susceptibility χ2d oc-
curs as well-defined collective modes, in both the longitudinal
and transverse channels. They are descended from the breather
and soliton excitations of the sine-Gordon model, respectively.
The outlined approach predicts not only the dispersion of
these modes, but also their spectral weight. Though we did
not discuss this in any detail, the RPA also allows an analysis
of the continuum spectrum which appears in (and dominates)
the higher energy region.

Further analysis, summarized in Appendix C, is required
to describe commensurate SDW order which becomes pinned
to the lattice by weak multiparticle umklapp processes. In this
case, which corresponds to a two-dimensional magnetization
plateau state, the phason mode acquires a gap in the spectrum.
See Eq. (C3) and surrounding discussion for details.

IV. SPIN NEMATIC

The aim of this section is mainly to repeat the considerations
of the previous one for the case of a spin nematic (SN), dis-
cussing the features of the corresponding excitation spectrum.
However, we first present a “derivation” via bosonization of
the effective quasi-1d theory for a spin nematic, relevant to
experiment.

A. 1d nematic

A case for the spin nematic state has been made in the
material LiVCuO4. It consists of weakly coupled spin chains
with significant nearest and second-nearest neighbor Heisen-
berg exchange, i.e., J1-J2 chains. Here, the nearest-neighbor
interaction is ferromagnetic J1 < 0, and the second neighbor
J2 > 0 is antiferromagnetic, and we take J2 
 |J1|. In this
limit, one may naturally view each chain as a “zigzag ladder”
of the two subchains formed by even and odd sublattices (and
connected by J2), cross-coupled by J1, see Fig. 3. One may
thereby bosonize the two subchains separately, introducing a
doubled set of bosonized fields ϕy,odd,θy,odd and ϕy,even,θy,even

for each chain y.
The nematic state arises, in this picture, from the SDW

coupling between the two subchains, which can dominate
due to the fact that the zigzag coupling frustrates the XY
interactions [8]. The subchain SDW coupling takes the

bosonized form

Hsubchain ∼
∑

y

∫
dx J1 sin(πM) cos

[
2π

β
(ϕy,odd − ϕy,even)

]

∼
∑

y

∫
dx J1 sin(πM) cos[

√
2ϕ−

y /R], (52)

where

ϕ±
y = (ϕy,odd ± ϕy,even)/

√
2. (53)

At not too low fields, πM is close to π/2, and this interaction
is large, pinning the relative mode ϕ−

y strongly. As a result, the
conjugate field θ−

y is highly fluctuating, rendering harmonics
of it quantum disordered on rather short length scales.

These observations correspond to the formation of the 1d
nematic. This can be seen by expressing the spin operators in
the ± basis:

Sz
y(x) ∼ A1Im

[
e
i 2π√

2β
ϕ+

y (x)
e
i(−1)x 2π√

2β
ϕ−

y (x)
e−iksdwx

]
,

(54)
S+

y (x) ∼ (−1)xA3e
i

β√
2
θ+
y (x)

e
i(−1)x β√

2
θ−
y (x)

,

where the (−1)x factors inside the exponentials arise from the
decomposition into even and odd subchains. One sees that, due
to the presence of the θ−

y (x) field in the exponential, S+
y (x)

is quantum disordered, and has therefore very short-range
correlations. However, one may construct the nematic operator,

T +
y = S+

y (x)S+
y (x + 1) ∼ ei

√
2βθ+

y (x), (55)

for which the θ−
y (x) field cancels, and which therefore has

power-law correlations. Note that of course Sz
y(x) also has

power-law correlations, as it contains not θ−
y (x) but the

conjugate field ϕ−
y (x), which can be set to zero at low energy.

Connecting with the discussion in Sec. II B 2, we identify
T +

y ∼ ψy , and hence θy = √
2θ+

y and ϕy = ϕ+
y /

√
2 (the latter

normalization preserves the commutation relations). In these
variables, the spin operators become

Sz
y(x) ∼ A1Im

[
e
i 2π

β
ϕy (x)

e
i(−1)x 2π√

2β
ϕ−

y (x)
e−iksdwx

]
,

S+
y (x) ∼ (−1)xA3e

i
β

2 θy (x)e
i(−1)x β√

2
θ−
y (x)

. (56)

B. Competition between 2d SN and paired SDW

A two-dimensional nematic can be stabilized by coupling
between chains, but this interaction can also stabilize a paired
SDW. Consider the interchain interaction J ′ of the transverse
spin components, which we presume acts in an unfrustrated
way, coupling even sublattice to even sublattice, and odd
sublattice to odd sublattice. Then

H3 =
∑

y

∑
a

∫
dx J ′ cos[β(θy,a − θy+1,a)]

=
∑

y

∫
dx 2J ′ cos

[
β√
2

(θ+
y − θ+

y+1)

]

× cos

[
β√
2

(θ−
y − θ−

y+1)

]
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=
∑

y

∫
dx 2J ′ cos

[
β

2
(θy − θy+1)

]

× cos

[
β√
2

(θ−
y − θ−

y+1)

]
. (57)

In the first line, a sums over even and odd subchains. In the
last line, we have re-expressed the interaction in terms of the
nematic phase θy defined above and in Sec. II B 2. Due to
the presence of the fluctuating θ−

y field, the above operator
has only short range correlations and is highly irrelevant.
It, however, generates a nematic interaction, which can be
easily obtained by integrating out the θ−

y field in a cumulant
expansion. The result has the form [26]

Hnem ∼
∑

y

∫
dx (J ′2/J1) cos[β(θy − θy+1)]

∼
∑

y

∫
dx (J ′2/J1)[ψ+

y (x)ψ−
y+1(x) + H.c.]. (58)

This involves only the slowly varying θy fields, and indeed has
the same mathematical form as the XY interaction between
nonfrustrated chains, Eq. (12), with γxy ∼ J ′2. The nematicity
of the problem is encoded in the definition of θy . If we were
to try to generate Eq. (58) directly microscopically (i.e., with
a coefficient proportional to a microscopic coupling), it would
require a four-spin interaction, e.g.,

Hnem ∼ (J ′2/J1)
∑

y

∫
dx[T +

y (x)T −
y+1(x) + H.c.]. (59)

As discussed in Section II B 2, nematic interchain interac-
tion (58) competes against the direct Sz-Sz (density-density)
interaction

Hsdw ∼
∑

y

∫
dx J ′ cos

[√
2π

β
(ϕ+

y − ϕ+
y+1)

]
, (60)

which drives the system of nematic spin chains towards the
longitudinal SDW state. It is interesting to note that the
competition between “dual” magnetic orders (58) and (60)
is quite similar to that between superconducting and charge-
density wave orders in itinerant charge systems [31].

As usual, relative importance of the two competing inter-
actions can be estimated by comparing their scaling dimen-
sions. Scaling dimension of the nematic interchain interaction
Dnem = 2 · (

√
2β)2/(4π ) = 4πR2 ∈ (2,1) ranges from 2 at

zero magnetization to 1 near the saturation. Scaling dimen-
sion of the SDW interaction Dsdw = 2 (

√
2π/β)2/(4π ) =

1/(4πR2) ∈ (1/2,1). We see that Dsdw < Dnem for all mag-
netization values, except the very vicinity of the saturation
where the two coincide within our crude approximation which
neglects less relevant and marginal interchain interactions
which do weakly modify scaling dimensions Dnem/sdw of
the leading terms. In addition, the nematic interaction has
parametrically smaller interaction constant, J ′2/J � J ′, than
the SDW one, which diminishes its competitiveness even
further [26]. Hence, in the limit of weakly coupled chains,

i.e., taking fixed intrachain couplings and letting J ′ → 0+,
the SDW always wins over the 2d SN.

It is important to note here that sufficiently close to the
saturation our quasi-1d description, which assumes linearly
dispersing excitations, unavoidably breaks down. In the fully
polarized (saturated) phase, excitations are characterized by
the quadratic dispersion. The two-dimensional high-field
nematic state then occurs as a result of Bose-Einstein conden-
sation (BEC) of magnon pairs [10]. This represents a different
order of limits: fixed J ′ > 0 (however small), and M → 1/2.
Thus we expect a wedge of SN phase intervening between
the fully saturated state and the nematic SDW, whose width
approaches zero as J ′ → 0. We can further estimate the width
versus J ′ as follows. In the magnon description, the typical
energy per unit chain length due to interchain pair magnon
hopping is proportional to MJ ′2/J , where M = 1

2 − M ,
while that due to magnon-magnon interactions across chains
is (M)2J ′. For small M , the former dominates, stabilizing
the pair magnon condensate, i.e., the SN, while for large M ,
the latter is larger, provided J ′/J � 1. Equating the two, we
obtain Mc ∼ J ′/J , i.e., the SN-SDW boundary enters the
1d saturation point linearly in the J ′-M plane. This conclusion
agrees with other calculations [26], which also argue the two-
dimensional nematic state is replaced by the two-dimensional
longitudinal SDW state below critical magnetization Mc =
1
2 − Mc � 1/2. The transition between the two phases is a
first-order one, as is explained in Appendix D.

C. 2d nematic

In the SN phase, the low-energy properties are universal.
Then we can discuss them using whatever technique is
convenient. We begin with an analysis using the coupled chains
description. We can assume that Dnem < Dsdw, or simply that
we tune the SDW interaction to zero. The results should be
physically applicable for Mc < M < 1/2.

1. Chain mean field

Within the chain mean-field approximation Eq. (58) is then
replaced by

Hnem ∼ J ′2

J1
〈cos(βθy)〉

∑
y

∫
dx cos(βθy). (61)

When the above expectation value is nonzero, there is
long-range nematic order. What are the consequences on the
level of single chain description? Obviously, the mean-field
Hamiltonian is fully gapped, the (-) modes being gapped
already by Eq. (52) and the 1d nematic modes by Eq. (61).
Spin operators acting on the ground state generate excitations
above this gap.

It is important to realize from the outset that the two
sine-Gordon models, represented by Eq. (52) for the (-)
(specifically, ϕ−) sector and Eq. (61) for the (+) (specifically,
θ = √

2θ+) sector, are characterized by very different energy
scales. In the (-) sector, the scale is set by the ferromagnetic
chain exchange J1 ∼ J2, while in the (+) sector is it deter-
mined by a much smaller J ′2/J1 � J1,2. Correspondingly,
soliton mass of the (-) sector, which we denote as m̃−

s ,
is much bigger than that for the (+) sector, denoted as
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m̃+
s . That is, m̃−

s 
 m̃+
s , as Fig. 2 shows. This important

observation implies that lowest-energy excitations above the
ground state of sine-Gordon models (52) and (61) are given by
the excitations of Eq. (61) alone, i.e., occur in the (+) sector.
The (-) sector is much more massive and in many respects can
be treated as fully frozen.

Referring to Eq. (56), one sees that Sz, being dual to
S+, generates solitons in (+) sector. The solitons change
corresponding topological charge Q

(+)
charge = β/(2π )

∫
dx∂xθ

by ±1. At the simplest level, we simply set ϕ− = 0 and no
excitations are generated in this (-) sector, as discussed above.

In a full treatment, which we add here for completeness, one
needs to allow for excitations of (-) modes as well. We start by
noting that nonlinear cosine term in (52) describes repulsive
sector of the sine-Gordon model in which no breathers, which
are soliton-antisoliton bound states, are present. Formally,
this is easiest seen by calculating the corresponding pa-
rameter ξ (−)

nem = (
√

2/R)2/(8π − (
√

2/R)2) = 1/(4πR2 − 1).
Since 4πR2 ∈ (2,1) for M ∈ (0,1/2), this dimensionless
parameter ξ (−)

nem ∈ (1,∞). Now, according to (23) (see also
Ref. [15]), the number of breathers is determined by the
integer part of 1/ξ , which in the present case is zero. Thus
there are no breathers in the (-) sector. This consideration
shows that excitations in the ϕ− sector are represented by
the soliton-antisoliton continuum, which starts above the
threshold energy 2m̃−

s , and thus costs considerable additional
energy.

Therefore the spectrum of states created by Sz begins with
a gapped but well-defined soliton mode at energy m̃+

s at
momentum kx = ksdw. At the single-chain level, this is the
minimum energy excitation in the Sz-Sz structure factor. The
next (in energy) mode corresponds to exciting soliton together
with breather, and starts at energy m̃+

s + m̃+
n=1,2, see (62)

below. Note that a different analysis is required to discuss
the region around kx = 0, as this region is controlled by a
different, ∂xϕ, term in the bosonization formulas.

Considering transverse spin excitations, the situation is
different. Crucially, Eq. (56) shows that S± always generates
solitons in the (-) sector, hence the minimal energy of the
transverse mode excitation is m̃−

s , which, as discussed above,
is quite large. Since S±

y ∼ eiβθy/2 as far as the (+) sector is con-
cerned, we expect that the nematic mean-field (61) results in
the finite vacuum-to-vacuum matrix element 〈exp(iβθy/2)〉 �=
0. This means that S± does not need to generate any excitation
in the (+) sector, or if it does, it generates a two-particle
breather (or, solitons and antisolitons in equal numbers).

The breathers of the (+) sector have masses

m̃+
n = 2m̃+

s sin

[
π

2
ξ (+)

nemn

]
for n = 1,2, . . . ,[1/ξ (+)

nem],

(62)

where m̃+
s denotes the soliton mass of the sine-Gordon

model Eq. (61). Parameter ξ (+)
nem here is given by ξ (+)

nem =
(
√

2β)2/[8π − (
√

2β)2] = [1/(πR2) − 1]−1. Hence, ξ (+)
nem ∈

(1,1/3) for M ∈ (0,1/2), so that 1/ξ (+)
nem � 3 for M ∼ 1/2,

resulting in two breathers present in the excitation spectrum
of the model in the most relevant magnetization range outside
the immediate vicinity of the saturation.

It is interesting to note that, according to Ref. [15], odd-
numbered (with mass m̃+

1 ) and even-numbered (with mass
m̃+

2 ) breathers contribute differently to matrix elements of
sin(βθ/2) and cos(βθ/2) operators. Specifically, operators
even under “charge conjugation” θ → −θ , such as cos(βθ/2),
couple the ground state to the even-numbered breathers
only, while the odd ones, such as sin(βθ/2), connect only
to the odd-numbered breathers. Since these two kinds of
breathers are characterized by the different masses, m̃+

1 < m̃+
2 ,

transverse spin correlation functions 〈SxSx〉 and 〈SySy〉 are
characterized by the different excitation gaps above the soliton
mass energy m̃−

s . In other words, even though transverse
spin correlations are short-ranged and disordered in the
two-dimensional nematic state, their high-energy structure
is sensitive to the fact that the U(1) symmetry is broken by
Eq. (61), i.e., by the two-magnon condensation.

To summarize, on the chain mean-field level,
two-dimensional nematic state is characterized by massive
excitations in both longitudinal and transverse channels. The
minimal energies of these are m̃+

s and m̃−
s , correspondingly.

A rather large gap in the transverse structure factor, m̃−
s ,

appears already on the level of a single chain, as expected for
a “bosonic” superconductor such as high-field spin nematic
here.

2. Susceptibilities

Turning to 2d susceptibilities now, we first consider the role
of collective modes. The nematic state does spontaneously
break the continuous U(1) rotation symmetry about the z axis,
so there indeed must be a Goldstone mode. It should appear as
a mode, i.e., a pole with large spectral weight, however, only
in the nematic order parameter susceptibility, i.e., a four-spin
correlation function.

We conclude that the Goldstone mode does not appear near
kx = ksdw in χ zz

2d nor near kx = π in χ
xy
2d . Thus we expect all

excitations at these momenta to remain gapped, just as they
are in the single chain mean-field treatment. This is confirmed
by an RPA treatment, which, due to the lack of qualitative
modifications of the single-chain behavior, we do not present
in detail here. For example, χ zz

2d should have functional form
of equation (40) but with replacement of the breather mass
1 by the soliton mass of the model of Eq. (61), and similar
replacement for the parameters Cz and Zz. Obviously, the
RPA treatment will also restore transverse dispersion, which
is simply given by J ′ cos(ky).

The one place where the nematic Goldstone mode must
appear, on general principles, albeit with small spectral weight,
is at low energy near k = 0 in the correlation function of
the conserved density which generates the broken symmetry,
which in this case is just the longitudinal spin density Sz

y(x).
This is rather tricky to capture using bosonization and the RPA,
so we instead obtain it from general principles.

Because this weight is a universal property of the two-
dimensional spin-nematic state, it can be obtained a phe-
nomenological effective field theory description. The spin
nematic can be regarded in this sense as simply a condensate
of bound pairs of spin flips—the quanta of the ψ field. This is
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described by the usual action for a Bose gas,

S =
∫

dxdτ
∑

y

[
1

2
(ψy∂τψ

+
y − ψ+

y ∂τψy) + 1

2mx

∂xψ
+
y ∂xψy

−μ|ψy |2 + u

2
|ψy |2|ψy+1|2 − cJ ′2(ψ+

y ψy+1 + H.c.)

]
.

(63)

The u term describes interchain interaction of longitudinal
spin components, hence u ∼ J ′. The last term arose from
transverse hopping as in Eq. (58). It can be of course written as

1
2my

∂yψ
+∂yψ at low energies when the

∑
y can be replaced by

an integral. Introducing the standard parametrization ψy(x) =√
ρ(x,y)eiθ(x,y), we obtain

S =
∫

dxdydτ

{
− iρ∂τ θ + u

2
(ρ − ρ0)2

+ 1

8ρ0

[
(∂xρ)2

mx

+ (∂yρ)2

my

]
+ ρ0

[
(∂xθ )2

2mx

+ (∂yθ )2

2my

] }
.

(64)

As usual, ρ0 = μ/u. The first term here shows that ρ and θ are
a canonical pair, which implies the expected soft mode in the
density fluctuations. Integrating out δρ = ρ − ρ0, we obtain a
canonical action for the Goldstone mode of the nematic order
parameter (55)

Sφ =
∫

dxdydτ

{
ρ0

[
(∂xθ )2

2mx

+ (∂yθ )2

2my

]
+ 1

2u
(∂τ θ )2

}
.

(65)

This mode cannot be observed in 〈S+S−〉 correlator.
If we instead integrate out the phase θ , we obtain, switching

to the (ω,k) representation,

Sδρ =
∫

dkdωn

(
ω2

n

4ρ0εk

+ εk

4ρ0
+ u

2

)
δρkδρ−k, (66)

where εk = k2
x

2mx
+ k2

y

2my
. This action immediately translates into

the following density-density correlation function:

〈δρkδρ−k〉 = 2ρ0εk

ω2
n + εk(εk + 2ρ0u)

. (67)

Analytically continuing Eq. (67) to real frequency, we obtain
the spectral function,

Imχ zz
2d (k,ω) ∼ ρ0εk

ωB(k)
δ[ω − ωB(k)], (68)

where the frequency of the Bogoliubov mode is ωB(k) =√
2ρ0uεk + ε2

k . At small momentum, the first term in the
square root dominates, ωB(k) ∼ √

2ρ0εk: the spectrum is
linear (acoustic) and isotropic up to a constant rescaling, i.e.,
ωB(k) ∝

√
k2
x/mx + k2

y/my , and the susceptibility becomes

Imχ zz
2d (k,ω) ∼ ωB(k)δ[ω − ωB(k)], (69)

so that the weight of the acoustic Bogoliubov mode vanishes
linearly and isotropically with k. A similar linear vanishing was
observed for the contribution of the phason in Eq. (51), but in
that case the weight, though linear in k, was highly anisotropic.

The difference between the isotropy found here and the
anisotropy found for the SDW originates from the physical
difference that the nematic represents a state of broken internal
U(1) symmetry, unconnected with real (or momentum) space,
while the SDW is a state of broken translational symmetry,
and hence the phason is intimately tied to real and momentum
space, influencing differently correlations along or normal to
the SDW wave vector.

The above density-density correlation function represents
the physical longitudinal spin-spin one, i.e., 〈SzSz〉, and
hence is observable in inelastic neutron scattering. A similar
observation has been made in Ref. [32] by considering the
dynamic properties of the two-magnon condensate. We note
that the general property that the spectral weight vanishes
linearly in k near k = 0, shared by the nematic and the SDW,
is required on general ground since the total spin is conserved,
and both the nematic and SDW states are compressible, i.e.,
have finite nonzero susceptibility to a field along the z axis.

To summarize, the Goldstone model in the nematic case
appears only in the vicinity of the Brillouin zone center, and
with small spectral weight that vanishes as k → 0. By contrast,
in the SDW state, the “phason” mode appears at the SDW wave
vector, with divergent spectral weight.

V. DISCUSSION

A. Discriminating SDW and SN phases

In this paper, we discussed the spectral properties of SDW
and SN phases, pointing out means to distinguish them. At
low energy, the principle distinction is the phason mode, which
gives power-law spectral weight at k = kSDW in the SDW state,
which is not present in the SN. The other spectral distinctions
were reviewed already in the Introduction and Figs. 1 and 2,
so will not be discussed further here.

There are other ways to differentiate the SN and SDW,
however. One is through their static order. The SN has really no
observable static order in the spin structure factor. By contrast,
the SDW has static order of the longitudinal Sz

i moments. This
is clearly an observable difference.

In thinking about the SDW order, it is important to consider
the effects of quenched disorder. The broken symmetry of the
SDW state is in fact just translational symmetry. Hence, any
defects act as random fields on the SDW order parameter,
i.e., collective pinning (see, for example, Ref. [33] in the
context of CDWs). It is well established that pinning of this
type inevitably destroys the long-range order of the SDW
state (some exotic “Bragg glass” order [34] may survive as
a distinct phase, though this is not proven). Consequently, a
peak with finite correlation length should be observed at the
SDW wave vector in the Sz-Sz structure factor in the SDW
state. Furthermore, pinning will modify the thermal transition
from the paramagnetic to SDW state, which in the absence of
disorder would be expected to be XY-like. The specific heat
singularity of the XY transition will be reduced and rounded.

By contrast, the SN state breaks the internal spin-rotation
symmetry, and thus is not strongly effected by disorder. In a
Heisenberg model, it would be expected to display an thermal
XY transition which unlike for the SDW is not rounded by
disorder. However, we should note that typically there will
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be some spin-orbit coupling effects such as Dzyaloshinskii-
Moriya interactions or symmetric exchange anisotropy that
anyway remove the continuous rotation symmetry of the
Heisenberg model about the field axis. In that case, the sym-
metry may be reduced to a discrete one, or none at all. This will
certainly modify the SN transition, either to a discrete univer-
sality class such as Ising (which has a stronger specific heat sin-
gularity), or remove it entirely (if there is insufficient rotation
symmetry, then the SN order becomes no longer spontaneous).

B. Experiments

The list of materials realizing SDW and/or SN phases
is pretty short. The spin-1/2 Ising-like antiferromagnet
BaCo2V2O8 was, to our knowledge, the first insulating
material to realize collinear SDW order, along the lines of the
scenario outlined in Sec. II B 1. Experimental confirmations
of this include specific heat [21] and neutron diffraction [22]
measurements. The latter one is particularly important as
it proves the linear scaling of the SDW ordering wave
vector with the magnetization, ksdw = π (1 − 2M), predicted
in Ref. [20]. Subsequent NMR [35], ultrasound [23], and
neutron scattering [36] experiments have refined the phase
diagram and even proposed the existence of two different SDW
phases [35] stabilized by competing interchain interactions.

Most recently, the spin-1/2 magnetic insulator LiCuVO4

has emerged [24,25] as a promising candidate to realize both
a high-field spin nematic phase, in a narrow region below
the (two-magnon) saturation field (which is about 45 T), as
well as an incommensurate collinear SDW phase at lower
fields (which occupies a huge magnetization/field interval,
extending down to about 7.5 T). In fact, the material seems to
nicely realize the theoretical scenario outlined in Sec. II B 2:
despite being in a one-dimensional spin-nematic state [37,38],
the chains order into a two-dimensional nematic phase only
in the immediate vicinity of the saturation field [39]. At
fields below that narrow interval, which we estimated in
Sec. IV B to be of the order of Mc ∼ J ′/J , the ordering
is instead into an incommensurate longitudinal SDW state.
Evidence for the latter includes detailed studies of NMR
line shape [40–43], which convincingly exclude spin ordering
transverse to the field, and neutron scattering [44,45] studies.
The neutron scattering observes linear scaling of the SDW
ordering momentum with magnetization [44]. Using polarized
neutrons, Ref. [45] has established non-spin-flip character of
the elastic neutron scattering (and the absence of spin-flip
scattering) at magnetic field above approximately 10 T, which
strongly points to the development of U(1)-preserving 2d
SDW order. (The low-field phase of the material, which is
characterized by a more conventional vector chiral order,
can be explained by a moderate easy-plane anisotropy of the
exchange interaction [46].) It should be noted that the authors
of Ref. [45] interpret their findings in terms of nematic bond
order, which, in our opinion, is not realized for intermediate
magnetization values within the simple model of weakly
coupled spin nematic chains. Indeed, the observations of finite
correlation length and rounded specific heat singularity in their
paper are very much in accord for the expectations in a pinned
SDW state, as discussed in the previous subsection. It would
be very interesting to search for the predicted linear phason

mode with the help of inelastic neutron scattering. It should
also be kept in mind that at temperatures above the SDW
ordering transition, the magnetic response of the system may
well be dominated by that of uncorrelated spin-nematic chains,
resulting in, for example, unusual NMR response [47,48] in
such an intermediate temperature range.

Last, but not least, are spin-1/2 triangular lattice antiferro-
magnets Cs2CuCl4 and Cs2CuBr4, whose geometric structure
of which is rather close to the third model, of Sec. II B 3,
considered in this paper. The first of these unfortunately
appears to be strongly disturbed by the weak (of the order
of several percent) residual interplane and Dzyaloshinskii-
Moriya (DM) interactions which dominate the magnetization
process [6] and produce in a complex and highly anisotropic
h-T phase diagram [49]. However, it is worth mentioning that
this was perhaps the first spin-1/2 material studied for which an
SDW-like ordering wave vector, scaling linearly with magnetic
field in an about 1-T-wide interval (denoted as phase “S” in
Ref. [50]), was observed in neutron scattering studies.

The magnetic response of Cs2CuBr4 is quite differ-
ent and includes a prominent commensurate longitudinal
phase: the up-up-down magnetization plateau at M = Msat/3
[51–53]. As discussed extensively in Refs. [6,7], in the limit
of weak interchain interaction J ′ � J , the magnetization
plateau phase can be understood as a commensurate version
of the incommensurate longitudinal SDW phase (see also
Appendix C). This connection makes it plausible that an
SDW phase may be “hiding” in the complex phase diagram
of Cs2CuBr4 [54], though the estimates of J ′/J are not so
small. (A very recent ESR study [55] in the fully polarized
phase of Cs2CuBr4 has strongly revised the estimate of J ′/J
down to approximately 0.4, which makes the appearance of
the longitudinal SDW phase more probable.)

An inelastic neutron scattering study of the gapped phason
at M = Msat/3 magnetization plateau, as well as that of gapped
transverse spin excitations, could reveal the nature of this
interesting frustrated antiferromagnet. We hope that our work
will stimulate further studies of the unusual ordered phases of
frustrated low-dimensional quantum magnets.

ACKNOWLEDGMENTS

We would like to thank C. Broholm, R. Coldea, F. Essler,
A. Furusaki, E. Fradkin, E. Mishchenko, M. Mourigal,
L. Svistov, and M. Takigawa for useful discussions. We
especially thank F. Essler for pointing Ref. [56] to us. This
work is supported by NSF grant DMR-12-06809 (LB) and
NSF DMR-12-06774 (OAS).

APPENDIX A: CORRECTING SINE-GORDON MODEL

Here, we describe how to correct sine-Gordon ground-state
energy. We start with Bethe ansatz result for the energy of the
lattice model, as given by Eq. (2.69) of Ref. [56]:

e0(a) = 2

a2

∫ ∞

0

dt

t

sin(4θt)

cosh(γ t)

sinh[(π − γ )t]

sinh(πt)
. (A1)

Here, θ and short-distance cutoff a determine soliton mass
ms via

ms = 4

a
e−πθ/γ , (A2)
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while γ = π/(1 + ξ ) as can be checked later by comparing the
final result with other tabulated forms. The continuous limit
corresponds to a → 0 while θ → ∞ so that ms stays constant.

The idea is to solve (A1) and take the continuous limit,
and drop everything that disappears when a → 0. Because of
a−2 factor in front of (A1) it seems clear that result should be
proportional to m2

s , but let us see.
Introduce contour integral

I =
∫

C

f (t) ≡
∫

C

dt

t

ei4θt

cosh(γ t)

sinh[(π − γ )t]

sinh(πt)
, (A3)

where C is the contour C = (−∞, − ε)
⋂

Cε

⋂
(ε,∞)

⋂
CR ,

where Cε goes over the origin from above (and ε → 0
of course) in clockwise fashion while CR is the standard
large semi-circle traveled counterclockwise in the upper
Im(t) > 0 half-plane, with R → ∞. Calculating residues we
find

a2e0(a)/2 = π − γ

2
+ π

∑
Res[f (t)]. (A4)

The first term comes from Cε . The residues of f (t) are of
two kinds: from sinh(πt) = 0, we get tn = in, where n =
1,2,3, . . . , while cosh[γ t] = 0 produces tk = i(k − 1/2)π/γ ,
with k = 1,2,3, . . . .

Thus

a2e0(a)/2 = π − γ

2
− π

∑
n=1

e−4θn

πn
tan(γ n)

+π
∑
k=1

e−4πθ(k−1/2)/γ

π (k − 1/2)
cot

[
π2

γ

(
k − 1

2

)]
.

(A5)

We observe that the standard result

e0(0) = m2
s cot

(
π2

2γ

)
= −m2

s tan

(
πξ

2

)
(A6)

is obtained from k = 1 contribution from the last term.
Everything else scales as higher than second power of msa

and disappears in the a → 0 limit.
Note, however, that at γ = π/2 the soliton mass (A2) ms ∼

e−2θ , so that the first member of the first sum, n = 1, too scales
as e−4θ ∼ (msa)2, and thus must be kept. That is, at γ = π/2,
the two poles merge. We then obtain

a2e0(a)/2 = π − γ

2
+

(msa

4

)2
[

2 cot

(
π2

2γ

)

−
(msa

4

) 4γ

π
−2

tan(γ )

]
+ O[(msa)p>2]. (A7)

Taking the limit γ → π/2, we immediately obtain a finite
result for the ground-state energy density

e0(a) = π

2a2
+ m2

s

4π
ln

(
m2

s a
2

16e

)
. (A8)

Next we need to realize that γ = π/2 (ξ = 1) corresponds
to the noninteracting Thirring model, see, for example,
Ref. [57],

H0 =
∑

k

uk(a+
1ka1k − a+

2ka2k) + m0(a+
1ka2k + a+

2ka1k), (A9)

spectrum of which is given by massive fermions with disper-
sion ±

√
u2k2 + m2

0 . The ground-state energy is found as (all
negative levels are filled)

EThirring = −
∫ �

−�

dk

2π

√
u2k2 + m2

0

= −u
�2

2π
+ m2

0

4πu
ln

(
m2

0

4u2�2

)
. (A10)

Clearly, it matches, in its scaling (mass-dependent) part,
Eq. (A8). Since the field-theory expression is written in
dimensionless units, we can identify ms = m0/u and a =
2
√

e/�. Taking � = π in (A10) suggests a = 1.05.
All of this shows that the free energy density of the sine-

Gordon model should be modified to

Fnew = −m2
s

8

[
2 tan

(
πξ

2

)
+

(
msa

4

)2(1−ξ )/(1+ξ )

× tan

(
π

1 + ξ

) ]
. (A11)

For ξ < 1, the second term is a subleading correction which,
at ξ = 1, serves to cancel the unphysical divergence of the
first term.

Next, we apply the obtained result to the self-
consistent solution of the chain mean field. As before, � =
−(1/2)∂Fnew/∂μ = −(1/2)(∂Fnew/∂m2

s )(∂m2
s /∂μ). Using

dm2
s

dμ
=

{
2�(ξ/2)√

π�[(1 + ξ )/2]

}2{
π�[1/(1 + ξ )]

�[ξ/(1 + ξ )]

}1+ξ

(1 + ξ )μξ ,

(A12)

which is obtained from (24), we can solve for μ = γsdw�:

(μ/v)1−ξ

= 1 + ξ

8
tan(πξ/2)A2

1A
1+ξ

2 (γsdw/v)

×
{

1 − 1

8
tan[π/(1 + ξ )]A

4
(1+ξ )

1 A2
2Q

(1−ξ )
(1+ξ ) (γsdw/v)

}−1

.

(A13)

Here, Q = a2

16 , A1 = 2�(ξ/2)√
π�[(1+ξ )/2] , A2 = π�[1/(1+ξ )]

�[ξ/(1+ξ )] . Notice
that the whole denominator in (A13) is the result of the new
(second) term in (A11). Both tangents diverge at ξ = 1, but
their ratio is finite, and the right-hand side goes to 1 in this
limit.

Once (A13) is solved, the soliton mass is found as

ms = vA1

(μ

v
A2

)(1+ξ )/2
. (A14)

This equation is plotted in Fig. 5 for the particular case
of spatially anisotropic triangular lattice model with γsdw =
J ′A2

1 sin(πM).

APPENDIX B: ALTERNATIVE DERIVATION
OF THE PHASON MODE

Here, we present an alternative, Ginzburg-Landau action
derivation of the phason mode and its dispersion in the 2d
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collinear SDW state. We start with the partition function of
ϕy(x) field

Zsdw =
∫

Dϕ exp

{
−A0 +

∑
y

∫
dτdxγsdw

× cos[2π (ϕy − ϕy+1)/β]

}

=
∫

Dϕ exp

[
−A0 +

∫
(dk)J ′

zz(ky)�σk · �σ−k

]
, (B1)

where A0 = ∑
y

∫
dτdx 1

2 [( 1
v
∂τϕy)2 + v(∂xϕy)2] is the ac-

tion of decoupled chains, interchain interaction J ′
zz(ky) =

γsdw cos[ky] is the same as in Sec. III B 2, and �σ (x,y) =
(cos[2πϕy(x)/β], sin[2πϕy(x)/β]) stands for a SDW vec-
tor, and �σk is its Fourier transform. Finally,

∫
(dk) ≡∫

dωdkxdky/(2π )3.
We next apply Hubbard-Stratanovich identity to decouple

interchain cosine term with the help of the vector field �
y(x,τ ),

Zsdw =
∫

DϕD �
 exp

{
−A0 +

∫
(dk)

[
1

4γsdw

(
1 + 1

2
k2
y

)

× �
k · �
−k + �
k · �σ−k

]}
. (B2)

Inside SDW phase, �
y(x,τ ) takes on a finite expectation
value, 〈| �
y(x,τ )|〉 = ρ �= 0, and consequently, we parametrize
it as �
y(x) = ρ(cos[2π�(x,y)/β], sin[2π�(x,y)/β]) and
treat the magnitude of the order parameter ρ as a con-
stant. Also note that in (B2) we have expanded cos[ky]
in J ′

zz(ky) about the minimum at ky = 0. We then ob-
serve that in continuum approximation,

∫
(dk)(1 + 1

2k2
y) �
k ·

�
−k = ρ2
∫

dτdxdy[1 + 1
2 (∂y�)2], while

∫
(dk) �
k · �σ−k =

ρ
∫

dτdxdy cos{2π [�(x,y) − ϕy(x)]/β}.
We now absorb phase �(x,y) into ϕy(x) via the shift

ϕy(x) = ϕ̃y(x) + �(x,y). (B3)

This simple transformation changes cos{2π [�(x,y) −
ϕy(x)]/β} into the cosine term of the 2 + 1-dimensional
sine-Gordon model, cos[2πϕ̃y(x)/β], which strongly pins
ϕ̃y(x) to one of its minima.

As a result, (B2) can be re-written as

Zsdw =
∫

Dϕ̃D� exp

(
−1

2

∫
dτdxdy

{
1

v
(∂τ�)2 + v(∂x�)2

+ ρ2

γsdw
(∂y�)2 + ρ cos[2πϕ̃y(x)/β] + · · ·

})
. (B4)

Observe that in this expression ρ plays the role of the pinning
potential and provides ϕ̃ with a finite mass. Correspondingly,
the coupling between � and ϕ̃ fields, which is included in the
omitted “. . . ” terms, is irrelevant for energies/momenta much
smaller than ρ. For example, the coupling such as ∂xϕ̃∂x�

can be easily shown to only generate quartic (in derivatives
or momenta) corrections, such as ρ−1(∂2

x�)2, to the leading
quadratic terms in (B4).

Omitting such terms, we observe that (B4) predicts linearly-
dispersing phason mode � with dispersion

ω2 = v2k2
x + vρ2

γsdw
k2
y. (B5)

It remains to relate ρ = 〈| �
y(x,τ )|〉 to the SDW order pa-
rameter ψ̃ in Sec. III A 2. This is done via the following simple
consideration: imagine adding source term

∑
y

∫
dτdx�λ · �σ

to (B1). Upon Hubbard-Stratonovich decoupling in (B2) it is
seen that �λ couples to �σ in the same way as �
 does. Hence
the shift �
 → �
 − �λ removes the linear �λ · �σ term simul-
taneously generating quadratic (4γsdw)−1

∫
( �
 − �λ) · ( �
 − �λ)

term.
On the other hand,

ψ̃ = 〈�σ 〉 = Z−1
sdw

∂Zsdw

∂�λ

∣∣∣∣
λ=0

(B6)

= 1

2γsdw
〈 �
〉λ=0 ∼ ρ

γsdw
. (B7)

Hence transverse velocity in (B5) can be estimated
as v2

⊥ = vρ2/γsdw ∼ vγsdw(ψ̃)2. Since from (A13) μ/v ∼
(γsdw/v)1/(1−ξ ) and from Sec. III A 2 μ = γsdwψ̃ , we find that
ψ̃ ∼ (γsdw/v)ξ/(1−ξ ) and finally obtain

v2
⊥ ∼ v2(γsdw/v)(1+ξ )/(1−ξ ) = v2(γsdw/v)4πR2/(4πR2−1), (B8)

which results in the same scaling v⊥ ∼ J (J ′/J )2πR2/(4πR2−1)

as previously obtained in Sec. III A 2, see the in-line equation
below (42), by insisting on the gaplessness of the longitudinal
spin fluctuations. The present consideration shows that the
phason is indeed direct consequence of the formation of the
2d SDW order.

APPENDIX C: MAGNETIZATION PLATEAU

Approach developed in the previous Appendix B also
explains the appearance of the magnetization plateaux inside
the established SDW state. For this, we need to go back
to (B1) and allow for the nominally irrelevant terms to be
retained in the single chain action A0. Such subleading terms
still have to respect the symmetries of the two-dimensional
lattice. For the case of spatially anisotropic triangular lattice,
the required symmetry analysis was performed in Ref. [6],
Sec. III D.

For convenience, we briefly summarize it here. Inside
the SDW phase, magnetization plateaux are possible when
the ordering momentum of the SDW state π (1 − 2M) is
the rational fraction of the reciprocal lattice momentum 2π ,
π (1 − 2M)k = 2πν, with integer k and ν. This leads to the
following allowed magnetization values

M (k,ν) = 1

2

(
1 − 2ν

k

)
. (C1)

Importantly, the integers ν and k must satisfy the same parity
constraint [6]: ν must be of the same parity as k (both are even
or odd). Given this, the following kth-order umklapp term can
be added to the SDW Hamiltonian [and, consequently, to the
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action in (B1)]:

H
(k)
umk =

∑
y

∫
dxtk cos

[
2πk

β
ϕy(x)

]
. (C2)

The amplitude of this kth-order umklapp can be estimated [6]
to scale as tk ∼ J (J ′/J )k

2/(8πR2−2), where the comptification
radius R depends on the magnetization M (k,ν).

The strongest plateau is 1/3 magnetization plateau when
k = 3, ν = 1, and M (3,1) = 1

3 × 1
2 = 1

6 . Note that SDW
ground state is a necessary condition for the plateau existence;
this tends to remove many of potential higher-order plateaux,
k > 3, as they require higher magnetization (C1).

The effect of adding tk cos[ 2πk
β

ϕy(x)] to (B1) is easy to
track; being of single-chain origin, it does not affect steps
leading to (B4). Obviously substitution (B3) changes it into
tk cos{ 2πk

β
[ϕ̃y(x) + �(x,y)]}. This simple result has a very

profound meaning: since ϕ̃y(x) is already pinned by the SDW
potential ρ cos[2πϕ̃y(x)/β] in (B4), the added umklapp term
simply becomes a pinning potential for the phason field
�(x,y).

Note that at this stage we are dealing with a two-
dimensional sine-Gordon model which can be analyzed classi-
cally, see Refs. [6,7]. It follows that once the commensurability
condition is satisfied, �(x,y) is pinned and phason mode
becomes gapped. Its lowest-energy excitations are given by
kinks, which interpolate between degenerate minima of �,
and cost finite energy plat ∼

√
vt̃k .

All of this allows us to generalize expression longitudinal
susceptibility of the SDW (41) to the two-dimensional plateau
state

χ zz
2d;plat(q,π + qy,ω) ∼ Zzz;2d

2
plat + (

v2q2 + v2
⊥q2

y

) − ω2
. (C3)

Here, q is measured from the commensurate with the lattice
SDW momentum k

(k,ν)
sdw = π (1 − 2M (k,ν)). References [6,7]

show that the plateau-SDW transition, driven by the sufficient
deviation of the magnetic field away from the “commensu-
rate” value corresponding to (C1), is of the commensurate-
incommensurate (CIT) kind. It should be clear that transverse
spin fluctuations (43) are not affected by the development of
the plateau state and remain gapped as before.

APPENDIX D: RG ANALYSIS OF THE SDW-SN
TRANSITION

To describe the competition between the SN and SDW
phases near the saturation field (low magnon density), we start
with the boson action for the pair magnon field ψy(τ,x)

S =
∑

y

∫
dxdτ

[
ψ+

y ∂τψy + 1

2mx

∂xψ
+
y ∂xψy

− t(ψ+
y ψy+1 + ψ+

y+1ψy) − μ|ψy |2

+ w

2
|ψy |4 + u

2
|ψy |2|ψy+1|2

]
. (D1)

Here, in comparison with (63), we have denoted t = c(J ′)2/J1

and also included the in-chain repulsion w. Because the

transition occurs at zero boson density, the parameter w,
though important for describing the interactions between
bosons in the unsaturated phase, does not affect scaling
exponents, as we comment further on below. This is all we will
need in order to consider the competition between the density-
density (Sz − Sz) interaction u ∼ J ′ and the pair-tunneling
t ∼ (J ′)2/J1.

Denoting the spatial scale along the chain as L, we conclude
that τ ∼ L2, so that the dynamical critical exponent z = 2,
as is evident from the first line of (D1). Demanding that in-
chain kinetic energy is marginal, we observe that the field
ψy scales as ψy ∼ 1/

√
L. This means that magnon density

M = 1/2 − M = 2ψ+
y ψy ∼ 1/L.

We can now consider how the various interactions renor-
malize. We see that the two four-boson terms u and w are
relevant and grow as L, while the hopping t (and chemical
potential μ) is more relevant and grows as L2. The growth
of w is well-understood: for a single chain it implies that
the magnons behave as hard-core particles and indeed their
density-fluctuations become those of free fermions. Because
those fiducial fermions are free, this physics does not modify
the scaling dimensions of the density operators |ψy |2 and the
growth of u is not modified by this effect. Furthermore, since
the hopping t can be considered in the single boson sector,
interactions also cannot modify its scaling dimension. Hence
the growth of w has no effect upon the renormalization of u,
t , and μ.

We should stop the scaling at the scale LM ∼ 1/M , deter-
mined by the magnon density. At that scale we must compare
the renormalized u → u/M with the renormalized t →
t/(M)2. Equating the two renormalized interactions gives
us critical density Mc ∼ t/u ∼ J ′/J1 � 1. For M � t/u

(low magnon density), we have t/(M)2 
 u/M (this is
the tunneling-dominated SN phase), while in the opposite
limit of “high” density M 
 t/u (but still M � 1), we
have instead u/M 
 t/(M)2 (the repulsion dominated
SDW phase). Thus, on reducing the magnetization M from
the saturated value Msat = 1/2, the system transitions from
the fully polarized state into a spin-nematic one, via the
condensation of magnon pairs. The SN phase occupies the
narrow magnetization interval Mc ∼ t/u ∼ J ′/J1. For M �
1/2 − Mc, the ground state is the (paired) longitudinal SDW.
This conclusion is identical to the energy scaling argument
presented in the end of Sec. IV B.

The SN-SDW transition is most likely discontinuous, as
can be understood from realizing that (D1) [and (63)] is
mathematically equivalent to the low-energy theory of the
XXZ model with a magnetic field along the easy axis. The
model is Ising-like, with u 
 t , and is actually the one
described by (14). The SN-SDW transition is then a version of
the spin-flop transition, which is a first-order transition [58].

Another possibility for the SN-SDW on general grounds is
that there is an intermediate co-existence phase. That phase can
occur as a result of instability of the Bogoliubov mode ωB (k) =√

εk(εk + 2ρ0uk), which may occur at some k �= 0 due to k

dependence of the interaction uk [which is Fourier transform
of u term in (63)]. Such an instability describes crystallization,
i.e., modulation of density |ψy |2 with coordinate. However, we
expect that a first order transition is most likely.
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